1. Introduction

When a language is analyzed in accordance with a phrase
structure grammar, it is customary to regard a terminal string
X as grammatical according to a grammar G if one can start from
the initial string of the grammar and apply the rules of G, succes-
sively rewriting strings until x is obtained., With the resulting
derivation of a generated string x, a structural description of x
is associated consisting of a labeled bracketing which indicates the
nonterminal symbol(s) rewritten to obtain substrings of x, When
a phrase structure grammar contains only context-free rules,.
each generated string can be analyzed and its structural des-
criptions computed with considerable efficiency. In the event
that some rules are context-sensitive, however, no general
analysis procedure of comparable efficiency is known., In this paper
I discuss a means for allowing the use of context-sensitive rules
in the description of context-free languages to the end of provid-
ing greater economy of description and analysis. I will show that
if phrase structure grammars are allowed to define languages in
a different way than is usual, then certain context-free languages
can be analyzed more quickly, using less storage than under the
standard interpretation, although no noncontext-free languages
can be 80 analyzed. Furthermore, the new way in which a gram-

mar defines a language seems to be a more adequate reconstruc-

-2-
tion of the use to which context-sensitive rules were put in immed-
iate constituent analysis.

Assume we are given a phrase structure grammar Gand a
string x and we ask whether it is possible to analyze x in accor-
dance with the rules-of G. The answer is in the affirmative if G
assigns some labeled bracketing to x as its structural description.
This suggests that we think of x as being provided with an arbi-
trary wellformed labeled bracketing @ and check whether each
phrase of x determined by a matched pair of labeled brackets in
risdivided into subphrases in accord with the rules of G. For a
phrase to satisfy a rule R of G, the matched pair of brackets deter-
mining that phrase must enclose the particular sequence of phrases
and members of G's terminal vocabulary that R says the phrase
may imediately contain, Furthermore, if=_1§ is context-sensitive
with context 21_ - W —El_ .. g—n’ then immediately to the left

(right) in x of the phrase in question must be a sequence yl. .Y
z =] “m

{z,...2z) of strings such that (a) y =a, (z. =B) ifo (B)isin
-1 ™ = L T LT

1

the terminal vocabulary and (b) y (z) is a phrase of type o (8)
1T LT
according to the labeled bracketing @ of x if o

() is in the non-

terminal vocabulary, for 1<i < m(l < j<n). If some well-

-3-
formed labeled bracketing of x is analyzable by G in this fashion,
we can think of it as a structural description assigned tox by G .
If G is context-free, the language associated with it in this rather
natural fashion is clearly the same as the language generated by
G in the usual fashion and the structural descriptions assigned to
strings by G are the same in the two cases, I G contains rules
with nonnull context, however, it is not obvious whether the langu-
age associated in the above manner is the same as the language
generated. So that we can investigate this question, let us préceed
with precise definitions of the new concepts which have appeared
informally.
2. Definitions

For familiar concepts I will simply refer to definitions in the
literature (qf. Peters and Ritchie, 1969b). Recall that a (context-
sensitive) phrase structure grammar is an ordered quadruple

(X'_I_" __’N, S, R) such that Xrand _YNare finite, nonempty, disjoint

sets (the terminal vocabulary and nonterminal vocabulary, res-
pectively), S is a member of YN (the initial symbol) and R isa
finite set of rules of the type (1),

1} A— .- e — vee
R R N

-4

€

where >0, m, n> 0, A€ B VUV (1<i< ,

are special symbols not

v »
=~ 4
li__l'<m, 1<k <n) and =—>, / and

e
2

in XTU%. The rule (1) is often written as (2).
2) a ...a_ A —_a ..
@ &G 28 B —>a gy Yoo X Beee By

The notation (1) more clearly brings out the possibilities for
immediate constituency allowed by the rule and the contextual
conditions imposéd by the rule on those possibilities., Let L =
{ = ’

(M, | A ew_/N] and R {]A |Ace ‘—’y-] be sets of left and

right labeled brackets,

Definition 1: A labeled bracketing (finite string over Yo ULLR) ¢

is said to be well-formed if (i) @ €V, (if) » = [é i1, or

(iii) @ = yw, where ¥ and W are well-formed labeled bracketings

and A € YN'

