AN INTERACTIVE PHONOLOGICAL

RULE TESTING SYSTEM

Victoria A, Fromkin
and

D. Lloyd Rice

University of California, los Angeles

September 1969

One of the many ways the high-speed computer is useful to linguistic
researchers is for the evaluation of generative grammars., Several programming
systems for this purpose have been described in the literature. 1s2y3sl
A transformational generative grammar consists of a syntactic comporent, a
phonological component and a semantic component. This paper is concerned
solely with the phonological comporent., While this component is a dependent
part of the entire grammar, systems of phomological rules for specific lan-
guages, i.e, the phonological components of the grammars of these languages,
have been segarately presented by Chomsky and Halle 5, Kuroda °, Schachter
and Fromkin 7 and others, The Sound Pattern of English 5 (hereafter, SPE)
includes the ‘'formalism used for presenting phonological rules and the schemata
that represent them, and the interpretation of this formalism'. (p. 390)

This formal description is taken as the basis for the rule structures dis-
cussed in this paper.

Chomsky and Halle state that 'The rules of the grammar operate in a
mechanical fashion; one may think of them as instructons that might be given
to a mindless robot, incapable of exercising any judgment or imagination in
their application. Any ambiguity or inexplicitness in the statement of rules
must in principle be eliminated, since the receiver of the instructions is
assumed to-be incapable of using intelligence to fill in gaps or to correct.
errors’'. They find it 'a curious fact' however that 'this condition of pre-
ciseness of formulation...has led many linguists to conclude that the wotivation
for such grammars must be...some,.use of computers', We also believe that
there are more msic theoretical motives in clarity and completeness; we
further believe that this very explicitness makes possible the use of the
computer for testing such rules.

Furthermore, the complexities of natural language are reflected in
the components phonological rules. Anyone who has attempted to teach a
group of graduate students the phonology of English, using the rules pre-
sented in SPE can attest to the fact that even a single rule schema presents
endless problems for the brightest of students when he attempts to expand
the schema and to apply this set of rules to convert an abstract surface
structure of a sentence into its phonetic representation. While the linguist
or the student may be possessed with greater intelligence than the mindless
robot, be is also possessed with human fallibility, and limited time and
energy. For these reasons, the mindless robot can perform far more effectively
than a minded human, The complter program which is described in this paper
was written to aid human phonologists in the writing of rules, the testing

-2~

of rules, and the teaching of phonology. The importance of such a computerized
phonological rule tester becomes very apparent when one selects at random

any twenty-five English words, attempts to provide what one assumes to be the
underlying phonological representation, and then applies the rules of SPE

as specified. One of the authors of this paper made such an attempt. After
more hours than she wishes to remember, and using every possible underlying
segment, she found that eleven of these randomly chosen words could not be
correctly derived. Nor were these strange foreign loan words, unless one
believes the word ‘America’ to be an exceptional item in the English vocabu-
lary.

This example is not offered as a criticism of Sound Pattern of English,
probably the most important published book on English phonology and phono-
logical theory., Nor are we concerned here with any theoretical weaknesses
which may or may not be present in this work. What is apparent is that had
a phonological rule tester been used, prior to the publication of this set
of rules, many of the problems in rule ordering, omitted contexts etc. could
have easily been corrected, and those rules which present problems and which
cannot work would have at least been revealed., Furthermore, because of the
speed of the computer, one could have tested not only twenty-five words, but
hundreds ~- determining the correct underlying forms of formatives, and there-
by providing a lexicon on which the rules could operate.

A major preblem encountered in setting up a progras for such a tester is
the netational compromise often necessary between the computer imput format
and the rule description schemes used by linguists to express their phono-
logical rules, The Phonological Rule Tester of Bobrow and Fraser 8 solves
this problem by offering a variety of logical combinatorial devices which may
be used to group either segments within a rule or complete rules for dis-
junctive or conjunctive application. Such a system has very general descriptive
capability, but complex rules appear in the computer input form rather different
from the linguist’'s format.

In consideration of the descriptive powers of such systems, it appears
that the input format should be made as specific ae possible to the proposed
theoretical structure since a more general descriptive scheme requires the
rule writer to learn a more powerful meta-language than is needed. This
parallels the general direction of development of computer languages; from
the general machine-oriented coding to the specific problem-oriented languages.

This paper describes the translational core or compiler of a system which
accepts phonological rules in a format very close to that formalized in The
Sound Pattern of BEnglish and produces as output the coding similar to phonetic
segments necessary to evaluate the input rules in a phonological testing pro-
gram, The input format of this system is especially applicable to keyboard
entry on a CRT graphic terminal such as the IBM 2260 and is planned for pos-
sible use in an on-line classroom system for teaching the properties and
operation of the phonological component, as well as for the writing and testing
of phonological rules by the linguist.

