PART ONE - LEXICOSTATISTILS

The Swadesh theory of lexicostatistics (1950, 1952, 1955)

provided the first quantitative comparison of related languages

based on a well-defined model of language change, The stochastic
nature of this model was péorly understood by linguists, in the

main, and many have rejected the theory in the course of a protracted
and confused controversy, Meanwhile field linguists, especially
those working with language groups of unknown history, have accepted
lexicostatistics and have found it to be an efficient, valid and

reliable technique,

The Swadesh theory

There are serious oversimplifications of reality implicit
in lexicostatistics, and it is these, rather than the stochastic
a.specf;s, which are limitations of the theory, Swadesh hypothesized,
in effect, that V

(1) it is possible to discover a set of basic, universal and
non-cultural meanings, and he constructed a list of about 200 such
meanings;

(ii) in every nmatural language, at a given tise, there is a
unique lexical representation (word) corresponding to each of these
meanings; but ‘

(i11) over short time intervals, the word representing any
meaning runs a small b;xt constant risk of being replaced by a
different (non-cognate) word; and

(iv) the replacement, or non-replacement, of the lexical



fepresontation of a meaning occurs independently of that of any other
meaning, and independently over diffevrent periods of time,

To formalize (i) and (ii), we must postulate the existence,
for each natural language, at all points t in time, of a lexicon,
represented by a finite abstract set L,. A well-defined equivalence
relation corresponding to cogmation parti-
tions the elements of tLJe)TLt (T a real interval) into equivalence
classes, If k€Lg, 1€Ly (t,s€T) are cognate, we write §(k,1) =1,
Otherwise 8(1(,1) = 0,

Further, we must postulate the existence of a finite

abstract set M (corresponding to the universal set of meanings), and

a procedure for defining, for any t, and any Lt’ a unique map from
M into Lg, This map, written M —t*Lt, specifies that for each
m€M there is a 1€ L, such that m--—t-»l (1 means m),
Hypotheses (iii‘) and (iv) imply that the changes over
time in the image of the map M——t—>- Lt have a certain stochastic

aspect, This can be modelled by the probability statement
P[Ek,1)=1] = 1- Mt-s)+n ,

)\ a universal constant, t>s, and h/t-s ~» 0 as t-»s; and two

independence conditions; 1let

mi -—s_>ki .
for 1 =1,2,...,IMl (|M| the number of elements in M),

t
mi——-)- li 0

then 5“‘1’11) , 5(1(2,12), e e s B(k‘m ‘,lm‘) are independent

random variables; let
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for [si,ti), i=1,2,,,.,N, a finite number of
t3 .
m—> 3 ) ‘ disjoint intervals,

then g(hl,jl), J(hz,.‘iz), .« e 0 S(hN,jN) are independent random
variables,

This model has a number of immediate properties which form
the central thesis of the Swadesh theory. These are presented here
as Theorems 1, 2 and 3. For simplicity we will assume that at any
time t, at most one word in'Lt; can belong to a cognation equivalence
class, This simplifies notation and proofs, although the assumption
may be relaxed without substantively affecting this development,.

One furthér type of assumption is required to ensure a
degree of randomness in the choice of replacing word during lexical
replacement., To prove Theorem 1 as stated below, we require
3C >1 such that

P[m-—f'-r ll m-—s-»-k] < L
o
= OUILyY) ,

for all my t>s, &(k,1) = O,

Theorem 1

P St,1) = 1) = o7XES) Cuirl)

X5 o O(1Lyl)

-1
Pl ‘E,,‘% YOI



Proof

Lot N(t-s) be the number of changes (with respect to-the
cognation relation) of the mapping m—=1 in the interval (s,t).
Then N(tws) = 0 is Just the event that a Poisson process remains at

zero on the interval (s,t] (see, e.g. Parzen, 1960, p.252), and

P[ N(t=s) = 0] = e-l(t's) .

However,
P[§(k,1) = 1) = P[N(t=s) = 0}
+ P[N(t-s)> 0] X P [ last change is to
k (or cognate) | N(t-s) > o]
e-h(t-s) * (1= e"‘h(‘b-s)) 0('1‘1;‘)
e')(t's) + oL, D
Then

E Stk,1) = o~ X3 4 OuL,1)

-1 ]
Mt S8k ) = M Ed(k,1 )
i mGZMkam M mg:M oln

tMrl lMl(e-Mtps) + 0Ly )]

= MES) 4 D( LD



Definition
T’

Ls L:, t>s represent the lexicons of two languages

which are independent daughter languages of the same parent language
(which are said to split at time s) if

L$=Ls,andif

n—3»k (in both languages)

t .

m——>1" in the first language

m—t-r-l" in the second language,

then &(k,1') and tS(k,l") are independent random variables,

Theorem 2

Let L;,VL:, t>s be as above,
Then
Pl'a"™ =4

o2 Al-5) o O(min| L;l ,lL:I )

9-23 (t-s)

AlMl'1 E Zeu ) (1;,1;) + O(minlL;'l , IL';'I )
m

Proof

Assuming m—2»k in both languages,

pL(1", 1" = 1] = p[4@" 1" = 11 S, ")=] + PlIs1")=1f\ S0 ") =
By transitivity of the equivalence relation represented by § , the
first term on the right is
PLI0,1") = 1\ §(k,1") = tJjunich, by independence

=p[d (1) = 1] P[d (k,1") = 1)
= [o=2¢2) 4+ oag] [ 22+ o]



= 2Ak=s) | 2Mees) (o(iLll) w0CILYD) + OULLULY)
t
= o 2A=5) 4 O(min(Ly 12
Now the second probability on the right hand side above is, similarly,
PLSL"2") =101 §(k,2") = 0fy §(k,1") = 0]
= ZP[m—Ep 1'(1st language)() n—o1"(2nd language)] J(l',ln)
1'e Ly
L}
1%L,

S’ =0
61" w=0

= Z P [m —-La-l'J P[m—t;rl"] J(l',ln), by independence,
Since we have fixed m—>pk

P n—tr1')€ 5
fLyl

The summation contains at most
. "
max (lLtl ,lLtl )

terms which are not annihilated by 8(1',1")
and so the total is

(% C
$
lgl el

max (lL,;l,lL:l)

= O(min (Ll ILgl)



This completes the proof of the first statement of the theorem,
The proof of the second parallels the analogous result in the

previous theorem,

In natural languages, ILJ is several thousands and _1_
L

is negligible compared to the exponential term, except for ‘ J
very high values of t (where the theory has little applicability),
In the next theorem, the resulis of Theorems 1 and 2 are utilized,
neglecting the error terms of the form a(lLtl ).

Under certain, more specific restrictions on
P m-—-te-l‘m-—s-rk] s Brainerd (n.d,) solved for the exact form of
the error term attached to the exponential laws (here formulated as
Theorems 1 and 2).

Theorem 3

Insofar as we may approximate the results of Theorems 1 and 2
by

(M) ES S(i,1) = o= Me-s)
and

lﬂl'1 £ 25(1',1') = e-ZA&a-s)

respectively; if it is known that tes = T, then

A== LogIMI~1 538 (k1)

T

is the maximm likelilwod estimator (MLE) of h in the first

formula above, and if A  is known,



A =1
o - =log IMi Az.g.(kll)

is the MLE of tes,

In the case of two independent daughter languages (Thm, 2),

o - 2 ulzéa’n’)
2

is the MLE of tes,

Proof
It suffices to find the MLE of A, the other cases being
analogous,

Consider binomial trials with parameter p = e-'\T.

S(k,l) = 1 4is the equivalent of a success in one such trial,

ZJ(km,lm) = r is the equivalent of r successes in |M| trials,
méM

The 1likelihood function of A in such a case is

L(A) = (u;_“) e-)Tr<1_e->d‘) i -x

log L{A) = constant ~ATr + (|Mler) log (l-e-A'l),

d log L(A) = =Ir e (g

dA P

At the MLE, ‘X , this derivative should be zero,

3 T It

Tr « Tre~"% = lMlTe:x - Tre .

