1. Introduction

A study of formal properties of different styles of formal
grammars is of great interest because each style (i.e., formel char-
acter of rules) is well suited for characterizing certain aspects of
natural langusge structure and is awkward for characterizing certain
other aspects. The awkwardness can be due to either an inherent
difficulty in characterizing a certain aspect (e.g., the characteriza-
tion of the notion of the 'head' of a constituent in & P3G) or an
unnecessary complexity in characterizing a certain aspect (e.g., the
statements concerning the relational aspects in a PSG) or actually a
counterintuitive characterization (e.g., this often happens in a PSG,
especially in the context of transformational grammars, because a
PSG allows an 'uncontrolled' introduction of new 'nonterminals').
This naturally suggests a study of formal grammers of mixed types in
order to take advantage of different styles.*® Thus we try to see how
far we can succeed in setting up a class of grammars which has no
more power than necessary and which also can characterize different
aspects of natural language structure in a natural way.

The class of grammars studied here and in Joshi (1969) have been
motivated by the type of grammar proposed by Harris (1962, 1968).

These grammars also arose out of an attempt to formalize certain aspects
of the type of grammar considered by Joshi (1966) where it was used

for defining structures for the purpose of defining transformations

and uvltimately for constructing a transformational decomposition pro-
cedure.

First, in Section 2, we will introduce a new style of formal
grammars called String Adjunct Grammars (AG). The only purpose of
Section 2 is to state some of the basic concepts and results concerning
AG's (including a brief discussion of their linguistic relevance) which
are needed for the presentation of the material in Section 3 (for a
detailed treatment of AG's, see Joshi, Kosaraju, Yamada (1968)).

In Section 3, we will introduce a class of grammars called Mixed String
Adjunct Grammars (MAG) which use two different types of rules - adjunc-
tion rules and a special type of rewrite rules. After studying some
properties of MAG's we introduce Generation Schemes Gg = (G, A)e A G
maps strings in the language, L(G), corresponding to an MAG, G, into
strings in the language, L{G'), corresponding to another MAG, G'.

* See also Robinson (1968) for a similarly motivated work.



Strings in L(G) and L(G') are both 'well-formed'. In Section 3.5
we discuss briefly the linguistic relevance of the material in the
earlier sections. A detailed development of the various ideas intro-
duced here will be reported in Joshi (1969).

Fig. A. at the end swmmarizes the hierarchy of some subclasses
of AL's apd MAL's in relation to the phrase structure hierarchy.



2. String Adjunct Grammars (AG)

Briefly an AG consists of a finite alphebet, a finite set of
strings on this alphabet and a finite set of adjunction rules which
state how certain adjunct strings are adjoined to certain host
strings. The corresponding language called a String Adjunct Language
(AL) is then defined as the set of 8ll strings derived from a cer-
tain specified subset of the given set of finite strings. The rules
in an AG have a considerably different formal character as compared
to the 'rewrite rule' in a general phrase structure grammar (PSG).
The language hierarchies of AG's and PSG's cut across in many
interesting ways.

2.1 local String Adjunct Grammar

We will define a local string sdjunct grammer (LAG) as follows.
let A = {a1, 82, ++s, &g} be a finite alphabet. Iet % be a finite
set of finite strings on A and let £, C X be a distinguished set of
strings on A. We will call T the set of basic strings and T, the
set of basic center strings. We will define a local left adjunction
rule, g;4, a5 a 3-tuple (oj, 93, fx) where oj € %, 05 € L and g is &
point of adjunction in oj. We'will call oy as the ('E:asic) host of
& 4 end o3 as the (basic) adjunct of gijk. The point of adjunction

of i refers to the point of adjunction which is to the left of
the kth symbol of the host o; where we associate with each string
0§ €L, 04 =8, 8, +.e8 38 €A,and j=1,2, «co, n,, 2n
i i, i, g 1 3 i i
points of adjunction, one to the left and one to the right of each
a, . Note that o, # £, the null string. A locsl right adjunction
J

rule ry. is similarly defined as a 3-tuple (uj, 03, Ty), 91 € 3,
05 €% Ty is the point of adjunction of rj;, and refers to the
point of adjunction to the right of the kth symbol in the host o3.
In general, (o4, 951 € ) will denote & local adjunction rule, ujjk.
If uj4y is a local 1ef‘]€ adjunction rule then £y = 4 and if ujjx is
a local right adjunction rule then B = T Finally, we have the
following :

Definition 2.1.1 A local string adjunct grammar (IAG), G is a 6-
tuple, G = (A, I, Zoo T Lo J) where A is the alphabet, T is the
set of basic strings, is the set of basic center strings, & is
the set of basic host sgrings s Ta 1s the set of basic adjunct strings,
and J is a finite set of local adjunction rules. Z:h = {ui|(ui, cj,

&) €9}, I, = {o5)(0y, o5, §) €I}, end £ = Z UZUE,. Further

I, mey contain € but £ ¢ 5.



Given J, %, and %, are completely specified and I = );'cUz‘hU
Zae Further the alphabet need not be explicitly stated. Hence,
unless otherwise necessary we will write G as a pair (5., J)
instead of a 6-tuple as in the definition above.

Example 2.1.1 Let G = (5, J) where E‘i = {abe}, and

J={u = (abe, pa, r1), w = (pq, P9, £p)}. [We will write Uy 5k
as just u. The indexing of u's in J is arbitrary and is merely for
convenience.] Here 3, = fabc}, I = fabc, pg}, Ty = fpal, = =
{abc, pq}. Note that abe is a basic center string but pq is not.

uy is a local right adjunction rule end u, is a local left adjunc-
tion rule. Here A = {a, b, ¢, p, q}. )

2.2 Iocsl String Adjunct Language !IAL! )

The meaning of an adjunction rule, say, u = (03, 03, £) is
that from o; we can derive a new string by adjoining o; to the left
of the kth symbol in o;. Thus, for example if u = (ebt, t, fp) we
can derive a string atbec. However, in order to define the language
L(G) corresponding to a given LAG, G,we must first define how the
rules of adjunction are extended to derived (i.e. non-basic) host
strings and adjunct strings. Here we will give an example to
illustrate the main idea and omit the precise definition (see Joshi,
Kosaraju, Yemada (1968)).

Example 2.2.1 Consider the LAG, G,in Example 2.1.1. £ = {abe,
pa}, 5 = (8be}, J = {w = (abe, pg, 1), w = (pq, pa, £)}. From
‘abc by one epplication of uj; we obtain apgbc. We regard the points
of adjunction of apgbc to be the same as abc, i.e., the positions to
the left and right of the symbols a, b and c. This apgbc is a de-
rived host and we can apply u; again, obtaining apqpgbc where the
nevwly adjoined pq is immediately to the right of a.