The rule testing program consists of anlinpnt block, a sequence of phono-
logical rules, and a printout block (see Figure 1). The input block will ac-
cept a string of characters from the operator's console representing the under-
lying form of a word or phrase or any form assumed to occur in a derivation

-3-

in the phonological component. This form is then tested against the environ-
mental conditions specified by the stored rules and modified according to

those rules whenever a match is found. The string of phonological units,i.e,
segments and boundaries, and/or the binary matrix resulting from the applica-

tion of any rule may be optionally displayed on the operator's comsole after
the application of that rule.

Rule Specifications l, Compiler 4ﬁ1
$egmental roru —J"J‘ ;
S El e i i T
Rule Block g{i:;‘c“t s

Figure 1: The Phonological Rule Tester

The structure of the program is such that any rule or sequence of rules
can be tested using the same input and output blocks. The rules initially
coded for testing and described in this paper are taken from Chomsky and Halle
(1968). The program however, is not limited to these particular rules, but

can be used to test any set of rules comprising the phonological component of
a generative grammar,

The Input Format for Rule Deascription

The input to the phonological component consists of a structurally
analyzed string consisting of syntactic brackets (e.g. Noun Phrase, Noun,
Adjective, Verb etc), segments, and boundaries. The segments and boundaries
are composite feature bundles,

The system used in our Phomological Rule Tester specifies these units in
any of several ways:

a. As a combination of upper-case alphabetic characters representing the
various phonological segments defined in the system;
b. As a cluster of distinctive feature specifications enclosed in angle
brackets. These may be spaced horizomntally or vertically, i.e., ’
¢+voc - cons - round)
{tvoc)
<-cons)
¢-round),
but are to be considered simultaneously as a cluster rather than con-
Junctively as in the square bracketed series;
¢. As a sequence of segments of specific predetermined types;

<l

‘V'* indicates any vowel segment, i.e., defined as +voc
'C" indicates any non Vowel segment, i.e. & true comsonant, a
liquid or a glide, i.e., defined ag either -voc or +cons ,
ye ;ndicates any sequence of units not containing the boundary
unit #,
i'C" indicates a string of at least i consonants,
1,j'C" indicates a string of at least i and not more than j comsonants,
d. As any of several boundary units #, +, or = , which signify themselves.
e. as a combination of brackets and upper-case alphabetic characters
representing the syntactic brackets defined in the system.
Rules in the Pbonolog}cal Component are of the form
A-B/X ~~Y
where 'A and B are single units or the null element; the arrow stands for
‘is actualized by'; the diagonal line means 'in the context’'; and X and Y
represent respectively, the left and right hand environments in which A
appears. These may also be null, or may comsist of units or strings of
units and include labeled syntactic brackets.

Our system accepts rules written in this format, i.e.
LES - RHS / context specification.

A rule is applicable if the LHS matches some unit in the test string
and any context specified in the rule is found to exist at or adjacent to the
matched unit. The context specification may consist of any sequence of one
or more units, and must include a marker -- to indicate where the LHS fits in-
to the specified context, or more exactly, how the environment must be con-
figured around the matched unit in order for the rule to be applied.

In the Phonalogical Componment of a Grammar, two partially identical
rules may be coalesced into a single rule " enclosing the corresponding
non-identical parts in braces, i.e. A -+ B/ . Schema uaing such braces
coalesce a conjunctive series of rules. The es are applied in order. A
conjunctive series of units is written in our program as a vertical list
bounded left and right by colummns of left and right square brackets., This
corresponds to the braces. For example, given the phonological rule (1)

(1) V-V -- [4Masal]l

wl
has the interpretation that the rule will be tried first with the context spec-
ification consisting of the segment symbolized as N (i.e. nasal), and then with
the context consisting of the segment ¥.

In our system a rule containing a conjunctive series is matched against
the test string taking each of the conjunctive items in the order they appear
in the series, applying the rule immediately any time the matching string in-
cluding the current item matches the appropriate portion of the test string.

In the phonological theory underlying our eystem, rules may also be
disjunctively ordered. Such rules are represated in schema by the use of paren-
theses and angled brackets.

A disjunction is written as a unit or sequence of units enclosed in
parenthesis. It differs from the conjunctive series in the sequence of ap-
plicability to a particular test string. A disjunction is matched against the

-5-

test string by comsidering first the context including the disjunctive item.
If this match is successful the rule is applied and no further matching is
attempted. If the first match is unsuccessful, then the match is attempted
omitting the disjunctive item, applying the rule if a match is found.

Clearly, the context must specify exactly one relative position of
the LHS, marked by the double dash, --. Thus, the LHS position marker may be
in a conjunctive series if it appears once in each item of the series, but
it may not occur inside a disjunction.