Y= zloef

T



and the samoe process ylelds

‘{-\S = = 1°g l—ul
A

Let r= 2.8
m&M as in Theorem 3. Swadesh (1950) derived

a methodology to utilize the three results

= = log (r/‘l'll)

tes

as follows, He first selected his list of meanings which he
considered basic to all languages, He then compared Old English
with Modern English (tes = 1000 years), i,e. he compared the
words in each language corresponding to the basic meanings, The
etymology of words in these languages being fairly well known,
he was able to decide when a pair of words corresponding to

the same meaning were cognate (i,e, one was historically derived
from the other, or both were derived from a common root, by a
sories of phonological alterations, each of which affected only
a part of the word in question)., This immediately led to

xR 2% 10'“, Using the estimate which he obtained as a constant,

he dated the relative times of separation or "split" of
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various Salish (western North.American Indian) languages from a

cormon parent with the estimator {-\sl . After the work of Lees (1953),
x was considered to be a universal constant, t/-\s, could estimate
absolute dates of split, and t,-\s could date a collection of texts

from a dead language.

Criticisms of the theory
Criticisms of lexicostatistics fall into two classes., In

the first class are protests based on or resulting from the stochas-
tic nature of the model and/or the stochastic nature of the pheno=
mena of lexical loss and replacement, The second class of criticisms
refer to particular assumptions in the model , and I will discuss
these in the next section,

Bergsland and Vogt (1962) presented four cases where
€5 (or t:-\s,) are not accurate (three too low and one too high),
and rejected the Swadesh theory on this basis, In statistical terms,
the authors constructed a sample consisting entirely of outliers and
rajected an hypothesis without even considering the distribution of
the test statistic, Fodor (1962) took the same approach to "disprove"
lexicostatistics, Chretien (1962) calculated and published pages
of ordinary binomial functions to prove, in essence, that t/-\s is a
random variable and hence not "an acceptable mathematical formula
tion" of the Swadesh theory. This basic misunderstanding of the
nature of statistical estimation is characteristic not only of

critics of lexicostatistics, but also of many of its practitioners,
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A more important criticism has been expounded, at great
length, by Fodor (1965) and, more clearly, by Teeter (1963},
Quoting from the latter:

"Lexical similarities and dissimilarities do not
come about in any one simple way, and any mechanical
method of counting lexical similarities cannot
separate those due to chance, universals, diffusion,
and common origin, Lexical change is the result of
many factors, and all are scrambled together in the
finsl result."

(p.6u1)

This diversity of causes of lexical and semantic change has received
detailed study by linguists and semanticists; see, for example,
Bloonfield (1933) p.392 £f., Ullman (1957) p.183 ff, Quoting from
Lees (1953):

" The reasons for morpheme decay, i,e, for changes
in vocabulary, have been classified by many authors;
they include such processes as word tabu, phonemic
confusion of etymologically distinct items close in
meaning, change in material culture with loss of ob-
solete terms, rise of witty terms or slang, adoption
of prestige forms from a superstratum language, and
various gradual semantic shifts, such as specializa=
tion, generalization, and pe oration,”

(p.114)

And it is Just this diversity and the difficulty of "unscrambling"”
which, contrary to Teeter and to Fodor, justifies a stochastic
model incorporating retention parameters, Consider, for comparison,
the problem of constructing a model for the behaviour of gases, We

have an enclosed volume containing a large number of particles of



finite dimension, undergoing rapid motion, We can assume everything
is perfectly deterministic, all the particles obeying Newton's three
laws of motion, and all collisions perfectly elastic., The position
of any particle at any time can, theoretically, be calculated pre-
cisely if we know the initial state of the system and the time
olapsed, Practically speaking, of course, this would be impossibly
tedious, boring and pointless, there being so many particles, any
two of which may collide, plus the walls, plus gravitational or
electrical charge attractions and repulsions to consider, What is
possible, interesting, and of great value (witness the fields of
kinetic theory and statistical mechanics, dating from the work of
men such as Maxwell, Boltzmans and Einstein) is to consider the
nature of each particle as a random process inwvolving appropriate
parameters and to consider the statistical behaviour of the model
thus constructed., It 1s complexity and great difficulty of predica
tion which make a statistical model workable, In the same way, Fodor
and others have inadvertently justified the proposition that some
sort of stochastic process might be an appropriate model for lexical
change phenomena, The question remains, what process? The Swadesh

theory provides at least a first approximation to the correct answer,

Problems with Swadesh's modek

Before discussing details of the model, it is appropriate
to present the results of an early (1953) lexicostatistic investiga=
tion of R, Lees, He chose thirteen language pairs, each pair con-

sisting of an historio language and a modern descendant, The

12
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particular choice of pairs presumably stemmed from availability and
not from any sampling technique, He translated each word in

Swadesh's 215-word list (1950) into the 26 languages, After count-
ing the number, r, of cognates between each language pair, he used

(in effect),

S = =log (r/]MI)

ts
where [M| € 215 according to the number of indeterminate cognations
and uncertainties of translation, To get an estimate of a "universal®
A , he combined the individual estimates in

)ﬁ=. - log(-l— 'ste_/si)

13 4=
(A =;'3-Zt\.~gives approximately the same result,)
Using p = o~ as the parameter in the binomial experiment

he calculated, for each language pair,

“M[g - r22

1M} p(1-p)

which should be approximately the square of a standard normal random
variable, if the assumptions of the theory are true, Since an
estimate of A is used in caleulating p, the sum of the squared
variables should be X;-distributed. But 7(&=29. 5, significant at
the 1% level, suggesting rejection of the theory,

Lees, however, suggested four reasons for not rejecting on
the basis of the Xz test; the large values for [Miand r, uncertainty
in t, possible inappropriateness of the Xz test, and the error in

estimating A, The first and third of these are not valid
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statistically, and the fourth is a source of very little of the
excess XZ, The variability in the time parameter can be incor-
porated into the ‘)\2 calculation, This only reduces
xz to 25,9 = 27.5 depending on the variation assumed in t, Lees'
results, then, indicate strongly that the theory is an inadequate
model for the phenomena,

We turn now to the second class of criticisms of the
Swadesh model, those that involve objections, evaluations or im-
provements related to the generalizations and simplification of
reality inherent in lexicostatistic theory, The listing of assump-
tions earlier in this chapter will serve as a framework for classify-
ing this latter class of criticisms,

(1) There are no universal sets of meanings, it being difficult
to specify most meanings without recourse to particular natural
languages, No list of meanings yet devised is completely satisfactory
for sufficiently diverse languages; Hoijer (1956), O'Grady (1960),
Cohen (1964), Levin (1964), Trager (1966).

(11) The existence of synonymy proves the non-uniqueness of
the meaning map M—~*L; and no known metimods of eliciting words for
given meanings are completely and reliably reproducible, from

speaker to speaker or even from occasion to occasion for a single
speaker; Gudschinsky (1960). The existence of general and specific
terms for a single entity provides a further complication,

(1i1) If the parameter A can be said to exist at all, it is

constant neither from language tbmlanguage; Bergsland and Vogt (1962),
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Fodor (1962), from meaning to meaning; Swadesh (1955), Andreyev
(1962), Ellegard (1962), and especially Dyen (1964), van der Merwe
(1966), Dyen., James and Cole (1967), nor even from time interval
to time interval for the same meaning; Swadesh (1962),

Judgements about cognation are unreliable, especially
with respect to languages which are separated by large t-s and
whose history is mostly unknown; Fairbanks (1955), Teeter (1963},
Lunt (1964), An analysis of this latter prohlem is beyond the scope
of this study ., ' )