Again, starting with pq, by one application of up we obtain ppqgq.
Since pq is both a basic host and a basic edjunct (in the same rule,
in this example), ppaq is & derived host as well as a derived adjunct
and hence it can be used as a host or as an adjunct or both in the
rule up. This allows us to derive strings pppdqd, ppqpqq, PP4PpPqaaq,
ete. Since all of these are derived from pq they can be used as
adjuncts in w,, allowing us to derive apppaqgbe, appgpagbe,
appgppaagbe, ete. If we use apgbc as a host in uy, we can also de-
rive apppqagpabc, appgpagpgbe, etc. Thus we can derive, for example,-
from the string abe € I, the strings apppqaabe, appqpqgbe,
apppaagpgbc, apapgbe, apapgpppqdgbe, etc. All these strings will be
included in the language L(G) corresponding to G.

]
Example 2,2.2 Let G = (Z, J), T = {8b}, J = fuy = (ab, &b, ry)}.

This grammar generates the langusge L(G) = { w /w is a string on
A; "the number of a's in w" = "the number of b's in w" and for any
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initial proper substring of w, the number of a's is greater than the
number of b's}. This language is context-free and is known to be
non-linear (Schiltzenberger (1961)).

Remarks 2.2,1

1. In the generation of a string in L(G) we observe that once
a string is adjoined to a host then the adjunct string cannot receive
any further adjuncts. In other words a string which is to become an
adjunct string must acquire all its adjuncts prior to its being used
as en adjunct string.

2., Let w be a string in L(G) derived from some string g3 € Tae
The generation of w does not begin, however, with the basic center
string unless, of course, w is just a basic center string itself or
a center string with adjuncts which themselves do not receive any
other adjuncts. We have to start from the "innermost" adjunct
(adjuncts) and work our way "inside out" and finelly use the basic
string which is to become the center string of w.

3. During the generation if a host string receives two (or more)
adjuncts then we have the two following situations. If the two ad-
juncts are adjoined at distinct points of adjunction of the host, then
clearly those adjuncts can be adjoined in any order. However, if the
two adjuncts are adjoined at the same point of adjunction of the host
the order is significant. ILet u, = (ai, 95 g-k) end w, = (ai, O gk)
be two rules. Let g = g, for example. If u, is used before uy then
we obtain o.ap i3 but if u, is used before uy then we obtain_omojui.
In other words, the adjunct adjoined later in the derivation is
closer to the point of adjunction in the host (to"which it was adjoined)
th‘an the adjunct adjoined earlier in the derivation.

2.3 Tree representation for a derivation in LAG

Let G = (T, &) be an LAG. Iet the rules in J be arbitrarily
nunbered Wy Uy, eoey,0 o The generation tree is constructed as
follows. ~1) "If u‘e = (oi, °;]’ gk) is used in the derivation then

we represent this as in Fig. 2.3.la. Here we have two labeled nodes

o. and 0, and a directed branch from ¢. to o, with the label u,:g, .
J i J i L %k

2) et a host a5 receive more than one adjunct, say, oJ. 5 ct‘_j yeeey
’ 1 2

o. at points of adjur'xction € 5 E
In b

u o= (ci, u:ﬂ" gkz) €J, 4 =1,2, ..o, m. We represent this as

cees B s i.e., we use rules
m

in Fig. 2.3.1b. Now, in view of Remark 2.2.1-3 we impose a right to
left ordering on the points of adjunction of a host and thus in effeet
define an equivalence relation on the set of derivations of a string
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in L(G). The tree representation of a derivation with the above
conventions will be called a right to left (r-4) tree representation.
Note that the tree representation of a derivation of a string in
1(G) is a rooted tree and the string labeling the root is in z,-

Example 2.%.1 let G = (Zc, J) be an LAG where z, = fabc}, and

J = {ul = (8bc, pg, r2)’ U, = (abe, xs, r2)’ “3 = (Pq, Pq, rl)’

W, = (abc, t, zl), u = {pa, t, 1,2)}. The following is a string in
L(G). w = ttabrsppqptqgarspac

Fig. 2.3.2 show an r-4 tree representation of a derivation of w.
We have numbered the nodes for convenience. Nodes 1, 3, 5, 6, T,
8, and 9 are terminal nodes. Node 10 is the root node.

The derived strings corresponding to the nodes of the tree in
Fig. 2.3.2 are as follows: 1. t; 2. ptq; 3. pg; 4. ppaptaq; 5. pa;
6. rs; T. rs; 8. t; 9. t; 10. w = ttabrsppgptagrspac.

2.4

Theorem 2.k4.1 Every IAL is a CFL (context free language). The
class of LAL's is properly contained in the class of CFL's.

(L = fa™"] n 2 1} is not an IAL.

2.5 Distributed String Adjunct Grammar (DAG) and Langusge (DAL)

We will generalize the local adjunction rule as follows.
Definition 2.5.1 A distributed adjunction rule, dijk
tuple, (o, (UJ')’ gk) where o; € T; o5 € I (cj) denotes a specified

) Ekz:“': gkn}

is a 3-

segmentation of uj; gy is an adjunction ‘vector', gkl

, . o . _
gki s are the points of adjunction of °1 ; and gk' = zki or rki 5
"1sk <mk <k .,8ndifk =k . theng =4 &andE = 1.
1 1= Ky 1= K k, ‘ki s S Y

The meaning of d;sy is that from the host o; we can derive a
string, say, Ops by adjoining the segments of o3, i.e., 0. , 0., ..o,
‘ 3’ %
0. at the points of adjunction cee , respective-
In By Bt B, O
ly. That is, we 'distribute' the specified segments of ¢; over o
at the points of adjunction gkl, gk'z y eeey and By 5 the j%h segment
n .

of ¢

is adjoined at g » The condition on €, Prevents permutation of
the segments. . J
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The language L(G) corresponding to a given DAG, G, can be
defined by generalizing the definition in Section 2.2. The main
idea is that when a derived string is segmented each segment contains
all the adjuncts (and adjuncts of adjuncts etc.) of all the symbols
in that segment. The tree representation in Section 2.3 can also be
generalized to DAG's.