The items of a conjunctive series or of a disjunction may in turn
include either conjunctive series or disjunctions. Conjunctive series must
be written with the bracket columns extending below and not above the line
external to the conjunction., Extra spaces may be included either horizontally
or vertically for clarity and in some cases may be needed for disambiguation.
Rule (12) from SPE would be expressed as follows in this system:

[-~ [rC
g-w/ [[(frl)]
[[Ol #]

LI

[{tround -voc +cons) -~

A context specification may consist of stacked contexts according to
the convention that

A-B/D--E/C--F
is interpreted as
A-B/CD--EF,

System Structure

The rule testing program proper comsists of 4 sections, They are:
1. the system storage definitions which include definition of the feature
set used, 2, the mechanics nec ry to pt an input form and set up the
test matrix with the features of the input form, 3. & rule test loop which
controls cyclic ordering, and 4. the routines to print out the results, either
in segment string or in binary matrix form, following the application of any
rule. The rules are then included as blocks of coding inserted as desired in
the test loop.

Initially, four values are defined which determine the size of the
various tables and matrices in the system.

DECLARE L (60) CHAR (2);
DECLARE F (60,20), M (50,20) BIT (1);
DECLARE 5 (50) FIXED;

The amount of memory reserved may be easily changed by altering only
the lines defining the size limits.

An array L of CHARACTER STRING variables is declared to have length
60 and a logical matrix F is declared to have a length of 60 columns, each columr
having 20 elements or bits. Immediately after program execution has begun, in-
put of the feature set is requested. The feature specification consists of the

-6

character representation for each phomological unit followed by at least 1
space followed by an ordered string of + ‘s and -~ 's corresponding to the
feature value assignment. The ordering is as in Table 2 below, The
character representation of the nth unit entered is stored in the nth
element of the string array L and the feature walues are stored as 1's and
0's in the nth column of the feature reference matrix F (n 60). If

less than 20 binary values are specified for any unit the remainder of the
column is filled with O's (i.e., ~'s). Table 1 is a listing of the units
and feature values used for testing the rules of Eoglish in the present
study (from Chomsky and Halle, 1968).

~7a

Phonemi ¢ Phonemic

Symboi Unit Symbol Unit

Ul L — (7) TH [S S (6)

1I B S (7) DH et ommtt ot dam (&)

uu ottt (T) o Hotommt b ot b (n)

EE L S — + (%) S Fotommt bttt (s)

00 L T — () 7 L e (z)

2é B S (%) c Fot oot (c)

AD Pttt (3) c ottt et (<€)

OE 3 S (%) J ottt et (1)

%% [e a—— (%) SH R U S Y (3)

I B S, (i) Z R ST S S, (%)

U (u) K e ——— (k)

E (e) G (g)

& () X {x)

&& (A) EQ S A S O (n)

0 (e) H e e (h)

@ ot m——— (e) KW L S . (kv)

i ottt () (017 B T e S, (%)

Y Foet e () XW Fotb et amtan (x+)

W Foettomata (w) + —+e

$ R (c) - -

? et tm—— (o) # -

R R S S S (r) [—t

L thbomattonttan (")] —ttt

P [T Y (g) ju it

B [S S . (v) ja —ttbat

F Fatmmetement ot (f) 1y bbbt

v L - (v) i [—"

i L S . . (r3) it B

T Fotmmmttmn—— (1) :

D LI S S . ()

Table 1: Unit Feature Values

-8-

In order to generate computer instructions as necessary to man-
ipulate the values in the binary matrix, the rules as specified above must
be made compatible with the requirements of the internal logical structure
of the computer. This is accomplished through a compilation process on
the above rules.

A logical matrix M is delcared to have a length of 50 columns, each
column having 20 elements., The Jth feature in the Ith column is referred to
with the notation M(I,J). The value of each M(I,J) may be either O or 1,
representing logical False or True (the feature value - or +) respectviely.
The input string (the form to be tested) is then stored as a pattern of
features in the test matrix M such that each unit occupies one column of the
matrix, allowing the entry of any string of segments and boundaries up to
length 50. The features for each unit are stored in the corresponding column
of M by transferring the values from the appropriate column of the previously
defined feature matrix F.

Symbols were chosen to have mmemonic value relating to the features
used. These symbols are assigned values corresponding to the row in the matrix
F having that feature value.

Value Symbol Feature Represented
1 SEG segment

2 voc vocalic

3 CONS consonantal
4 H1 HIGH high

5 BACK back

6 Low low

7 ANT anterior

8 COR coronal

9 ROUND round
10 TENSE tense

11 VOICE voice

12 CONT continuant
13 N1 NASAL nasel
14 STRID strident

Table 23 Feature Values in Matrix Rows

Several more rows of the matrix M are delcard so that they are a-
vailable for specification of diacritic information about each unit., The
number of such spaces is determined by the declared size of 20, the column
height, Table 3 defines six additional matrix rows.