(iv) Lexical loss and replacement do not occur independently
for different meanings, neither are current and future trends entire-
ly independent of what has happened in the past, especially in lange
uages which have possessed an orthography for some time, This has
been noted especially in connection with the independence assumption
of Theorem 2, as in the interval immediately after a split we might
expect parsllel (to some extent, at least) evolution of the two
daughter languages; Lees (1953), Hymes (1960), Teeter (1963). Also
in this connectlon, independence of evolution does not strictly hold
where borrowings, ;oan-trmslations and imit;ations of other types are

frequent occurrences,

Towards a new theory
A number of authors have attempted to deal with one or more

of these problems, Swadesh (1952) discarded more than half of the
meanings in his original list, For choosing among synonyms, Gudschine
sky (1956) proposed a random selection, Hymes (1960) suggested a

‘procedure which would select cognate forms whenever they were
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available, Satterthwaite (1960) and Dyen (1960) pointed out that
it would be more reasonable to choose the word which is most fre-
quently used for the meaning in question,

Little could be done about the central postulate or result
of th_e theory; that A is a constant, until the work of Dyen became
well known, Dyen, on the basis of comparisons of a large number of
Malayopolynesian languages was able to segregate meanings into
groups on the basis of their individual D 's. A discussion of the

mathematical implications of this ( p=e‘)‘i(""")

for meaning my leads
to E(x/| Ml) = ée-zi(td) ) was published by van der Merwe (1966),
Meanwhile, Dyen (1964) had statistically demonstrated that meanings
with high A in the Malayopolynesian languages tend to have high ¢}
in the Indoeuropean languages and yice versa. This was the first
new type of lexicostatistic result since the work of Lees, Later
(1967) this work was refined so that Dyen gt al were able to
estimate a separate A for each meaning on a 196~word list of the
Swadesh type,

On the problem of independence, Swadesh pointed out that
interaction between languages because of contact would bias estimates
of t-s downward, Hattori (1953) suggested and Hymes (1960) discussed
the formila -

E(r/{M‘) = e-i.‘b)i(t-s)
as a way of taking into account parallel evolution and the effect of
those meanings with lower A than the rest of the list, The latter
effeot is, however, properly described by using a sum of exponen-

tials and, for the former, it is unreasonable to expect a constant
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muiltiplier (1.4) to express the dependence of two languages over
all time., It is clear that the multiplier of - A(t-s) should be
near zero when t is close to s and to approach 2 as t gets very
large, This was noted by Gleason (1960) who rightly suggested that
for all sufficiently 'large t, estimates of te-s could be corrected
by adding a small positive constant,

One further suggestion that has been made by many authors
and implemented by some, e,g. Hirsch (1954), Hattori (1957), is to
attempt to construct a larger set M to provide a better (i.e,

lower variance) estimate of time intervals.

The primary purpose of this paper will be to develop a
formal theory of word-meaning relationship, applicable to lexical
and semantic change, which incorporates most of the criticisms

levelled against the Swadesh theory.

Relationship to linguistic theories
This theory is unique in that it provides a link between

two previously unrelated linguistic theories, that of generative
grammar, and the conventional descriptive semantics, Elsewhere (1969)

we show how stochastic models, like our theory of_ word meaning
behaviour, and Labov's (1967,1968) frequency approach to optional
grammatical rules, can be derived by imposing probabilistic struc-
ture on formal grammars, On the other hand, the major phenomena
and problems of desoriptive and historical semantics can be elegant-

ly formalized in terms of this same model,
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PART TWO - WORD-MEANING PROCESSES

The problems of the Swadesh theory stem from its assump-
tions about the nature of meaning, and its oversimplified mechanism
of lexical replacement, I propose a model of word-meaning relation-
ship in which lexical replacement is a consequence of a more basic
stochastic phenomenon - fluctuations in probabilities of word usage,
The only aspect of a "meaning"” which is relevant to this model is
its representability by one or more words, I make no assumption

as to the psychological or cultural nature of meaning, In fact, Thm, 4

below shows that the set of meanings as defined here can be
considered a purely analytical construct, This set is completely
determined by comparing word usage probabilitlies in certain cone-
texts, For a natural language there is the possibility of construct-
ing the set of meanings by empirical means (from word usage frequency
data),

Whe“her the entities I refer to as meanings correspond well
to aspects of the intuitive (or the semanticists') concept of
meaning depends on whether they have important properties in common
and whether they behave similarly over time, It is my thesis that
these entities model the processes of historical semantics at least
as closely as, say, the “meanings" of Osgood et al (1957) model
psychological aspects of meaning or the "meanings” of Katz and

Postal (1964) model the grammatical function of meaning,



The word-meaning relationship
The mapping type of relationship in the Swadesh theory

can be represented by a bipartite graph as in Fig,1

i} L

m1 lm1

2 - 1‘“2 Fig., 1, Map relationship (many-toe
- one possible but not

7 * one=to-many),

T Ly

The first generalization to be made is to allow a many-tow-one

(in both directions) relation, as in Fig, 2

Fig, 2, Unrestricted word-meaning
relationship,

The next important refinement of the model is the introduc-
tion of probability distributions on words and meanings, The
frequency with which a word takes on a meaning in M has, as cited
in PART 1, been recognized as important to lexicostatistics,

Dyen's (1960) essay contains a clear deseription of how fluctuations

19
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in these frequencies underlie the phenomena of lexical replacement,
In what follows, L can be understood as in PART 1, but M is

completely reinterpreted,

. Definition
Let L and M be finite sets,
Let p(+,*) be a bivariate probability distribution on MXL,
Let 5 = {1€L|p(m,l) > 0} .
Ir S, # § for all méM, and if for distinct mne€M, S # 5, »
then M is a set of meanings on L, with respect to the distribution
P, and each non-zero p(m,1) represents a word-meaning relationship

between 1 and m,

p(m,1) should be understood as the probability that the
word 1 will be used, and that meaning m will be intended (when no
information is given about the context), The definition incorporates
two restrictions on abstract meanings, neither of which is overly
restrictive when considered as properties of meanings in the :in-
tuitive sense. First, if a meaning is expressi}:le by some word or
other in the lexicon, that word must have a non-zero probability
of expressing it (in some context which has a non-zero probability
of ocourring)., Second, if two meanings are to be distinct, on our
level of analysis, at least one of them must be expressible by at
least one word which the other is not, Fig, 3 illustrates these

'

conditions, The latter principle, lexical distinguishability of

meanings, might seem to place too much emphasis on marginal or

threshold word-meahing relationships (those with very low p(-,+)).



. s 1, = peaceful
mye 1; = calm
L lt = happy
me 1, * overjoyed
m; 1, = exuberant

mp

Fig,3 ., Part of word-meaning system, A line joins m and 1
iff p(m,1) > 0,

Such objections will be seen to have little importance, however,
after Theorem 9 below, where M is embedded in a metric space.
Here all meanings which do not differ greatly in their usdige proba-
bilities will eluster together in the metric space, and any com-
parisons between meanings will be in terms of the metric, Assuming
lexical distinguishability facilitates the particular line of
development followed here, but relaxing it (e,g, in favour of a more
quantitative distinction between meanings, or in favour of a definie
tion of meaning grouping closely related lexically distinguished
entities) is not likely to radically affect the behaviour of
meanings in the metric space. An importanc consequence of the
definition of a set of meanings is

Theorem I
Lot §(L) be the set of subsets of L, and let M be a set
of meanings on L with respect to p, If S ={1€ L‘p(m,l) > 0},
then
m ————d= Sm

1s a one-one map from M onto a subset of @(L),



‘Proof
It need only be shown that if
m—==5, , n —p sn
then

or equivalently,
m#n = S5p # Sp ’
but this is just the condition of lexical distinguishability in the

definition,

Theorem ¥ tells us that, for analytical or computational
purposes, we can treat meanings as sets of words., Two meanings
are distinguished by the words they do pot share and are related by
those they have in common, Note that the case p(m,1) = 0 can arise
in two ways, Either p(m,1l) = O, for all 1, in which case Sp = ¢
and m is not a meaning, or m is a meaning but 1 & S, From now
on, no distinction will be drawn between the meaning m and the set
S, and the latter notation will be discarded. Sometimes, an
entity whose status as a meaning or not is under study, will be
labelled m, If m is not a meaning, p(m,1) = 0, for all 1; m § M;
S, = ¢, eﬁc., and every attempt will be made to keep this usage

unambiguous,

Interpretation of the marginal distributions

With the usage probability interpretation of p+,-),

g(l) = Zp(m,l)
n

22
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is the overall probability that 1 is used, The probability
function g{1) underlies _wo;-d-frequency distributions, e,g, those
of 2ipf (1945), Josselson (1953), and Juilland (1965a,1965b).