Example 3.1.1 let G = (5., J) be a DAG where = {abe}, and
I ={w = {ebe, (p) (ar), 7y £3), W, = (pax, (p) (@) (z), £y4y83)3-
Here © = {abc, par}, and A = {a, b, ¢, p, q, r}. Note that in

and u% we have the same basic adjunct string pqr but the segmentation
of pa? in W and Uy is not the same. Then

MG) ={ a pnl+n2+..-+nm b qnl rn:L ,qnz rn2 ves qnm rnm ¢c|n; 20,

for i =1,2, ees, my m 21},

Example 3.1.2 Some other DAL's are: = {anbnln 21},
L, = {an'bncnln =13, Ly = {x le x € AA¥, ¥ = reversal of x},

I, = {xx|x € AA¥}, etc.

Theorem 2.5.1% The class of LAL's is properly contained in the
class of DAL's. Every DAL is a CSL (context sensitive language).
The clasE of DAL's is properly contained in the class of CSL's.

(L = {a" |n 2 1} 1s a CSL but not a DAL).

Theorem 2.5.1 There are languages which are inherently ambiguous
in the class of CFL's but which are unambiguous in the class of DAL's.

(Exemple: L = {abJcX| 1, §, k2131 =3orj =k)

2.6 String Adjunct Grammwars with Null Symbols (AGN) and Language
(ALN)

We will now introduce a somewhat modified form of AG's (LAG's
or DAG's) called string adjuncts grammars with nmull symbols (AGN).
The modification consists of allowing in the alphabet a very special
type of "non terminal" symbols called "null symbols". The main idea
is to use the null symbols to tag the strings in 3. The null sym-

* It is possible to generalize the local adjunction rule in the fol-
lowing manner also. This generalization permits one to adjoin to the
host a set of local adjuncts simultaneocusly, i.e. (oi, ojl, 052, oo
ujn, gk) where o, € I, k = 1, 2, see, n, and g 1s the adjunction

‘vector' as before. We will call these LAG's with simultaneous
(Continued on Page 9).
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bols have no points of adjunction associated with them and they do
not receive any adjuncts. The null symbols are uwlitmately erased
(i.e., rewritten as a null string ¢ ),

Definition 2.6.1 An TAGN (or DAGN), G, is a T-tuple (A, N, =,
Tes Ihy Lgs J) where A is a finite alphebet, N is a finite set (pos-
sibly empty) of null symbols, ¥ is a finite set of basic strings,
¢ © T is the set of basic center strings, 5, is the set of basic
host strings and X, is the set of basic adjunct strings,

=L UL, V) Z, and J is a finite set of adjunction rules. Further

a. Af\N @ b. If 0 € £ then 0 € (A UN) (AU N)*; c. There is
no rule in J which adjoins adjuncts to the left or right of a null
symbol, i.e., null symbols have no points of adjunction. Thus for
a 0; € I the adjunction ‘vectors' are the same as those that can be
defined for the same o4 without the null symbols, i.e., as far as
adjunctions are concerned we ignore the null symbols. We will use
Greek symbols for the null symbols, and unless otherwise necessary,
we will write an LAGN (or DAGN), G, as just the pair (z » J)e

Theorem 2.6.1 The class of LAL's ¢ the class of LAIN's and the
class of DAL's C the class of DALN's.™ (We conjecture, however, that
we have "_" instead of "C "),

2.7

An adjunction rule u, if applicable, can be applied arbitra-
rily many times. In this sense it is repeatable. We can also
consider nonrepeatable rules, (nr—rulei, in the sense that if a rule

= (o3, 031 §k§ is nonrepeatable then for each occurence of the
host 05 in a derivation, u can be applied no more than once. let
nr-AG and nr-AL be the corresponding grammars (i.e. AG's which have
at least one nr-rule) and lenguages. The class of LAL's C the class
of IAIN's (L = {a™%|n = 1} is an nr-TAL but not an LAL).

2.8

We say that & local adjunction rule is uniform if in a rule u
the adjunct oj adjoins to the left (or right) of some symbol a, ¢ A
in the host of u, then 0. adjoins to the left (or right) of s
wherever a, occurs in ang string in ¥. An LAG, G, is wiform if all
its rules are uniform.

(*#Continued from Page 8.)

adjunction rules (LgAG). It can be shown that the class of LAL's
C  the class of LgAL's C. the class of DAL's. This observation is
due to Leon levy. +




2.9

AG's with the condition T = I _ are of special interest. Strings
in can be considered as elementéry sentences (or sentence forms)
in L{(G). If T = I, then every string in L(G) can be decomposed into
a set of elementary sentences (or sentence forms). Note also that
if £ = 5, then in the r-4 tree representation of the derivation of
string in L(G) every node is either a sentence or a derived sentence.

2.10

In an IAG (or DAG) we do not have nonterminals in the sense of
the nonterminal alphabet of a PSG. We have, however, auxiliary
symbols used implicitly such as the g,'s corresponding to the points
of adjunctions. But these auxiliary symbols are used purely as
position markers and do not have the same interpretation as the
nonterminals in a PSG (i.e., the suxiliary symbols g's do not cor-
respond to phrase types). If we consider the marking symbol, ~,
used in making precise the definition in Section 2.2, (see Joshi,
Kosaraju, Yamada (1968)), also as an auxiliary symbol then one can
possibly consider 8; (ay € A) as a nonterminal which can be inter-
preted as a phrase type but with the added interpretation that a
rarase type a; has % as the 'head' (or ‘center') of the phrase.
Each sentence in L(G) has slso a 'center' namely the center string
of w.

In an IAGN (or DAGN) the null symbols are, however, like the
nonterminals in the PSG although highly restricted. The null symbols
are used to tag basic strings and therefore they are not used as
position merkers; in fact, they have no positional interpretation.
The null synmbols as nonterminals are highly restricted because they
are never 'rewritten' (in the sense of a PSG) into any other string
except the null string, i.e., the only 'rewrite rule' associated
with a null symbol, say ¢, is @ « € . |

LAGN (or DAGN) cen be considered as grammars of a mixed style
as we use rules of two different styles - adjunction rules and
'rewrite rules' of a special type. This is a very simple example of
a mixed grammar. In Section 3 we will be considering some more
interesting classes of mixed grammars.

2.11

In the linguistic context the alphsbet A in an AG, G, will
consist of symbols which denote major dictionary classes (lexical
classes) such as N (nouns), t (tense, auxiliaries), A (adjectives),
V (verbs), P (prepositions), wh (who, which, whom), R (pronouns),

D (adverbs), Q (quantifiers), ete. N, t, A, V, etc. are thus

- 10 -



preterminal symbols. The basic center strings thus correspond to
basic (elementary) sentence forms, e.g., Nt V (John came), Nt VN
(Jim bought books), N t V P N (people rely on John) , etc. (A
subcategorization of V's is implied here and is not explieitly
shown). Basic adjunct strings are basic adjunct forms, e.g., PN
(from Philedelphia), A (old), wh N t V (whom John saw), wh t VN
(who saw Jim), D (quickly), etc. Each derived string in L(G) is
thus a derived sentence form, e.g., (assuming suitable edjunction
rules), N PN t VN (a men from Philadelphia bought books), A N t V
(en 61d men came), Nwh N &t V © VD (the man whom Bill saw ran
quickly), Nwh Kwht VNt Vt VD (the books (which) the man who
met Jim bought will arrive soon) , etc. (ignoring articles for
simplicity).