Value Symbol Diacritic Represented

15 FLAG 20 Rule 20

16 FLAG 30 Rule 20

17 FLAG 32 : Rule 32

18 FLAG 34 Rule 34

19 DMSR D (see Main Stress Rule)
20 FVSR F (see Vowel Shift Rule)

Table 3: Diacritic Feature Value in Matrix Rows

-9~

An additional row associated with M is delcared to have length 50
and elements which may have any integer value (up to the computer word size).
This row has the symbol S and is used to store the stress value assigned to
each unit., The stress on the Ith unit is referenced by the notation S(I).
The value O is initially stored in the array S for all units entered, which
represents [-stress] for all units, This is very convenient from the point
of view of the programming language as an integer value O is also logical O
while any integer value greater than zero is read as logical l. It is plan-
ned at a later date to be able to enter a non-zero stress value for any unit
in the input string.

A way was needed to store the information in the matrix representing
boundary units and the syntactic bracketing of the input string. Because the
previously described distinctive feature set has the common feature [+segment]
it is clear that the positions in a column of the matrix representing this
feature set need only be so defined when the first position has the value
[+segment]. When the first element in a column has the value [-segment] the
next 13 spaces are in effect free to be defined so as to represent the boundary
unit information. Thus 2 duplicate get of values are defiped on the matrix
as in Table 4.

Value Symbol Feature Represented
1 SEG segment

2 FB formative boundary (FB)
3 wB word boundary (WB)
4 BRAC B brecket

5 RBRAC right bracket

6 NBRAC noun bracket

7 ABRAC adjective bracket
8 VBRAC verb bracket

9 SBRAC stem bracket
10 PBRAC prefix bracket

Table 4: Boundary Unit Feature Values im Matrix Rows

Positions 4 through 10 representing bracketing information are de-
fined only in case the feature set [=seg™ occurs in positons 1 through 3.
-FB

+WB
Presence of bracketing¢m(I,BRAC)=1/) then implies occurrence of the word boundary
At present, 4 spaces remain in the matrix column for addition of syntactic
markers other than those defined here.

When entry of the segmental form to be tested is complete and be-
fore the test cycle is begun, the matrix positions corresponding to the
diacritics Rule n (FLAG 20 through FLAG 34) are set to l.

At a point within the test sequence when the adjustment rules have
been applied, the test string is scanned and the bracketing is located. A
pair of pointers, LEFT and RIGHT, are set to the left and right inmermost
brackets. If no brackets are specified in the input form, brackets are added

-10-

to the left and right ends of the form as referents for these pointers. Cor-
responding to the cyclic order of applicationdf the phonological rules,
all rules begin with environmental serarch at LEFT and continue right to
RIGH?. This is accomplished in the programming language with a DO-END state-
ment pair as follows:

DO I= LEFT TO RIGHT;
. This block of coding is executed repeatedly
. with I= LFFT, LEFT +1, LEFT +2,RIGHT;

END;

Any reference to I within the DO-loop range uses the current value
of the variable 1 for that repetition of the loop.

Because several of the rules needed for the phonetic specifications
in a language require insertion or deletion of phonological units in the string,
it is desirable to be able to print out the results of the application of any
rule after that rule has been applied to the string., This ability has been
provided in the present program with the characteristic that the results msy
be optionally printed after the application of any rule in the test sequence.

Rule Coding

We may now consider the coding for one of the rules to be programmed.
In rule 32, Glide Vocalization, we have the specification;

a round
[— cons} - [+ vocl / [a. high]
+ bac! v ‘

First, the Ith unit must be checked to see if it has the feature
[+segment]. If not, the scan is continued to the next unit. If it does,
the occurrence of the features [-cons?) is then checked., If this fails, we

+back
also continue the scan. This is represented by the following coding.

D0 I = LEFT 70 RIGHT
IF 7 M (I,59) then go to end 32
IF M (1,€1) |7 M (I,Bl) then go to end 32

end 32: end;

(PL/1 uses the symbol 7 for 'NOT” and 1 for 'OR")

The next step is to determine the occurrence of the environment
G ro in the preceding segment, Chomsky and Halle (1968 discuss the con-
o high
v

~11-

vention that any rule be interpreted as applicable in the presence of the
formative boundary +, which has the featuresf™ seg in any case in whih the

+ ¥B

- WB
rule is other wise appliable. That is, no e should be blocked by the pre~
sence of + in any context where that + is unmarked in the environmental con-
ditions. On the other hand, if the + is marked in the environmental specificatin
it must be present in the string before that rule is applicable.