f(m) = ?p(m,l)

is the overall probability that m is used., This is related (at
least conceptually) to the "semantic frequency 1ists" of Eaton (1940),
Since these are probability distribution.funections,
Zf(m) = Zg(l) = Zp(m,l) =1,
m 1 m,
and, of course,

p(myl) 2> 0,

Recapitulating, a word-meaning relationship exists between
m and 1, or a line is drawn between m and 1 on a wordemeaning graph
like Fig.2 or 3 , iff 1 can take on meaning m, which occurs iff
p(m,1) >0, (I.e., we require that if a word can take on a meaning,

there is a non-zero probability that it will do so.) The statement

f(m) = 0 is equivalent to saying that m is not lexically represente
able by elements of L, and m* M,

Precision of speech
In constructing a model involving the grouping of words

and the distinction between meanings, provision should be made
for Some degree of variation to correspond to the variation which
occurs in reality, from person to person and, more especially, from

situation to situation, This variation is a complex effect, but
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a pood deal of it may be interpreted as alternation between precise
and loose speech, In certain situations, and for certain topics,
effective communication requires unambiguqus usages, specific rather
than generic terms, and other manifestations of precision which
are, on the other hand, inefficient, uneconomical or just too
difficult to sustain in everyday speech, This alternation may occur
independently in different parts of the lexicon in a natural
language, but for our model we will use a single precision parameter
O, Each value of 8C will specify a set M, of meanings on L, In
the next few sections, the probability distributions and other
entities dependent on O will be so subscripted (e.g. p,(m,1), Mo,
In what manner should the system depend on ® ? In natural
languages, as a speaker becomes more precise he draws more distinc-
tions between words and he groups two words of similar meaning less
frequently (i,e, with smaller probabilities), One measurement
which is sensitive to this process in the model is the average size

of the meanings

E“[[ml]. = 1§M:m‘qm) ’

where |m{ = lSml, the number of words connected to, representing,
or simply in, a meaning, This measurement would be too crude, by
itself, to serve as a precision parameter, since it does not
distia;zguish between overall precislon in the system and extreme
precision in one part of the system but little precision in the .
rest, Instead, a condition should be placed on the system so that

if & increases, then in any part of the system , this increase
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would coincide with an increase in thé prébabi'l.ity weight on small
meanings (i.e, fm] is small) and a decrease in o¢ would coincide
.with an increase on large meanings, Such a restriction may be
formalized as follows,
Let & €[0,1). Let DC e(L) be any set of subsets of L,
meanings or not, such that
m€D nCm =3 né€Dd,

Then it is required that

Zondm  tor Z0 Zipm) )

meD 1ém
is monotonic and nonedecreasing with & . Another way of looking at
this is in terms of the lattice of subsets of L, If we choose any
points in the lattice or even draw a line right across it, the prob-
ability assigned to all sets below these points, or below the line,
must increase .(or at least not decrease) as &, the precision, in-
creases, A simple example will illustrate this, Let L = {11,12,13} .
Fig.l4 depicts the lattice of subsets of L,

my = {14:1,01,}

nj, = {11,12} n, = 12,13} m = {11,13\

. v, = {12‘ . m = {11} my ={13}

Fig.4 . Possible meanings when L = {11 ,12,137‘ .
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For three values of o« , values of gSm,l) might be as in

Taiile 1, and it is easy to verify that the precision condition

holds (D can be one of {m}, {mny}, {'mB}, {ml,mzﬂ . {mz,mB} .
{mond o {myompons} o {momgom} o fngomyami} s {mgym om }
{msmysmpoms} 5 {mgamysmpons}  {mgomyomyns] s {myomgomymyons} s
{msimgamysmysY 5 {myomgomy omypms} 5 { mysmgomgomy gy pms} 5 or
{mmyngmpngmon} ). |

nq Iﬂz m3 mu m5 m6

M1 ={m1,m2,m5}
E(im) = 1.5

high precision

Qo < (=] \?

[
=
-
S~
=
(=
t
[}
o

- 1101/10  Mo,s = {mysmpymgymgym}
E fim] =2.1

o = 0,5¢ 1, - 1/10 = 0 /5 - 1/10
13 - - 0 -  1/10 1/10 1/10 medium precision
P I I T N
«= 0 1, - 0 - 0 0 . 3 E.[l ml] =2.75
. 15 . 0 - o 1/8 % low precision

Table 1. A word-meaning system at 3 levels of precision,

The example suggests the next theprem, which confirms
that the presision requirement is strong enough to imply .

monotonicity of the aversge meaning size,
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Theorem 5
E“[lnd] is a decreasing function of « .
" Broof ,
Let a(1) =2:: f,‘(m) i= 1,2,...,U ,
(mi=1 :
B
1) =2_, £g(m)
imi=1

Then a(-) and b(+) are probability distributions on the integers,
where a(1) is the probability that an unspecified mesning will
contain 1 words, Consider

Dy = {msx.l s} . |
Clearly m€D, nCm =) ne&D . Then the precision condition

requires

2 £y (m) > Z fg(m) .

m€D d . mEDJ

- Therefore

Z‘qu(m) =2 Z:fk(m) 5

\mi£J im{£]j

b 2 T
a2 (1) .
i=1" i=1 )

Since a(+) and b(*) are probability distribitions,

(L} : Aul
Soa) = 2, u) =1,
1= 1=1

-4 -1 -
Zoaw) =t -E'a(i)s 1 -jib(i)=%b(i) .

1=3 1=1 i=1 i=}
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Then

)] L} L (Ll
a(1) ¢ % Zon1)

= r=
{Ll |
T a3 €2 )
P =

E“[ |ml] s E‘[hn‘] ’
since a(s) and b(e) are the probability distributions of the

values of {mj.

Regularity conditions
We have imposed a condition on the p (m,1) so that the

probability welght must flow down the lattice of subsets of L as

& increases., It would be desirable, from the viewpoints of model
realism and analytical convenience, to have this "flow" behave in
as continuous a manner as possible, " It would be most convenient if
the p«(m,l) were requirea' to be continuous functions of & , but’
there are good reasons to relax this éomewhat.

Again trying to model natural languages, it would be
realistic to raquire that the following process may occur in the
system, Suppose a meaning m'é€ M, is connected to k,14 ,12,. .. ,lré L,
(In our earlier notation, Syl = {k,l1,12,. ..,11}, in our current
notation m' = {k,ll,lz,...,lr} y po(rri',kbo, po(m' 10> 0, ¥ l;€r),
As & increases, the values of all the po{ﬁ,li) fluctuate but
remain greater than some posivtive value, except for p“(m',k) which
gradually drops to zero at &, In terms of speech behaviour,

the words k, 11,12,.'..,11, are used interchangeably (in certain



29

contexts) to mean m', when preci;sion is low, As precision increases,
1151p5...51, continue to be interchangeable but k is seldom usable
in this sense and, at &, never, It is most important in what ‘
ensues to understand that the set m' = {k,11,12,...,1r} ceases to
be a meaning when the precision is &,

i.e, '
m eM“, «<“o

n' § My, .