In an AG, lexical insertion takes place as each basic string

is brought into the generation of a sentence. Iet o, = a, a, ...8, ;
i il i, im

&3 € A be a basic string. As oy is brought into the generation of
a sentence, each a;j can be ‘rewritten' as a set, say, 0, of syn-
tactic features and dictionary items can be inserted immediately.
The verification of selectional restrictions that hold within the
domain of a basic string can be immediately carried out as any pair
of adjacent symbols of 03 are contiguous at this stage. If the
basic strings are properly chosen then most selectionel restrictions
are brought to bear within the domeain of some basic string, and in-
deed it turns out that basic strings (with reasonable linguistic
interpretations) can be set up in this way.

There are some restrictions which hold between a host and an
adjunct string; e.g., in Nwh N t V t V (the _man whom John met
arrived), wh N t V is an adjunct of Nt Vand the Nin N t V is
really the 'object®' of V in wh Nt V. Some other examples are:
Zeroing in conjoined sentences, e.g., everyday, he runs and swims;
he played tennis but she didn't, etc. Restrictions betwéen suc-
cessive adjuncts émint of adjunction of the host
(ordering restrictions) as in I am looking for a book with & green
cover which was lying here somewhere. Restrictions between & host
SR o o7 moreeijuaTts ST diTTerent points of adjunction of the

host as in boys who can swim distrust boys who can't. All these can
be easily verified.

. AG's are well suited for formulating the 'endocentric' proper-
ties in the sense that this aspect of a constituent can be explicitly
brought out in the structurel description. There are, however,
constituents which are not 'endocentric'. These are 'exocentric'
in the sense that we cannot replace them by any word of a character-
izing category contained in them such that the constituents can be
considered as constituent expansions of the characterizing category;
e.g., wvho will represent us at the meeting in who will represent us
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at the meeting is unclear, etc. AG's are not well suited for
formulating the exocentric properties. These properties are better
characterized by the use of a ‘nonterminal' and 'rewrite rules' in
the sense of a PSG (see Section 3).

Sentence adjuncts (e.g., in general, today) can be handled well
in an AG; in particular, that these adjuncts can occupy various
sentence positions can be easily characterized in an AG. This is
ewkward to characterize in a PSG. However, the property that these
adjuncts are adjuncts of a sentence 1s better characterized by the
use of a nonterminal.

Distributed adjunction rules are required to handle cases such
as two and three are even and odd numbers respectively which is a
case of en intercalated structure. Such structures are not too
.frequent. However, if one tries to construct AG type grammars as
base for transformational grammars then the need for intercalated
structures is not so merginal. This is primarily because one tries
to relate each adjunct to an elementary sentence (i.e., one tries
to constitute the adjunct and host strings in such a way that the
underlying elementary sentence(s) could be reconstructed from them).
Scme examples are: the man who came ... (double underline indicates
the distributed adjuncts; John's proof of the theorem, etec. (see
Hiz and Joshi (1967), Joshl (1066, 1969), for rurtner details).
The kinds of intercalated structures possible in a DAG apparently
are edequate for this purpose.

If ¥ = 3, then each string w € 1(G) has a_ representation in
terms of basic -'sentences' (or basic center strings). In genersl,
adjuncts are not strings in 7, and hence ¥ 4 %,. But what seems
to be true of a natural language is that one can 'almost' construct
an AG, G, (actually, a mixed AG, see Section 3) for which T = T,
and define a set of operations (these consist of permutations,
deletions, and additions of constants; these operations can be
related to transformations in & given language) for each ¢ € ¥
and for strings derived from o such that we can construct a new AG,
G', with basic strings T', 5.' where &' $ 5.' and strings in 3’
are transformationally derived from strings in g. Strings in L(G')
except for morphophonemic operations are the strings (sentences)
in the lengusge. In transformational analysis we go in the reverse
direction, i,e., from G' to G and reconstruct the set of basic
'sentences' (together with the derivation in G) underlying a given
sentence generated by G'. (See Joshi' (1969) for further results
and details.)



3. Mixed Grammars
3.1

In AGN's (i.e., AG's with null symbols) in Section 2.6 we use
a very special type of null synbols which are ultimately erased.*
The only rewrite rule associated with a null symbol is o = €
vhere 0 is a null symbol and € is the null string. The AGN's are
thus a class of mixed grammars as rules of more than one style are
used. It is, however, & rather simple class of mixed grammars.

3.2 Mixed String Adjunct Grammar (MAG)

We will now consider a more interesting class of mixed grammers.
The main idea is to sllow a single 'nonterminal' (in the sense of
a PSG) in an AG and a special type of 'rewrite rules' associated
with this nonterminal. We will, however, call them 'replacement
rules'. The reason for adopting this new terminology will become
clear later. More specifically, we will define a Mixed Strlr_xg Adjunct
Grammar (with replacement rules) (MAG), G, as follows.

First, in addition to the 'terminal' alphabet A we will have
2 'nonterminal' S. The set of basic strings, ¥, and the set of
basic center strings, &,, will now be strings on (A Uy {S}). Thus
a string 03 € T may now contain one or more 8's in it. A gy € &
which does not contain S will be called an elementary basic string
and a o4 € T which contains one or more S's will be called a complex
basic string. The adjunction rules (locel or distributed) are
defined as before and we adopt the same convention as in the case
of the null symbols, i.e., in an adjunction rule if the host is a
camplex basic string we disregard the S symbols in it as far as
points of adjunction are concerned. Thus the points of adjunction
of a string, say, o; = aS bS are the points of adjunction which are
to the left and right of a and b. Further, the S symbols have no
points of adjunction. Of course, if an adjunct string, say, os is
a complex basic string and has a specified segmentation, then 2ach
symbol S in 95 must be included in some segment of ¢ 3

* Actually, it is possible to define the recursive extension of
the adjunction rules such that the null symbol associated with any
basic string is erased at the time the string is adjoined to some
host string. The null symbol associated with the center string

is then erased at the end.
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We now define a replacement a rule Pij (often written just
as p) as a pair < ui, o, > where o, € z, a1 is a complex basic