From the preceding discussion we see that the environment for this
rule must be interpreted as

o round
« high (+)
v

To reference any unit a fixed distance to the left or right of the
currently scanmed unit I, it would be possible to add or subtract a comnstant
to the column pointer I. That is, M(I-1,J) would reference the unit immediately
to the left of I. In this case, however, the unit in question may be either
1 or 2 spaces to the left of I, depending on whether the unit at I-1 has the
features [~ seg] . Actually, it is necessary to check only the first 2 features

FB + FB
+ WB

be assumed not to occur. A set of pointers is available to indicate the dis-
tance of the desired unit from the currently scanned unit,Ll throughl9 for
distance to the left and Hl through R9 for distance to the right. These pointers,
when used in a rule, are initially set to 1 at the beginning of the eanvironmental
search in each matrix position. With this convention, I-Ll initially refers to
the unit immediately to the left of the Ith unit., If the unit I-1l is found to
have the features of the formative boundary + then Ll is set equal to 2. I-L
now refers correctly to the segment to be checked for the envirommental con-
dition specified,

+ FB
-~ WB
[- seg]. as the get [seg] is not defined in the unit vocabulary and may
+

DO I = LEFT TO RIGRT

Ll - 1;

1F WM(I,SEG) the go to end 32;

IF M(I,CONS M(I,BACK) then end 32;
1F M(I -1,SEG) and M(I-1,FB) the Ll=2;

END32: H

-12-

If M(I-L1,ROUND)9=M(I-L1,HIGH) the go to end32;
[V] is defined to be the coincidence of the features [+ vocalic

- consonantall
which may be checked simply in one statement, while application of this

rule specifies the value assignment M(I,voc)=1.

Following application

of the rule the printout option flags are checked and if either is sget
the corresponding print eubroutine is executed. The coding for the rule

may now be completed.

DO I=LEFT TO RIGHT;

IFM(I,SEG) the go to end32;

IF M(I,CONS) 1WM(I,BACK) then go to
end32;

IPaM(I~1,SEG) and M(I-1,FB) the Li=2;

IFWM(I-11,SEG) the end32;

IF M(I-L1,ROUND) ¥=M(I-L1,HIGH) then
go to end32;

Description

Units to be scanned start
at left-most unit, I=LEFT
and include successive
units I=SLEFT+1, I=LEFT+2,
to right-most unit I=RIGHT

Set the pointer equal to
1, at unit to immediate
left of I,

If the currently scanned
unit, I, is specified as
[-segment] to to next I
(i.e. Ln+l).

If scanned unit, I, is
either [+consonantal] or
{-back] (i.e. does not
match the rule condition),
go to the next unit,

If the unit immediately to
the left of I is specified
as [-segment] and [+FB],
then set the pointer to 2
(i.e. I-L1 will refer to
two units to the left of I).

If I-L1 is a [-segment] go
to next unit.

If the unit in the left en-
vironment does not have the
same feature values for
roundness and highness (i.e.
does not meet the rule
condition, round, high),

go to the next unit.

IF 9M(I-12,VO0C ‘H(I—m.,CONS)
then go to end32;

M(I,V0C)=1;

PUT LIST ('RULE 32, At',I);
PRINT "R32,AT" :1

IF P(32,1) THEN CALL STROUT;

IF P(32,2) THEN CALL MATOUT;

END32: END;

If the unit in the left-
most environment is either
[-vocalic] or [+consonantall
(i.e. not a true vowel),

go to the next unit,

All the conditions have
been satisfied; change
the value of the feature
[vocalic] from ~ to +
(i.e. apply Rule 32).

Instruction to print the
rule number (R32) apd
state the matrix feature
column to which it has
been applied, i.e. I.

If a display of the string,
resulting from application
of Rule 32 is desired, go
to subroutine STROUT.

If a display of the matrix
resulting from application
of Rule 32 is desired, go
to subroutine MATOUT.

Scan unit Ln+l, where
Ln = previously scanned I.

-14-

Compiler Code Generation

To illustrate, the output coding to evaluate a simple right-
handed context of the form

A -9B / -~ context
will be examined. It will be seen that this coding can be generalized to
evaluate a left-handed context as well, If the context matching process
is considered to be anchored at the point between the IHS position marker
and the context body, then conjunctive and disjunctive items farther to the
right in the context may be tried without remstching items to their left
in the context string. This would be true even after the rule has been
applied to the currently matched unit, provided that the matched unit is
again tested against the IHS after application of the RHS to that unit and
before the context match continues.

The run-time environment in the object machine requires a single
push-down stack and a few simple variable storage locations. A test string
is assumed to be stored in the object machine which may have been eatered
prior to execution of the rule match or may be the result of application of
a prior rule in the syste.