It is, however, most natural that m = m’-{k}'ﬁi »los... ’lr"
be a meaning at 0(0, since the interchangeabllity of these words is
not necessarily dependent on the behaviour of k, Hence, if any
psychological interpretation is to be attached to the set of abstract
meanings in our model, it must be realized that as precision changes,
the abstract label attached to a psychological or cognitive entity
may suddenly change as lexical representability of that entity
changes, If this seems strange behaviour for a symbolic system,
it should seem less so later, when the M, are embedded in a metric
space and the relative position of meanings in this space becomes
more important than the letters that identify them,

Returning to quantitative considerations, since n’ ceases
to be a meaning at &, and m suddenly takes over its role, it is
necessary that p, m',li),?.., pu(m',lr) drop discontinuously to

zero at 9‘0 and p“(m,lj.), ceed p“(m,lr) Jump to compensate,

We must, therefore, accept certain discontinuities of

this sort in the model, For simplicity®s sake, we restrict
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occurrences such as this so that only one p (m,1) may drop
continuously to zero at any particular value of & (pu(m' »k) in
the example above), This is in fact a weak restriction, in that
We can approximate situations where N of the p“(m,l) go to zero

at ® , by having them do this one at a time, at o,, o, + €,

x, *2€, . v e «, + (N~1)€ for arbitrarily small € .,

An appropriate continuity-discontinuity condition may be

most economically phrased as in condition (4ii) in the next section.v

Summary of development thus far
We assume that there exists a finite set L (the set of

words) and for each o« € [0,1] a finite set M (a set of meanings

on L) and a bivariate probability distribution p, on M X L such that

Z Zonmu=t.

meM_ le
The elements of M are in one-one correspondence with certain
non-empty subsets of L.
ne—> S, & p(ml)> 0, V1ES, ,
This correspondence enables us to unambiguously identify S, with

m, and we may rewrite the above condition

(1) p(m1) > 0 & lénm and meMy
As & varies between zero and 1, the following conditions must hold:
i
(11) If D < (L) such that m€D, ncm => né&D, then

2, Z P,(my1) is monotone nondecreasing with «,
meD lem . S
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(131). The p “(m,l) are continuous functions of o« only where
My is fixed, Mg changes at %X, only as a result of discontinui-

ties occurring, for unique m, and unique k& m, to all of

B (m1) , p“(m + {k},1) ; 1€m (for m + {k}, read mV {k})
but -

po‘(m,l) + p“(m + {k},l) is continuous, for all 1€ L,

Before- enunciating the continuity and discontinuity
condition (1ii), we described the desired behaviour of some of the
functions p(.,.) at a point where the condition is relevant, We can

prove that this condition implies this behaviour,

Theorem 6

In the system as described above, if & o is a point where
Mg changes, then p (m + {k},k) (as 4in condition (iii) above) is
c.ontinuous at oy and if it goes to zero at &, it is the only
such function, )

Proof

By condition (iii),

p“(m,l) + pd(m + {k},1) s continuous at &, for all 1€L,

Therefore

p.‘(m,k) + pd(m + {k},k) 1s continuous at *g,
But

p.l(m,k) =Z 0 since k& m ;

hence the continuity of x;‘(m + {k},k).



Now if any other p“(n,l') goes to zero at o/ , n ceases to be a
meaning and My changes as a result, This contradicts condition
(iii) unless n =morm +{k}, in which case discontinuities are

prescribed by the same condition,

Existence and local behaviour -

The next theorem gives assurance that the conditions
on the components of a word-meaning system, as developed so far,
are not contradictory, The proof consists of a construction of a
particular system (which is otherwise uninteresting) and is presented

as Appendix 3 in Sankoff (1969),

Theorem 7

Word-meanings systems exist,
Specifically, it is possible to construct a word-meaning

system using any finite set
L ={11’12a o« s s 9 I‘La‘

The regularity conditions are strong enough, however, so
that aside from continuous variation in the p“('-,-), only certain

types of change in.M.‘ are possible,

Theorem 8
Suppose M, changes at «,, Let M~ , M" be the state of

Ma in small enough intervals to the left and right of o/,
I .

respectively, Then one of A, B or ¢ must hold,
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A, TFor a unique m, and unique k{m, as in condition (iii),

m + {k)e M, m+{k}¢M*; mGM-, meM ,
represented by
(€,¢:€,6), pyln+ {khk) =0,

B, (&€ £, €, pylmt {00,
C- (e 9 t; {,e )’ p«"(m + {k},k) = .

Proof
There are 16 ways of filling four places with € or ¢ .
(€,€;€,€), (£,4;¢,£), (€"=¢’f) and (€, f; €,€)

involve no change in M o o

(¢ .‘35:4 )0 (t ,¢”3¢9€_), (¢s.€3 ‘:4) and (€ 'fida‘)
imply either p (m,1)= 0 or p (m + {k},1) = 0 near =, and hence

have no discontinuity,

In (¢ ’€;¢’e) and (€ :¢3€vs¢)! p“(m,l) and p“(m + {k}vl) " Jump”

in the same direction, hence their sum could not be continuous,
(¢d,€;€,¢), (¢,£;€,€) and (€,¢€;¢ »¢ ) violate condition (ii)
There remain only the three possibilities,
A. m+{k} disappears, Lin (m+{K},k) =p(m+ {k},k) =0,

{} ppe ’*’“. Py (}n }:‘o (_}9

B, m appears, m * [k} in M and M+, Py (m + {k},k)> 0,
4 . (-]
C. m appears, m +{k}disappears, p“°(m + {k] k) =0,

These three situations are illustrated in Fig. 54,5 B and 5C,
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Meanings as points in a metric space

The idea of distances between meanings is not new, and
there have been a number of attempts to operationalize this concept.
We shall examine a very natural way of defining such a distance for
the meanings in a word-meaning system in terms of the functions

p“(m,l).

Definition

Let meMy, ne€ly

a,;m,n)a%z'] palml) _ pylny1)

1€L fulm) £4(n)
Theorem 9
d defines a metric on M.,

o, ot

Proof
The norm Z’ +| defines a metric on probability distributions
p.(my,1) defines a probability distribution on L,
fylm)
It remains to prove that two such m& Mg do not define the
same distribution, But this follows from the fact that each m €M

defines a unique subset of L such that p“(m,1)> 0,

Remark
If as @ increases beyond & , p‘(m,l) changes, d““(m,m)
will have & minimum value at £ = « and will increase for £ on

either side of & , In a neighbourhood of '& , ¢ (m,m) for fixed
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m, then, measures distance from o . This relevance of d to the

parameter as well as to the meanings will become important in later

sections,
Theorem 10
Ir My =M1, Mg =M; for «€I, geJ, two intervals,
and if '
d, ‘(m,n) is continwous on I XJ,
'] .
Proof

This follows from the continuity of the Py ©on such intervals

and from the fact that d is a continuwous function of such Py

As o changes, the points in M ,, move continuously,
When M & changes, two (at most) points experience a sudden shift in
position with respsct to the rest of the points, This may involve
the creation or annihilation of these points, When % is close to
1, there will be few words in common‘ between two meanings, on the
average, and hence the distance between them will be close to 1,
When &« 1is close to zero, on the other hand, the reverse is true,
and distances will tend toward zero, This rather succinct comparison
of precise versus loose usage accords well with more intuitive notions
of precision of speet;h. Fig, 6 and Table 2 present, as illustrations,
the distances in the metric spaces defined by the 3-word system

described earlier in this chapter.
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!
m, 1
xn3 1
m5' 1 3 ' : my "3
"5
| M
mg| 1 1/3 ny &"‘5
m| % 1 2/3 "2
m,|2/3 2/3 1/3 1/3
mg T p—
mli/3 - Fig. 6. 2-dimensional
. visualization of
duoatl”s+) for system distances in
of Table 1. Table 2,

Diachronic_word-meaning systems

We have developed, in some detail, a synchronic (i.e, at a

fixed point in time) theory of words and meanings, It remains to show

what relevance this has to historical linguistics and lexicostatisties,

As Ullman (1957) remarks:

“The two [ semantic relationship, simple or multiple,
and semantic change’ are interdependent, one being
the projection of the other on a different plane,

The functional analysis of meaning will entail there-
fore a definition of semantic change along similar
lines, If a meaning is conceived as a reciprocal
relation obtaining between name and sense [word and
meaning] s then a semantic change will occur whenever
& new name becomes attached to a sense and/or a new
sense to a name," {p.171)
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and, as he points oﬁ'_t, word-meaning phenomena at a fixed time have
parallels in processes of change over time, 4