J
string, and o5 € Z,. The meening of a replacement rule p =

< 0y, 03 > is that from o; one can derive a new string by replacing
some occurence of S in oi by aj. Thus we have the following
Definition 3.2.1 An MAG, G, is a 9-tuple, G = (4, S, T, s Ty
'Za, T, J, R) where A is the alphabet (terminal), S is & 'nonterminal'
symbol (5 ¢ A), = is the set of basic strings, 3, is the set of basic
center strings, 7, is the set of basic host strings, ©_ is the set
of basic adjunct strings, X, is the set of basic replacer strings,

J is a finite set of adjunction rules (local or distributed), and

R is a finite set of replacement rules. 5 = {o, l'(oi, o5 gk) e J}
U {oi|< 055 05> € R}, T, = {cjl(ai, 955 gk) € J}, end .
T ={ol<0;, 0y >€R} £=Z UZ UL, US,. I, may contain €
but ¢ ¢ Tye

Given J and R, Z:h, Iy and z:r are completely specified and
Z= ZZc U Zh U Za U zr' A need not be explicitly stated. Since S

is the only '‘nonterminal’ it need not be explicitly stated also.
Hence, we will write an MAG, G, as a triple (5, J, R) insteed of
a 9-tuple as in the definition above.

Example 3.2.1 Let G = (zc, J, R) be an MAG where T, = f{abc,
pg, sbsc}, J = {lﬁ_ = (abSc, (a)(®)(c), 215223): Uy = (abe, (a)(b)(e),
z1121,3)], and R = {pl = < abSc, abSc >, p, = <abSc, pq s},

Example 3.2.2 let G = (zc, J, R) be an MAG where %, = (asb, c},
J={y = (asb, (2) (sb), rlrz)}, and R = {p, = < asSh, asb >,
= < aSh, ¢ >}.

Py
3.3 Mixed String Adjunct Ianguage (MAL)

_ We now have two different styles of rules in G, namely, the
adjunction rules J and the replacement rules R. If R is empty then
we have an AG and we know how the generation proceeds in this case.
In particular, we note the ‘'inside out' characteristic of the
generation. If R is not empty then we have replecement rules
associated with the synbol S. The generation still pg‘oceeds in an
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finside out' manner. In order to define the language corresponding
to an MAG, we must state how the rules in J and R are extended to
derived strings. Rather than giving & precise definition, we will
illustrate the main idea by the following example.

Example 3.3.1 _Consider the MAG, G, in Example 3.2.1. Starting
with the complex basic string abSc and using it as a host in

end the string sbc &s an adjunct in u,, we obtain asbbScc. Using
this as a derived host in the replacefient rule p., we obtain
aabbpqcc. But this is a string derived from a‘bS% and therefore

it can be used as a replacer string in-p,. Thus we can obtain
aabbaabbpgcece (see Fig. 3.3.1). The lediguage L(G) = L is

L, = 2% n21} y {aulbnlanabnz...ankbnkpq?ﬁ%'lh"+1i}1120,i=1,2,...,k
k21}

As far as rules in J are concerned we require 'inside out'
generation. In order to define consistently the recursive exten-
sion of rules in J and R together it is necessary that once a
replacer string replaces an S no further adjunctions or replacements
can be made on it. Thus before a replacer string is used it must
be completely built up (i.e., it must have received all its edjuncts
and adjuncts of adjuncts ete., and all occurences of S must have
received their replacements).* This was the reason for calling
the rules in R as replacement rules rather than rewrite rules.

Thus the generation begins from either (&) the 'innermost’
host - adjunct pair(s) or (b) the 'innermost' complex basic host -
replacer pair(s) where the replacer is an elementary basic center
string, or (c) both (a) and (b).

The reader may amuse himself by working out the language (L%)
corresponding to the MAG in Example 3.2.2. It is rather complicited
to write it down in a parametric form.

* It is assumed that for every complex basic string, say, o;, either
there is a rule < oy, o > where o3 is an elementary basic string

or there is a sequenc§ of rules < ail, 031 >, < 012, 032 Sy eeey

< O'in’ cjn > where d; = d;, Ojk = Uik+l’ k=1,2, ... n-1, and

ujn is en elementary basic string. Otherwise, o, can be removed
from G without affecting L(G).
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Both and I, are CSL's (Context sensitive languages). They
are both DAL's also. This can be shown by constructing the equi-
valent'DAG's. ILet Gy = (Ec, J) be a DAG where z, = {abpge, pa},
and J = {ul = (abpqc) (ab)(c), 1‘21‘5), u2 = (abpqc, (a)(b)(c);
"1‘2"5)}' Then L(Gl) = L,. Similarly let G, = (zc, J) be a DAG
where £, = {acb, c}, and J = {ul = (acb, (a)(cb), rlr3),

w, = (acb, (a)(b), rlr3), ug = (acb, (a)(b), 42z3), y, = (ab,
(a)(v), rlrz), uy = (=2b, (a)(cb), rlr2),}. It can be shown that
L(G2) = L,. In fact, we have the following

Theorem 3.3.1 For every MAG, G, there is an equivalent DAG, G',
(i.e., LEG; = L(G')) which can be effectively found.

We will omit the proof here as it is rather long. An examina-
tion of MAG's in Examples 3.2.1 and 3.2.2 and their corresponding
DAG's, Gy and Gp sbove will give the reader some indication of how
the proof can be constructed. This is an interesting result because
it shows that as far as weak generative power is concerned, we can
eliminate S, the only 'nonterminal' we have used. It cen also be
shown (this is easily seen from Gy and G sbove) that if the MAG,
G, satisfies the condition that £ = %,, then the equivalent DAG, G;
will not necessarily satisfy the corresponding condition ' =3 '.
In fact, for some MAG there will be no equivalent DAG satisfyi
this condition (see Section 3.5.6 for linguistic relevance).

Remarks 3.3.1

1. In an MAG, G, not every basic string is a string on A (e.g.,
the complex basic strings). However, in the tree representation of
derivation of a string in L(G), the derived strings at each node
are strings on A, just as in the case of an AG. In fact, if this
condition is not satisfied the tree will not correspond to a tree
for some string in L(G).