The semantic for matching particular units in the test string will
not be described, but will be abbreviated in the output coding as

IF MATCH UNIT__ ; ELSE GO T0 _ ;
which is taken to mean that a jump to the ELSE GO TO label occurs if the
specified unit was not successfully matched. Further abbreviations in the
output coding are in the application of the RHS of a rule, indicated by

DO RULE;

and in the declaration of program block and procedure structures., Othervise,
the coding presented constitutes a valid PL/I program segment.

Examining the coding necessary to evaluate simple contextual ex-
pressions including an un-nested disjunction, it may be seen that no loop-
ing back to previously matched units is necessary. When the left paren-
thesis is encountered the current location of the match pointer, stored in
the variable P, is saved. If any subsequent item match fails before the
right parenthesis is encountered tle pointer location is reset to the saved
value and the matching process resumes with the next unit outside the paren-
thesis. The saved pointer location is erased when the right parenthesis
is encountered whether or not the disjunctive item was successfully mat-
ched. This scheme achieves the desired disjunctivity quite simply in that
only one match is attempted, If the match of units inside the disjunction
succeeds, the matching process continues normelly. If it fails, the en~
closed string is effectively ignored and the, matching process continues as
before. This process may be made recursive to any level by saving the
pointer location in a push-down stack, freeing the top stack item when a

-15-

right parenthesis is encountered. Such a stack may easily be implemented
in PL/I by using the CONTROLLED form of dynamic storage allocation for a
variable STK. A new level in the stack is secured with the statement
ALLOCATE STK;, saving all previous values. The top level is erased with
the statement FREE STK;, bringing the previous value into. acceseibility.

In the coding examples presented below, two variables, LEFT and
RIGHT, are assumed to contain the currently applicable left and right limits_
for matching the test string. These will be set by scanning the test string
to locate the innermost syntactic brackets or other such test &ring delimiters.
The index variable N will be used to indicate the left-most end of the match-
ing process; in this case, the anchoring point following the LHS position
marker. The statement MATCH UNIT __ ; ELSE GO T0 __; is assumed to in-
crement the current match pointer P and fail at any time the value of P
exceeds the right delimiter value, stored in RIGHT,

The coding to evaluate a context of the form
RULEN: A-B/ --CD(E(FG)HI) K
would have the following appearance.

RULE: DOII:LEH‘TORIGHT;
P=I;
IF MATCH UNIT A; ELSE GO TO NEXT;
IF MATCH UNIT C; ELSE GO TO NEXT;
IF MATCH UNIT D; ELSE GO TO NEXT;
ALLOCATE STX;
STKep;
IF MATCH UNIT E; ELSE GO TO PN1;
ALLOCATE STK;
STK=;)
IF MATCH UNIT F; ELSE GO TO PN2;
IF MATCH UNIT G; ELSE GO TO PN2;
GO TO SK2;

PN2: P=STK;

SK2: FREE STK;
IF MATCH UNIT H
IF MATCH UNIT I
GO TO SK1;

P=STK;

FREE STK;

IF MATCH ONIT J; ELSE GO TO NEXT;
DO RULE;

NEXT: END RULEN;

ELSE G0 TO PNl
ELSE GO TO PNL

- s
ws e

PN
SK1

"o

The attempt to formulate the coding to evaluate a context including
a conjunctive series brings to light a different type of problem. It is not
possible to match units from left to right in an orderly fashion as far
simple or disjunctive contexts. Once a match for the entire stying has been
attempted using the first item of the conjunctive series, it is necessary,

-16-

whether the rule was applied or not, to reset the current match pointer to
its value at the time the left bracket was encountered, and then continue
the matching process using the units of the second conjunctive item as the
matching patterns. In order to loop back in this manner, it is necessary

to save three values during a matching pass over the sting; 1) The bracket-
pair number, 2) The pointer value at the time the left bracket is encountered,
and 3) The item number within the bracket pair, These three values are
saved in the push-down stack in the order listed when the conjunctive series
match is begun. It is convenient in the PL/I language to accomplish the
branching by using the stacked values as subscript values in an assigned-
label 60 TO statement. The labels ITEM(1,1):, ITEM(1,2):, ITEM(1,3):,e0..
are attached to the statements in the coding which perform the pointer
reset following matching of the corresponding conjunctive items. Branching
is accomplished with the statement GO TO ITEM(I,J); following the proper
assignment of values to the variables I and J.