In our partichlar model, changes in the system as the
precision parameter changes will provide the prototype for change

with time,

.Definition‘

A word-meaning system history is a word-meaning system with
ol €[0,1] replaced by t€[0,T] (time parameter) and with condition (11)
relaxed entirely, Condition (4ii) is changed so that if k and m are
given as before, and m + iki is a pew meaning or if m disappears
starting at t,, there are discontinuities in p,(m + (k},k) and

pilm + {x},1) + pi(m,1) for one 1&m, but

pelm + {k},x) + pyim + fxi,1) + py(m,1)

is continuous,

Although an adjustment to the construction negessary for Thm, 8
could adapt the existence proof of word-meaning systems to that
of wordemeaning system histories,; it will be simpler to leave

existence to be implicit in the constructions carried out later,

Theorem 11

Suppose M changes at t,, Let M", M" be as in Thm, 8,
Then one of A, B, C, A', B', C*' holds,
A, (€,¢;€,€), pto(m*{k},k)=0,

A*, (é’€3€s4)’ Pt:(m"'(k)sk)> o, Pt;(m;"{k}sk) =0,
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B, (e,€;4,¢€), pto(m'?{k},k))O,

B,  (&,€:€,€), pto(m*{k},k)>0, )

Ca : '-"' (E ’¢;¢"é)’ p.bo(m"' {k}’k)'—‘o’

c. (d,€:6,4), pegn+ {k}K)>0, pe=(m + {k},k) =0,
Proof

mrmiainiy

A, B and C were the three possibilities admitted in Thm, 8,
The only' new restriction applies when m + {k} appears or m dis-
appears at t,, and therefore applies to none of the three, AY,
B' and C' were discarded in Thm, 8 because they violated condition
(41), The new condition (1ii) applies to all of these cases, In

A' and C*, m + {k} appears so pyln + {k} »k) must jump from gzero at t,

The cases A, B and C are still represented by Fig. 54, 5B
and 5C, with o« replaced by t. Cases A', B' and C' would be rep-
resented by mirror images of these three figures, except that
pi(m + {k},k) must exhibit a discontinuity at t,, and one of the

pe(m + {k},1) must compensate for this,

Remark

The asysmetry with respect to time of the conditions for
changes in M‘t ~may be interpreted as follows, The probability
that a word may be used for'a meaning may drop to zero continuously,
but it may not inorease from zero continuously, Instead, it must
at some time jump to some finite value, This distinction is not too

important to the overall characteristics of word-meaning system



histories, but we note it because the particular type of histories
we shall study h'ave this property.

The development of the metric d in the previous section
carries over completely when the time parameter replaces the pre-
cision parameter, except, of course, that there is no longer any
necessary trend in the average distance between meanings as t increases,

Anticipating -aome of our later discussion, consider the
case where all meanings consist of exactly one word, as in the

Swadesh model, In this case, letting 8 and t be time as in Thm, 1,
dg ¢{mpn) = 1 « §(k,1)

where m = {k}éMg, n = {l}ﬂit. d then, is in a certain sense a

generalization of the cognation indicator S .

Word-meaning progesses
So far, changes in My or M, have been deterministic as the

value of the parameter changes, (Even though the P, OT Py are probe
ability functions, we have not studied further properties of the
random variables which are distributed ac'cording to these functions,
and we will not do so, In linguistic terms, we are still dealing
with langue and not parole,) To generalize the Swadesh theory, and
to provide a realistic model, we must take into account unpredicte
ability of lexical and semantic change, In j:robability theoretical
terms, we must impose a probability measure , on the set of all
possible histories, We shall not do this explieitly. Rather we
shall assume it is possible, and assume that the examples we construct
by specifying local behaviour are well-behaved in terms of an

underlying probablility measure space,
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A word-meaning process is a set of word-meaning system
k;isbories indexed by ¢y ¢ S where (2 ,:; » P) is a probability
measure space, This means that any event or combination of events
in which we may be interested is represented by a set, A, of
histories (W€ A ) where A is a member of the ¢ =algebra g s

and where P(A) is well~defined for all A€ ?

A word-meaning process based on Brownian motion

To construct the word.meaning process which is the best
model for natural languages would require the operationalizing of
definitions, collection of much data and its statistical .analysis.
At present, we shall attempt only an heuristic investigation,

In PART 1, we emphasized the basic unpredictability
of change in the word-meaning relationship, In terms of our model,
(and considering only small intervals of t;ime) this means that for
t>s,

E [ pe(m,1) = py(m,1)] =0

Furthermore, it should not be possible to- predict the future
behaviour of individual pi(m,1) from trends established in the

past: for any t> s> 82> v X8,

Plputmi)] p, (mil), B, (m1), . . Lop, (mi0)]

= 'P[pt(m,l)\ ps(m,l)] , the Markov condition,
1

But these two conditlons and the continuity conditions on

Py indicate that the local behaviour of py(m,1) should resemble a

51



diffusion process, with zero drift, The simplest such process is
the well<known Brownian motion, whose behaviour charﬁcteristics
change neither with time, t, nor with position, x.

We proceed to construct a word-meaning process satisfying
these properties. Let (L, M, p“(',')) be a word-meaning system
for a fixed o . For t = 0, let py(m,1) = p“(m,l), Mo=M,.
Let

n, = Efimo{Ml .
n, 1s the number of word-meaning relationships in the systenm,
Let x,(t), xz(t), . .,xno(t) 3 t 20 ben sample paths of a

Brownian motion process, chosen independently, and X(t) = & Z x;(t).
{2

Let y4(t) = xi(t) - x(t), The y, are also Brownlan sample paths,

but are no longer completely indepéndent in that

n
(o]
2 yi(t) = 2 x(8) - Z Xt

= i=1

= ngx(t) - n x(t)
‘= 0,
Let
Pim,l) = pym,l) + yi(t) ’
where i1 = i(m,1) is determined beforohand, Then Py is continuous
in (0,T) with probability 1, We must ensure that p,(.,.) is a

probability distribution,
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z Z py(m,1) Z Z P imyl) + 12:-: y3(t)

meMy lem méM, lém

= 1 + 0
= 1
It is not necessarily true, however, that py(m,1)> 0,

since yi(t) may be negative, To adjust for this, let
T = sup{tf ps(my1)> 0, LEm, né Mo,Vs, 0¢ sct}

In other words, all the py(m,1) are positive before T . Then

with probability 1, there is a unique m's M, ke m', such that
lim pglm',k) = p, m',k) =0,
t=T N

But this is reminiscent of case A or C in Thm, 11 (see Fig.5),

where one word in a meaning loses its ability to be grouped with the
others. Then all the pt(m' ,1) should drop to zero and all the
pt(m'-{k} ,1) jump to compensate, According to whether m' - {k}i Mo
or not, we have case A or case C respectively, Then it is a simple
matter to determine My, Now, change the definition of all the
p¢lm,1) for t >T, by calculating

n, = Ez,[l ma'lMl
and starting over as for t = 0,
Continuing this way until t = T, we énsure that no ‘pt(m,l)
ever drops below zero, '
We now have a word-meaning process, but not a very healthy

one, in that | Mt‘ decreases monotonically with t,

43



To counteract this, we superimpose another process on our
construction, We select points in [O,T] at random as follows:
The probability of no points being selected in an interval [t,t+ At)
is

1« mBt+h

wWhere h/At~» 0 as 48t+0), At each point T selected, randomly
choose m€ M, and k€L, kgm, If fo~(m + {X} )>0, the system
undergoes & change as in case B' of Thm, 11, If fa «(m + {k¥Y) =0,
the system u.ndergoes\an A'-type change with probability T , and
a C'~type change with probability 1 =% . In each of these cases
an element 16 m must be selected at random so that pi(m + (k3,k)
+ pe(m +{k},1) and py(m,1) are discontinuous but their sum is
continuous, The size of the discontinuity is uniformly distributed
between O and py(m,1), In case A', we assume that after this latter
step is done, each element in m loses a random (but fixed) propor-
tion of its probability weight to the corresponding element in
m + {k}.