2. The symbol(s) 8 in & complex string, say, o,, will be referred
to as a contained S. o, will also be called a Container string and
the replacer string(s) Tor S will be called contained string(s).
Let o, = abSc, o5 = dSe, o, = gSh, and 0, = pq. let w = (absc,

dSe, rl) be an adjunction rule and py =< abSe, gsh >, P, =< absc,
Pa >, p3 = < dSe, pq >, and p, = < gSh, pq > be some replacement

rules. Consider the following tree representation of a derivation
(Fig. 3.3.2: the superscripts on U‘c are used to distinguish the two

distinct occurences of the string pq). Note that ci is contained
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kq
? Derived strings at the modes
1,2, 3,4, and & ore:
b
" 2 1. abe
2.
3 L ab Sc . 3. aal:kt;qcc
4)
abe 4. obc
b 5. aobbaabb pqecce
\ Uy )
(5) abSe

FlG, 3.3.1. Tree rerrcscntotion of derivation of

wz aobbaabb ‘;c\cccc m MAG G
y) ’
{n” Example 3.2.1.

o: =dSe

b= o t.v<1=°11-
B by
9Sh= o
Uy by

Fig. 3.%.2.
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in o 3 and oj- is adjoined to 955 and aaAis contained in O and %

£
is conteined in g;. Both oi and oi are two 'levels' down (i.e.,

‘depth' 2) with respect to o, and this is so both in the sense of

a PSC and an MAG. Now ol is“two levels down where the first level
is due to an adjunction &nd the second due to containment, but U%

is two levels down where both levels are due to containment.

Thus in an MAG the depth of embedding of string can be characterized
not only by the number of levels involved but also by stating for
each level whether it is due to adjunction or conteinment. There

is also the possibility of characterizing en arbitrary depth of
embedding in terms recurrent patterns of adjunction a.nd/or con-
tainment levels. .

3.t Deformations and Generation Scheme

In this section we will be concerned with the construction
of an MAG, G, with % = X, for an MAG, G', (for which ' £ %',
in general) such that G is related to G' by means of certain
operations (see Section 2.11 - last paragrsph).

let A = {&1, 52, ceey J‘n] be a finite set of deformetions
(to be defined later).

Definition 3.4.1 A Generation Scheme, G, is a pair (G, a)
where G is an MAG, G = (5, J, R), A is a fInite set of deformations,

and with each rule u € J and each rule p € R, we associate unique
subsets of A, say, Au and Ap respectively.

let C_be a finite set of constants. We say that a string o'
is a deforfed o if every symbol of o' is either a constant (i.e.,
is in C ) or is a symbol of ¢ or both. That is, o' is obtained
from ¢ gy one or more of the operations of permuting, deleting,
or repeating symbols of o or adding one or more symbols from Co.

Definition 3.k.2 Iet u = (o3, o5, g) € J and let p, be the
associated subset of deformations. “Then a Ji € A, maps the rule

u = (o3, 05, g) into a 3-tuple (v;', 03", ') where o;' =0y,

o;' is a deformed o; (the specific choice of operations of permuting,
déleting, or repeating symbols of o¢jor adding constants is deter-
mined by d'i), and gk' is an adjunction 'vector' of o; not necessarily
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the same as £,. We write this as Ji(u) = u' vhere u' = (oi',
oj', g,').* Similarly, a d; e ap, p=< dgs O3 >, maps P into
a pair < oi', OJ' > vhere oi' = 0, and 03' is a deformed ¢

( §; determines the specific deformation as before). We write
this as ¢y(p) = p', where p' =<o,', GJ' >

Note that cfi deforms o5 and also specifies a new adjunction
'vector'. Note also that u"and p are rules in the MAG, G. u'
and p' are not rules in G. However, they will be later interpreted
as rules in another MAG, G'.

Each J; can then be extended to the derived hosts end derived
adjuncts in u, end to derived hosts and derived replacers in p in
the obvious way (i.e., if & symbol of ¢ 1is permuted it carries
with it its adjuncts, and their adjunctg etc.; if a symbol of o
is deleted then we delete its adjuncts, and their adjuncts etc.‘z
addition of constants is not affected). More complicated extensions
bhave to defined however for the more complicated d i's. (see Section
3.5.5, and for further details, Joshi (1969). .

For a given Generation Scheme, Gg = (G, A), we will define the
language corresponding to G, Jg ), as follows. We will give here
only an informal definition. We carry out the generation in the
MAG, G, as described in Section 3.3, with the following modification.
If during the generation we plan to use a rule u then instead of
using u we use the rule u' = J,(u) where & € pye Similarly, if
we plan to use & replacement rule p then instead of using p we use
the rule p' =d,(p) where dp ¢ bp. The choice of d’ from A, and

cf from AP is nondetenm.nlstlc.

* This definition is not quite precise as stated. First, note that
gk' is an adjunction 'vector' and hence its components must satis-
fy certain conditions (see Section 2.5). Secondly, if g,' hes

more than one component then & j must also specify the appropriate
segmentation of cj . This definition is also weaker than required.
More complicated d‘ s can be defined and are required (see Section

3.5.5).
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Note that here we use the word 'language' in the usual sense,
i.e., a set of strings on A. Ultimately, however, we are inter-
ested in the corresponding strings of lexical items. The lexical
insertion proceeds in G in the same general manner as in Section
2.11 (paragreph 2), (see also Section 3.5). In this case the

choice of a J!, from A, and of cfm from AP may depend on the

lexical entries for o; and 0. which are, of course, available
at this point in the generation.

The 'langusge' derived in this way is L(Gg). The derivations
are not in G but in Gg. We could, of course, allow the generation
in G to proceed independently but concurrently with the generation
in G_. In this case, we would derive a pair of 'corresponding'
strifigs, say w and w_ vhere v € 1(G) and LA L(Gs). Note that

Gs is not an MAG; however, we have the following

Theorem 3.k4.1 For every Generation Scheme, Gg= (G, A) there
is an equivalent MAG, G', (i.e. L(G') = L(Gs)), and G' can be
effectively found.

The proof is rather involved and we will omit it. At least
for the §'s in Definition 3.4.2 one can state the main ides as
follows.* Let G = (z,'c, J, R) and G' = (zc', J', R'). Then
1. zc' = %,- 2. J' obviously conteins &1l the u' = Ji(u), ued,
as adjunction rules. But J' also contains some additional rules
which are needed for the following reason. Let o. be an adjunct
string in G and let some d deform o into oJ_'. Ngw, if o5 is also

a host string in some adjunction rule, say, w, in J then we must
add a new adjunction rule(s) in G' which in eFfrect allows one

to adjoin the adjunct in u_ (actuelly, its deformations under all
possible d's) to 0.', with*the adjunction 'vector(s)' appropriately
specified. 3. R'Yconsists of all the p' = d.(p), p € R, as
replacement rules. R' also contains some additional rules which
are needed for the same reason as in 2 above.