An initial value of zero is put in the stack prior to rule evaluation.
The stack is then checked for a non-zero top item before it is unstacked
for label assignment and an empty stack indicates that all conjunctive items
in the rule have been used in the matching process. I1f the stack is not
empty, the top two itews are unstacked and stored as the variables J and P
respectively. The remaining top stack item is accessed and the value stored
in the variable I, but it is not freed from the stack. The value of P must
then be restored to the stack so it will be handled properly by the end- of-
item coding. The details of this scheme may be seen in the following example,
coded to evaluate a context of the form

RULEJ: A 3B/ --c [pE } o

DECLARE ITEM(1,3) LABEL;
ALLOCATE STK;
STK=0;
RULE J: DO R=LEFT TO RIGHT;

P=N;
IF MATCH UNIT A; ELSE GO TO NEXT;
IF MATCH UNIT C; ELSE GO TO NEXT;
ALIOCATE STKj :
STK=1;
ALLOCATE STK;
STKaP;
ALIOCATE STK;
STKz1;
IF MATCH UNIT D; ELSE TO TO Bll;
IF MATCH UNIT E; ELSE GO TO Bll;
GO TO BR1;

Bll: J=STK;
FREE STK;
P=STK;

ITEM(1,1): ALLOCATE STK;
STKed + 13
IF MATCH UNIT F; ELSE GO TO Bl2
IF MATCH UNIT G; ELSE GO TO Bl2

s w2

-17-

IF MATCH UNIT H;ELSE GO TO Bl2;
GO TO BRl;
Bl2: J=STK;
FREE STK;
P=STK;
ITEM(1,2): ALLOCATE STK;
STK=J + 1;
IF MATCH UNIT I; ELSE GO TO BEl3;
Qo TO BRl;
Bl3: ¥RIT BTK;
ITDN(1,3)1 TRIE 8TK;
TREX STK;
‘40 TO NEXT;
BRl: IF MATCH UNIT J; ELSE GO TO NEXT;
DO RULE;
NEXT: IF STK=OTHEN GO TO SCAN;
J:STK;
FREE STK;
P=STK;
FREE STK;
I=STK;
ALLOCATE STK;
STK:P;
GO TO ITEM(I,J);
SCAN: END RULEJ;

A further complication arises when a conjunctive series is embedded
inside of a disjunction. Specifically, the pointer location should not be
reset to the value stored in the stack for any failure to match the internal
sequence of units, but only if the match fails for all items in the embedded
conjunctive series. Because the last conjunctive item may fail to match,
while a previously tested item matched successfully, it is necessary to use
a 'vule applied” flag, which is cleared (reset) wiewn entering the match of
a disjunction and set by any application of the rule. The setting of this
flag determines the action taken concerning the pointer setting on exit from
the disjunction, when all conjunctive items have been tried.

The Co?ilix_:g Process

It may be seen from the coding examples given that the output from
the compiler occurs essentially in the same order as the symbols in the
linear input form, suggesting that a preliminary stage of syntactic amalysis
is unnecessary. It is only necessary to save the RHS specification in the
compiler from the time it is input until it is output in coded form at the
end of the context coding. Observing the three different types of failure-
to-match exit branches, it appears that the most direct solution is a three-
state table driven translator used in conjunction with a number of indices
defined during the compiling operation for the purpose of counting brackets
and parenthesis, generating sequential labels, etc. Entries in the table
indicate for each of the three states what output coding should be generated
and what compiler index operations should be carried out as a result of each
possible input symbol.

The table and listing of compiler actions shown below specifies a
compiler system capable of producing P1/I coding such as shown in the
examples. Notations used in the compiler table and action specifications

-18-

are explained briefly.

1.
2.

3.

4,

5.
6.

7.

Upper-case letters in the output are output as shown.
ﬂpower-case letters in the output represent compiler variables
for which the currently assigned value is output.
Abbreviated output coding has the meaning discussed above, for
example, DO RULE expressed the coding necessary to imcorporate
into the marked unit in the test string the . characteristics or
features given as the RHS of the rule.
The state transfer from state 2 on input of a right pareanthesis
is a conditional transfer, depending on the value of the com-
piler variable m, The test is shown as a fourth pseudo-state.
Compiler initialization, shown as state O, must be accomplished
at the beginning of compilation for each rule.
Three of the input actions are identical for all states, in-
dicating that it is unnecessary to store those actions in the
state table.
No action is specified for error inputs. It is assumed that
the compiler would respond with some indication of the trouble,
for example, a comma input when in state 2 could cause the
reply ‘Comma illegal inside parenthesis'.

The compiler uses seven variables, four of them, i,j,k and 1, as
push-down stacks with the CONTROLLED attribute, and three, m,n and o as
simple variables.

Compiler State Table

State Inputs
END OF
_ Unit L :] () LINE
0. Action: Allocate 1; 1l=1; n«O; o=0;
Next State: 1
1. Action: 1 & 5 6 7 9 10
Next State: 1 3 3 1 2 1 o]
2. Action: 2 4 error error 7 8 10
Next State: 2 3 2 4 o]
3, Action: 3 4 5 6 ? error 10
Next State: 3 3 3 1 2 [o]
4, Action: Conditional tramsfer state, mo input;

Next State: If m=0 then go to state 1., else go to state 2.
»

Compiler Actions

Action
number

5.