This ends the construction, Note that case B of Thm, 11
does not occur in this. example,

Had we not insisted on the extra discontinuities (in
pilnm + {k},k)-) in the definition of a word-meaning system history,
we would not have been able to use the Brownian motion, If
Py (m + {ih,k) = 0, and if we add a Brownien motion y,(t),
By (m {k},k) will be zerc again for arb:ltrarﬂy.small t. Hence
ve must start p (m + {k),k) at a finite value, i.e, discontinuously,
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Stability

‘The first tiﬂng we would like to know about our system is
whether or not it is degenerate;. Does it tend to degenerate into a
single word=meaning relz-stionship with p({1},1) = 1 ? Does the
number of meanings [Mtl or word-meaning relationships n, tend to
grow without bounds as T and [L| increase?

By inereasing a4 to a high enough value, we can increase
the rate at which new word-meaning relationships are created,
and hence reduce the time curing which ng is at low values, At
the same time, ni cannot increase without bound, since as the
number of word-meaning relationships increases, the probability
weight attached to each must decrease, on the average, Hence a
higher proportion of relationships tends to be annihilated per
unit time, as in cases A and C of.Theoremii . A rigorous proof
that ng is neither too large nor too small most of the time does
not seem easy to achieve, simply because of the complication of
the model and the importance of the initial conditions, In any
case, such a result would be rather weak, It seems likely, and
we will present evidence from sampling erperiments to support
this, that as t—> %9, ng tends to vary about an equilibrium
mean value according to an equilibrium distribution, depending only
on the system parameters A+ and 1Y ,



Regularity of change in (M, dt,,t)

For each & , a word-meaning system (relatively complicated)
was associated with a relatively simple metric space (Myydy,). The
meanings corresponded to points in the metric space and the distance
. between meanings varied continuously almost everywhere with respect
to «,

The same remarks hold true, of course, for the analogous
metrie spaces (Mt’dt,,t)' As t increases each meaning moves continu-
ously except at certain points where it can split into two or merge
with another meaning, At such times there are discontinuities in
dt,t" but these az.'e not usually very large, This regularity of motion
ensures that we have some sort of correspondence between the sets of
meanings at two distinct times, In the Swadesh model, a well defined
correspondence is assumed, in terms of the universal set of meanings,
If we do not postulate anything of this nature, since it must
necessarily refer to gultural universals, not linguistic universals,
it becomes more difficult to make word-meaning comparisons at two
points in time, Indeed, if after a point in time, s, a meaning
loses a lexical representation (as in case C in Thm, 11), it ceases
to exist, in our technical sense, and others close to it take up
its semantic load -~ and we must, at the very least, assume some rule
for choosing a related or close meaning, for all later points in
time, if we are to make lexicel comparisons. The intuitive use of

the term "close" gives a clue as to the appropriate choice ~ the
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meaning n which minimizes

ds’t(m,n) .
This has one important desirable property for such a rule, For t
very close to s, in most cases n will, of course, be m itself,
ds’t(m,m) = ds,t(m,n) will then be the sum of the absolute values
of quantities approximately proportional to Brownian motion (see
definition of d«,o) and hence will, on the average (or in expectation)
increase monotonically, 1 = ds,t(m,m) will decrease monotonically,

After a discontinuity 1 - Miﬁtds,t(m'“) will continue to decrease,
né

Since it is the processes of lexical loss and lexical replacement

which are responsible for this decrease, _1_ ZE: (1 = min dg t(m,n))
IM) m€Mg  ned 77

is a likely candidate to replace Swadesh's _Lr 2 é(k,l) as a
1Ml ey

lexicostatistie indicator, We will so use it, keeping in mind that
it does not involve any pan-cultural or pan-linguistic method of
selecting universal meanings to compare, If such a method existed
(and it does, approximately speaking, e,g, the Swadesh 1list) our
indicator must necessarily provide an upper bound for any indicator

of the form 1 - ds,t'

Simulatineg word-meaning processes

A complete, purely mathematical treatment of the Brownian-

based word-meaning system would be difficult, and no results analo=-
gous to Theorems 1 -~ 3 are yet available, On the other hand, by

choosing a set of p,(m,1) = p,(o(m,l) from a word-meaning system,



and fixing s end T it is possible to simulate the behaviour of
the bivariate functions pt(m,l). A sample from a number of simulated
histories might produce some hint of what the 6orresponding theorems
might be, The remainder of this chapter consists of an account of

such an experiment.

A _simulation program
A computer program (see Fig, 7) Wwas written to provide

word-meaning histories sampled from the Brownian-based process
(actually an approximation of this process),

The program accepts as initial data T (the length of the
simulation), parameters I (from which s can be calculated), Jr
and & ; and two matrices N(i,j) and P(4,j) with {M] rows and 20
columns, The row index i identifies the meaning being considered,
and the nonezero N(i,3) identify the words connected to that meaning
(up to 20), P(4,j) then, represents po(mi,lk) of the system where
N(1,3) = 1,. (It is more economical to store two |M X 20 matrices
than one M| X |L] matrix if (L1 > 40,)

To approximate the Brownian motion from time t=0 to t=I,
one part of the program adds a normal random variable to each of the
non-zero P(1,3j), These variables have mean zero and variance I and
their sum is zero, as specified in the model. Each of these P(i,3j)
is then examined to see whether it has dropped to zero or below, If
it has, the rest of the non-zero P(i,k) are set to zero as in cases
A and C of Thm,i1 and P(h,g) are increased by compensating amounts

where h and g are the appropriate meanings and words for the cases,
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Another part of the program picks an integer according to
a Poisson random variable, with mean 10, and this variable represents
the numbor of cases A', B' and C' which have occurred during the time
increment I. Hence ¢ = 10/I, For each of these occurrences the
program then allows a choicé of whether the word (see Thmlli ) is to
be a new word {borrowing) or a word that is already used for another
meaning (this choice is made at random with probabilities 8 ,1.6 ),
The meaning m and the word 1€ m (again as in Thmil.) are chosen at
random, If necessary (not in case B') a random choice ié made
between A' and C' according to parameter ¥ , and if necessary (case
A') the allocation of probabilities between m and m + {k} is decided
by choosing a random number (uniformly distributed between O and
plm,1)).

The program then provides for the examination of the system
to calculate the resulting v;lues of |M}, L}, N(+,+) , P(.,-) and
ny and it prints these out. From this point it returns to the Brownian
motion section and sets t = 21 and adds another batch of normal varia-
bles with variance I, ete,

The above is only a summary of the program, Other routines
relabel words or meanings so that they may be stored and examined
economically, and others allocate any "negative probability" from
Brownian paths going ;h@_le zero during a time increment (when in
theory they are only allowed to go as far as zero) among the other
word-meaning relationships of the meaning involved, Finally, in the
versionrepresentedin Mg7there is a routine which compares the worde

meaning system at t.;uue t with the initial word-meaning system (at.
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Fig, 7. Flow chart for simulation program,
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time t=0) according to our lexicostatistic indicator

F(t)=_.1_.%(1-mind (myn)) .
Mol meM neM 0,4

Results of a simulation exggri. ment

To illustrate the properties of a Brownian-based process,
we will present the results on 12 sample histories of a simulated
process with the parameters fixed,

These histories were obtained as follows, For the first, the

initial system was represented as in Fig,8 .