We can impose the condition £ = £, on the MAG, G. But then
G' (equivalent to Gg = (G, A)) need not satisfy a similar condition,
i.e., ©' need not be equal to £.'. This is because ' contains,
besides strings in Ec' (= ):c), fhe deformed adjuncts and deformed
replacer strings.

* The proof extends to some of the more complicated drs (see
Section 3.5.5).

- 20 -



From Theorems 3.k.1 and 3.3.1 we then have

Corollary 3.h.1 For every G, = (G, A) there is an equivalent
DAG, G", (i.e., L(Gs) = L(G")) which cen be effectively found.

3.5 Linguistic Relevance

In this section, we will briefly discuss the various results '
in Sections 3.1 - 3.4 in the linguistic context and provide some
justifications and interpretations for these.

3.5.1

As is evident from the discussion in Section 2.11, the main
motivation for considering MAG's is to provide suiteble representa-
tions for certain structures (e.g., that he went home surprised
me, I told him to go home, that John will come is certain, I tried
to read the book, etc.). The purpose for considering MAG's with
T = 5, is the same as in Section 2.11 (last paragraph).

3.5.2

In Section 2,11 we have seen that many restrictions have as
their domaein a basic string or a basic string and its adjuncts;
and these can be easily stated and, at the time of adjunction,
easily verified. These remarks obviously hold for an MAG as far
as adjunctions are concerned. However, in addition to these, in
an MAG there are many restrictions which have as their domain a,
complex string and its replacer(s) string (i.es, a conteiner string
and the contained string(s)). These also can be easily stated and,
at the time of replacement, easily verified. Apart from selectional
restrictions, some of these restrictions are: (a) Identity of one
of the N's in the container string asnd one of thHe N's in the con-
tained string (identity of the 'subject' or 'object' noun in the
container string and the 'subject' or 'object' noun of the con-
teined string), e.g., I told John to go home, I promised Bill to
purchase books, John deserves promotion, He suffered defeat, I
forced him to swim, He is uninspiring as a teacher, I saw the boy
being beaten by the policeman, etc. Actually, since we are
considering derivations in an MAG with T = %, we should have
written these somewhat as follows: I told John®(John® should* go
home ), 1° promised Bill (I'would purchase books)}, John®deserves
(N should¥ promote John'), He'suffered (Il defeated hinf), He'is
wninspiring (He'{ teach N to N), etc. ( o marks the elements with the
same reference; %: untensed (or tenseless) o). (b) Certain
conditions on replacing & noun by a pronoun, €.g., John hoped (he

¥ perhaps %.-
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will win) but not He” hoped (John will win), ete. (c) Possible
correlations between tenses in the container and contained strings
(see examples in (a) above).

Later, in the context of generation in Gg = (G, A) we will
discuss some additional restrictions. These do not affect the
'well-formedness' (with respect to the satisfaction of restrictions)
in G. Thus the strings of lexical items corresponding to strings
in L{G) are also ‘'well-formed'.

3.5.3

We now consider the derivations in Gg = (G, a). Obviously,
“the purpose of §'s is to obtain the corresponding strings in
Gs (i.e., also in G'), e.g., I told John to go home «~ I told John
{John should go home), etc. Note that for each rule u or p in G,
the d's are selected from Au or Ap respectively. Some examples

of restrictions on é's are: (a) The choice of a & from a, (or Ap)
may be affected by the lexical entries for the container and
contained strings, mostly by the verb (including is A and is N)
of the container string, e.g., I tried to drive a car, I tried
drivi a car, but only I stopped driving a car; That he answered
the letters is true, His answering the letters is strange, but
not His answering the letters is true, etec. (b) Choice of a
particular preposition in a deformation may depend on the lexical
entries for the container and contained (?) strings, e.g., ps
know of John's coming, I believe in (my) leaving early, etc.

(see Section 3.5.5 and Joshi (1969) for further details).

3.5.4 A simple Exemple of G, Gg and G'

Let G = (£,, J, R) be an MAG (with & = 5 ) where A = (N, t,
Vv, A}; 2c=2={oi=NtV, o, =Nt VN, 03=Ntvs, 0y =
Nt VNS, 05=StVN, o6=stVA, o7=stvs}*;

J = {(al’ (Ij, rl} U {(02: Gj’ rl) u {(62: aj’ rl,_)} U {(03: UJ-) rl)‘}

U {(Ull-’ Uj: rl)} U ((0')4: Uj’ rh} U {(05: Oj, r3)}5 j=1,2,3, L,

% A subcategorization of N's, V's, and A's is implicit here and
is not shown explicitly in the notation.
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andR={<oi,oj>|i=3,h,5,6,7;;j=1,2, cee, T30

Let G, = (G, A) be a Generation Scheme where A = {J‘i} is
& set of deformations and the §'s are defined as follows.
(set of Constants, C_ = {vh, that, to, 's, ing})

o ' .

&1: (Ui’ Uj’ §k) - (Ui’ Uj', Ek) vhere 1 =1, 2, 3, 4, 5; j =1,
— . 1
2,3, 54 (Ui’ Uj; §k) € J; and %y =wvht Y: %
o =
-3

l_wmtvn,

Vat VS, op =wht VNS

: 2

62: (oi, O3 gk) - (ci, %5 gk) where 1 =1, 2, 3, &, 5;

—s s .

i=2, 45 (055 055 §) €J; and & =wh N £ V,

2 2
ok—whNtVS, 05-whstv.

35 19 033 > vhere i =3, 4, 5,6, 7T;

i=12, seey T3 <°i’ o

t%: <0, 0, >=<0

3> € R and 033 = that o,

J:<oi, 05 > = < 0y, ojh>wherei=3,h_;;]=l,2, 3, b;
- L L )
<ai,oj>eR;andal =tc~V,a2 =toVN,c3 =t0o V 8,

4
01} =to VN S.

&5: <0y, 05 > =<y, 055>where 1=3,56,73=1,2,3, 1%

<oy, 05 >¢ R; 015 = (N's) V ing, 025

035 = (N's) Ving S, 0, = (N's) Ving N 5.

(N's) Ving N,

We have not shown explicitly the various subsets of A
associated with the rules in J and R in G. t, these can be
worked out from the specification of the &'s above.

* Actually, we should use here a distributed adjunction rule to
account for the definite article to the left of N in the host.
We leave this out in order not to complicate the example.
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An MAG, G', equivalent to Gy =(G, A) can now be easily
constructed (see the discussion under Theorem 3.4.1). We will
not write G' here as it is too long. It is easily seen that we
can derive in Gg =(G, A) and therefore in G' sentences such as,
John wants to go home, I prefer walking, The man who came ordered
Jim to _shut the door, I promised Bill to tell John that he should
visit Fred, Bill's forcing John to resign annoyed him, Painting
the doors blue was the custom, My asking him to write a paper
caused his leaving the job, etc.