7.

Compiler
Operations

Output
Output
Output
n=n+l
Allocate i;
i=n;
Allocate j;
J=i;

1:l+1;

w=0;

Output
Qutput
Output
Output
Output
Output
Juj+l;
1=1-1;
Output
Output
Output

If 190 then
Qutput
Qutput
Output
Output
FREE i;
FREE j;
o=0+l1;
Allocate k;
k=o0;
Allocate 1;
1=0;

B=m+1;
Output
Output
Free 1;
m=m-1;
Output
Output
Qutput
Free k;

go to 6a.

-19-

“

*“Bijs

Output Code

IF MATCH UNIT __; ELSE GO TO NEXT;"
IF MATCH UNIT _; ELSE GO TO PNk;"
IF MATCH .UNIT __; ELSE GO T0 Bij;"

ALLOCATE STK; STK=ij"
ALLOGATE STK; STK=P;"
ALLOCATE STK; STK=1;"
GO TO BRi;"

J=STK; FREE STK; P=STK;"

“ITEM(i,j): ALLOCATE STK; STK=J+l;"

"Bij:

GO T0 BRi;"
FREE STK;

“ITEM(i,j): FREE STK; FREE STK;"

IF FLAG-O THEN GO TO PNk;"
FREE STK; "
6 TO NEXT; "

ALLOCATE STK; STK=0;"
mG:O; "

GO TO SKk; "
P=STK; "
FREE STK;"

-20-

9. Free 1;

Output " @0 70 SKk;"
Output "PNk: P-STK; FREE STK;"
Output- "'SKk: "
Free k;

10. Free 1;
Output " DO RULE;FLAG=); "
Cutput "NEXT: IF STK-O THEN GO TO SCAN;"
Output " J=STK;FREE STK;*
Output " P=STK;FREE STK;"
Cutput " I=STK; ALLOCATE STK;STK=P; "
Output " GO TO ITEM(I,J);"
Output “SCAN: END RULE;"

The Generality of the Process

The only references to left-right directionality in the matching
scheme described are in the left to right scan of the current IHS marker
in attempting to fit the test string and in the assumption that the coding
for matching particular units included an instruction to increment the
matching location pointer,P. A left-handed context may be evaluated by
similar coding by letting the pattern match move from the IHS outward,
i.e., to the left. The same compiling system can be used by reversing
the symbols of the left-hand context during the initial linearizationm,
substituting left for right and right for left brackets and parenthesis.
Thus, a rule of the form

A -9B / EF(G)H --I E]

would appear in the linear format as
A - 9B / H(G)FE —- 1[J,K1+

An additional dimension would be added to the compiler state table,
providing for the production of unit match coding which would decrement
instead of incrementing the curreant matching pointer. The LHS marker would
still scan the test string from left to right. If the LHS marker occurred
within the items of a conjunction, separate coding would have to be pro-
duced for the left and right parts of each item. The details of the match-
ing process for this case have not been worked out, but do not appear to
present any major difficulties for the system presented here.

-21-

‘Bibliography

1,

2.

3.

5.
6.
7.

Blair, F., Programming of the Grammar Tester in Specification and
Utilization of a Transformational Grammar, Sci, Rep. 1, IBM Corp.
Yorktown Hts. New York, 1966

Friedman, Joyce, A Computer System for Transformational Grammar.
Computer Sci. Rep. CS-84 AF-21, Stanford, Ca., Jan. 1968

Gross, L.N., On-Line Programming System User's Manual MIP-59, The
MITRE Corp., Bedford, Mass., March 1967

Londe, D. and Schoene, W., TGT, Transformational Grammar Tester,
TM-3759/000/00, System Development Corpo. Santa Monica, Ca., 1967

Chomaky, Noam, The Sound Pattern of English, Harper and Row, N.Y., 1968
Kuroda, S.-Y., Yawelmani Phomology, MIT Press, Cambridge, 1967

Schachter, Paul and Fromkin, Victoria, A Phonology of Akan: Akuapen,
Asante and Fante, Working Papers in Phometics No. 9, UCLA, August 1968

Bobrow, D.G., and Fraser, Brice, The Phonological Rule Tester, Comm. ACM,
vol 11, no 11, November 1968

Rice, D. Lloyd, and Hofshi, Reuben, An Interactivé Phonological Rule
Tester, Working Papers in Phonetics, No, 10, UCHA, Dec. 1968

10, Chomsky, Noam. Some General Properties of Phomological Rules, Language

1.

vol 43 no 1, March 1967

Kimball, J.P., COnjunctxvé Stacks and Disjunctive Sequences in language
chuge Quarterly Prog. Rep. Research Lab. of m.ectroucs. No. 88,
. Inst, of Techumology, Jan. 1968