Fig, 8, Initial word-meaning system,

where each line between an m and an 1 represents po(m,l) = ,01 ,
Here (M20, |4=20, n =100, [0,T)was divided into 100 incre-

ments, and details of the system were extracted at time T
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and these were used to provide the initial system for the second
history, This general procedure was followed thereafter with the
final status of some of the systems serving as the initial systems

for others,

Stability and equilibrium distributions

As we conjectured earlier, the system moves rather quickly
to equilibrium and we can trace this in the first history, Fig, 9
shows how |Mtl‘|Lt!and ny tend to approach and then oscillate around
an equilibrium value,

The "equilibrium" distributions in Fig, 10 are calculated
from all the values of the system cha;acteristies, at all points in
time, of the last 11 histories (since the first history started with

a non-equilibrium state),

Zinf's Law

It is a . property . of natural languages that, aside
from the few most frequent words, the frequency of occurrence of a
word G(1) and the rank order of this frequency, H(l) are related
approximately as

G(1) = Ce~KH(L)
where C and K are constants,
Our word-meaning systems do not have as many words as natural

languages, Nevertheless, it is possible ta calculate the probabili-
ties (not frequencies) g(1l) from

g1) = 2 pym,1)

lem
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This was carried out for eight of the terminal word-meaning
systems of our simulation and the g{1l) were then ordered to give H(1),
Plotting these (Fig. 11), it is clear that a Zipf's law can be stated
which holds for the majority of the words in the system, excepting
the first few and the last few, The "tailing off"™ effect can perhaps
be ascribed to the homogeneity of the Brownian process - any word,
whose total probability fluctuates close to zero, is very likely to
hit zero and be absorbed, By introducing an inhomogeneous diffusion,
where the variance ol the displacement of p(m,l) after time At is
an increasing function of pt(m,l), this effect could be removed, and
the total number of words and meanings could increase as well,

One interesting comparison can be made between the g(l)
vs, H(1) curves for the initial and the terminal states of the first
history (see Fig.8 ), In the initial, non-equilibrium state all
words have equal probability g(l) =,05 , The terminal state has
shifted to a typical Zipf's law,

Lexicostatistics

Finally, we present the results of the lexicostatistic
survey of the 11 equilibriuml system histories, These are displayed
in Fig,12 and the mean behaviour is extracted and is displayed in
Fig. 13 . These diagrams speak for themselves - after an initial
sharp drop, the index

P -
N mzﬁ;‘iou n:‘lji: do’t(m,n))

undergoes an unmlstakeably exponential decline,
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To what extent the initial drop is a property of the
particular metric being used and to what extent it is an inevitable
consoquence of the Brownian motion, must await further study. In
any case, it does not seem to be a simple consequence of a Zipf's
law distribution of word probabilities or the analogous effect for
meaning, since :i.f. also occurs for very symmetrical initial systems
such as the one in Fig, 8,

Without coming to any specific conclusions, it is
appropriate to end this chapter by pointﬁg out that both Swadesh's
rolatively simple model of lexical loss, using a universal meaning
set to compare language stages; and our more complicated model, in
whic.;h comparisons between stages of languages are made in terms of
internal properties of the lexicon; concur in the very similar
behaviour of their lexicostatistic indexes,

61



62

Bibliography

Andreyev, N,D,

1962 “"Comment" on Bergsland and Vogt, Current Anthropolery 3:130,

Bergsland, Knut & Hans Vogt

1962 "On the validity of glottochronology®™, Current Anthro-
© pology 3: 115-153, ma—

Bloomfield, Leonard

1933 Language, New York,

Brainerd, B,

n,d, "A stochastic process related to langﬁage change*

Chretien, C.D.

1962 "The mathematical models of glottochronology®, Languace
38: 11-37.

Cohen, David

1964 #Probldmes de lexicostatistique. sud-sémitique", Proceedings
of the Ninth International Congress of Linguists, H. Lunt,
ad,, The Hague, pp.U90=L496,

Dyen, Isidore

1960 “Comment" on Hymes, Current Anthropology 1: 34=39,

1964 "On the validity of comparative lexicostatistics™, Proceed-
ings of the Ninth International Congress of Linguists,
H; Lunt, ed,, The Hague, pp.238-252,

Dyen, I,, James, A,T,, & J,W.L, Cole '

1967 “Language divergence and estimated word retention i-ate",
Language 43: 150-171,



63

Eaton, Helen S.

1940 Semantic frequency list for English, French, German and
Spanish, Chicago, Uriiversity of Chicago Press,

Ellegard, A.

1962 “"Comment" on Bergsland & Vogt, Current Anthropolopgy 3:130-131,

Fairbanks, G.H.

1955 "A note on glottochronology", Interpational Journal of
American Linguistics 21: 116~120,

Fodor, Istvan

1962 "Comment" on Bergsland & Vogt, Current Anthropology 3:132-134,

1965 The rate of linguistic change: limits of the application
of mathematical methodsiin linguistiecs, University of
Budapest,

Gleason, H.A., Jr,

1960 "Comment" on Hymes, Current Anthropology 1:20,

Gudschinsky, S.C,

1956 "The ABC's of lexicostatisties", Word 12: 175-210,

1960 “Comment" on Hymes, Current Anthropology 1: 39-40,

Hattori, S.

1953 "On the method of glottochronology and the time-depth of
proto-Japanese" Joumal of the Linguistic Soclety of
‘Japan, no's,22,23, pp.29-77 (English summary pp,?4-77).

1957 Kiso goi chosahyo (A test list of basic vocabulary).

Hirsch, David I.

1954 #Glottochronology and Eskimo and Eskimo=Aleut prehistory",
American Anthropologist 56: 825-838,



Hockett, C.F.

1958 A course in modern linguistics, New York, Macmillan,

Hoijer, Harry
1956 "Lexicostatistiocs: a critique", Language 32: 49-60,

Hymeé, D.H.
1960 ®Loxicostatisties so far", Current Anthropology 13 3-43,

Josselson, H.

1953 The Russian word count,

Juilland, Alphonse, & E, Chang-Rodriguez

19652  Frequency dictionary of Spanish words, Mouton, The Hague,

Juilland, A., P.M.H. Edwards & I. Juilland

1965b  Frequency dictionary of Rumanian words, Mouton, The Hague,

Katz, J.J. & P.M, Postal

1964 An integrated theory of linguistic deseriptions, MIT, Cambridge,

Labov, W,

1967 "Contraction, deletion and inherent variability of the
English copula", paper given before the Linguistic Society
of America, Chicago, December,1967,

1968 Consonant cluster simplification and the reading of the

tued' suffix", unpublished manuscript, Columbia University,

Lees, Robert B, '

1953 “The basis of glottochronology", Lanpuape 29: 113-127,



65

Levin, Saul _

1964 "The fallacy of a universal 1list of basic vocabulary",
Proceedings of the Ninth International Congress of
Linguistics, H. Lunt, ed,, pp,232-236. Mouton, The Hague,

Lunt, H.

1964 "Comment" on Dyen, Proceedings of the Ninth International
Congress of Linguisties, pp.247-252,

0'Grady, G.N.

1960 “Comment™ on Hymes, Current Anthropology 13 338-339,

Osgood, C.E.y G.J. Suci & P.H., Tannenbaum

1957 The measurement of meaning, -Urbana,

Parzen, Emanuel

1960 Modern probability theory and its applications, Wiley,
New York,

Sankoff, D.

1969  Historical linguistics as stochastic process, Unpublished
Ph,D, thesis, McGill University,

Satterthwaite, A.C.

1960 YRate of morphemic decay in Meccan Arabic", International
Journal of American Linguistics 26,

Swadesh, Morris

1950 ®Salish internal relationships", International, Journal of
American Linpuisties 16: 157-167,

1952 YLexico-statistic dating of prehistoric ethnic contacts",
Proceedings of the American Philosophical Society 963 452-463,



Swadesh, Morris

1955 "Towards greater accuracy in lexicostatistic dating®,
: International Journal of American Linguistics 21:121.137,

1962 "Comment™ on Bergsland & Vogt, Curr_é nt Anthropolory 3:143-145,

Teeter, Karl V,
1963  "Lexicostatistics and gonetic relationship®, Language
39: 638-648,
Trager, G.L.
1966 “"Corment'on van der Merwe, Current Anthropology 7: 497-498,

Ullman, Stephen

1957 The principles of semanties, Barnes & Noble, New York,

van der Merwe, N.J.

1966 "New mathematics for glottochronology", Current Anthmmlog

7: 485-500,
Zipf, G.K,
1945 "The meaning-frequency relationship of words®, Journal of

general psycholopy 33: 251-256,