3.5.5 Some Complex Deformations¥*

Some examples of deformations more complicated than those in
Definition 3.%4.2 are as follows:

a. A Jd may be defined such that it requires the adjunct string, 045
in the rule u = (oi, crj, gk) to be a derived string. d then refers

to not only oy but string(s) which may be at most a fixed finite
depth (counteg. in terms of edjunction and containment levels) rela-
tive to oj. Mostly depth 1 (and occasionally depth 2) is adequate,

€.8., The man who had the keys finally came — The man finally
came who had the keys: The man who finally came who had the keys ...

Db. A Y may be defined as above but with the possibility of

4 referring to not only o, but a string which is at an arbitrary
depth relative to o, where the arbitrariness of the depth is so
constrained that itjcan be specified in terms certain recurrent
patterns of adjunction and containment levels, e.g., The meeting
(which) I selected John to represent us at +eo., The people we hope
that John told to water the plants ..., etc. [Although slightly
out of place, it might be worth mentioning here that the distinction
between adjunction and containment levels also helps in stating
certain pronouning restrictions to some extent, e.g., the pronoun
is in the contained string and not in the container string: John®
thought he” will win but not He®thought John®will win; but if we
have an adjunction level then we have both: People who know Bill
like hini, end People who know him®1like Bill’; if we have an adjunction
level and a containment level, we again have both: People who know
Bill' want to help him®and People who know him want to help Bill,
and if we have two successive containment levels, we have John® asked
Bill to tell Mary to see him but not He® asked Bill to tell Mary to
see John' etc.]

* For further details see Joshi (1969).
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c. A é may be defined such that it not only deforms the adjunct
string 9y but also deforms the host string o;. Since the host o3
can also be deformed by such a &, the precise definition of how
generation proceeds in the Generation Scheme, Gg, becomes complicated.
Such & 's can be used to obtain from the seme¥ container string

— contained string pair, two related sentences such as, e.g., That
he came surprised me and it surprised me that he came, etc.

4. Sets of related d's to cover certain zeroings which have as

their domain the container and the contained strings, e.g., I
promised him to come « I promised him that. I would come, etc. One
may also include here zeroing of 'appropriate’ verbs, V, p? €8¢

I expect him ~ I expect him to Vapp Where Vapp = {come, grrive , ete.;

perhaps also I shall go «~ I promise you that I shell go (Harris (1968,
3.5.6

From Theorem 3.3.1 we know that for every MAG there is an
equivalent DAG which can be effectively found. This means that we
can eliminate the nonterminal S as far as weak generative capacity
is concerned., Of course, we don't choose to eliminate S, but it is
interesing to see the implications of this theorem. If one examines
the proof of this theorem, we notice that in effect for every complex
basic string, say, o; = &bSc and for every elementary basic string,
say,pq, which is a replacer for ai",' we set up an adjunction rule
(in this case a distributed rule) such as (pq, (sb)(c), g375). Thus
we will have %o consider I know that in I know that John went home
as an adjunct of John went home. Now (in the spirit of the discus-
sion in Section 3.I) adjuncits are obtained by deforming & string in
o5 8lso adjuncts have a certain degree of mobility within the host.
This is perhaps the reason why in some cases we come close to reali-
zing this, e.g., (1) I hope that John will win: we can obtain a
sentence and a semi-sentence, John will win; I hope so or & sentence
and sentence adjunct, John, I hope, will win, (2) That John passed
the examination surprised me: John passed the examination; it sur-
prised me, John passed the examination, to my surprise, etc.

% This avoids having two distinct strings in G generating strings
which are paraphrases of each other. If, however, we allow this
possibility the structure of Gy can be considerably simplified. We
do not follow this approach but the nature of these simplifications
is discussed in Joshi (1969). In a different context and in a
different framework, Keenan (1969) has made a similar comment.

lage ~
A% ond L ob sc‘ ab Se> , and < abSc pPq 7 are tuwe replace

= ment Fal €3,
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3.5.7

In Section 3.4, in G, = (G, A) we imposed on G the condition
that & = Y. Then in G’ fequivalent to Gg) every adjunct string
is obtained by deforming some string in Y,(= £) in G. However,
adjuncts such as, e.g., quite in quite forgot, very in very long,
same quantifiers (&.’L_, some, etc.), some occurences of articles,
some time and manner adverbials, etc. pose a problem here. There
are a couple of ways around this problem.

One solution is to consider these adjuncts as primitively
edjoined in G (i.e., regard them as a sort of primitive adjuncts
in G)*., G, of course, will no longer quite satisfy the condition
=X .

c

Another more attractive solution (certainly, motiveted by some
current trends in transformational theory) which.will maintain the
condition that every basic string is also a basic center string is
to construct (1) another MAG, G", by retaining all strings in 3
in G, excluding the primitive adjuncts in G, but adding new complex
basic center strings (these will now more and more become infra-
sentence forms), and also adding new adjunction and replacement
rules, and (2) a new Generation Scheme Gg" = (G", A"), where A"
is a new deformation set, and G" satisfies the condition »" =g ",
such that Gg" is equivalent to G. (At this point, we may also ¢
remove the tenses, auxiliaries, and prepositions. Basic strings
in G" will then be strings of N's, V's (including is A end is N)
and S's). Thus we have the alternating sequence of MAG's and
Generation Schemes*¥*,

G": Gs" = (G", A“) ~ G GS(G’ A) %Gl
and

L(ec") : L(Gs") = L(G) : L(Gs) = L(G')

* Note that there are very strong restrictions on the repeatability
of these primitive adjuncts.

*% In principle, we could consider arbitrarily many intermediate
stages, between the first and the last MAG's. However, there would
not be much point in considering such sequences, unless each inter-
mediate stage has some reasonable linguistic interpretation.
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where G" underlies G and G underlies G'. Further development
of these ideas in some detail will be reported in Joshi (1969).

Appendix: Fig. A.summarizes the hierarchy of certain subclasses
of AL's and MAL's in relation to the phrase structure hierarchy.
(The replacement rule in an MAG can be generalized in such & way
that all occurences of S in a complex basic string are simultaneously
replaced by a specified set of replacer strings. We call such a
grammar an MAG with _simultaneous replacement rules, MAG, and the
corresponding language, M,AL. It can be shown that MAL & MGAL

CSL. An MAAL has the property that the lengths of tie strings
in it (assuming an ordering in terms of increasing lengths) grow
no faster than an exponential. The whole class of MgAG's as such
does not appear to be linguistically relevant.)
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