The language generated by G (written L(G)) and the set of

structural descriptions generated by G (written L(G)) are as

usual (cf. Peters and Ritchie, 1969b, Definitions in § 2), A set

L of strings is called a context-sensitive language if there is a

phrase structure grammar G such that L= L(g) A phrase struc-
ture grammar G is context-free if every rule (1) of G has

m=n=0(i.e.a ...a =B ... p_=e, where e is the empty
=TT A 2

~5-

5
o

string). A set L of strings is a context-free language if there i
a context-free grammar G such that L = L(G).
Definition 2: A triple (tl, ¥ '1:3) is called a node of a well-

formed labeled bracketing @ if @ ¥ _#_ and there are A eV

273 N
and a well-formed labeled bracketing W such that lz = [A w]A'

-4,

The node (ll, 12, i3) satisfies rule (1) if there are labeled

bracketingsgo.ll,...,E_.gl,....gm,xg.Ll.....l,
W se0er @ » devaer s T. 20003 T h that
2 k 9'9 _p__); gl'_l _;1 _Bsuc a
i = v , = w “ee
@ 4=ty G Ty by A% @ X2 X, 1a
and = T cee T .
4 gﬁ‘lgl ’9_33
() m ¥, p €(LUR)% 1<i<m, 0<j<f{, 0<k<n-1 and
27] Tk - T TmmT T
0., ifa, €V
ot - T
(iii) o, = - < . _ l<i<m,
= [Ei 9&]9:i , 1fg__i€ YI:I (9-_i_ well-formed) } ,— —— — =
Y., ify €V
w _-:J- 3 = ,i<j< Q and
i) u).']Y ,ify €V (w'well-formed)y ™7~ ~
A R R |
g, if €V
I BE -T
i r], . HB €V (1 ‘well g 2SR
T 3 well-formed)f =~~~ 7
NS A)

Definition 3: The debracketing function d is the homomorphism

from ('Y’I' ULUR)* onto Vp* defined by

-6-

a, ifa € V.
= 2T
(i) d{a) = -

e, ifa € LUR

and

(ii) d(ﬂ) = D(¢p)d(¥) for any labeled bracketings @ and y.
A labeled bracketing @ is analyzed by G if d(y) € V¥, if there

is a well-formed labeled bracketing § such that 2: [S A]S and
if every node of 9 satisfies some member of R. We say:hat a
string x is P_a_r_ge_d by 9 if there is a labeled bracketing ? such
that @ is analyzed by G and d{y) = x. The set of labeled bracket-
ings analyzed by G will be written A(G) and the set of strings
parsed by G will be written P(G).
The Languages Parsed by Phrase Structure Grammars

We can think of the labeled bracketings analyzed by a phrase
structure grammar G as being strings over a terminal vocabu-
lary which is the union of (_}'s terminal vocabulary and its set
of left and right labeled brackets. We may then ask what type
of language A(G) is. Theorem 1 provides the answer that A(G)
is a context-free language and from this Theorem 3. 8 of Peters
and Ritchie (1969a) follows immediately as Corollaryl. We
now proceed to state these results.

Theorem 1: If G is a phrase structure grammar, then A(G)
I

-~

is a context-free language.

Proof: LetG = (XT. XN’ 5, R) be any phrase structure

grammar and let L and R be the corresponding set of

left and right labeled brackets, To prove the theorem, it
suffices to describe a pushdown-storage automaton M
which accepts A(g) since pushdown-storage automata accept
just the context-free languages (Chomsky, 1963, Theorem
6). Iwill describe the automaton M informally since this
will provide more insight into its operation. Formal
construction of M from this description is a straightforward
- and tedious exercise and is therefore omitted.

M can receive as input any string over XT UL UR.
Its pushdown-store can contain symbols from Y’I‘ U _IN U RUR',

where R' is a set of symbols each corresponding to the string
resulting from inserting a single ''pointer" (|) in the left-
context portion of a rule (e.g. (3)) or to the string resulting
from insertion of a | in any string which is the right-

context of arule of R (e.g. B ... | B ...)-
- -1 =i

B
=z

() A—>y ...
S S R Sl

-8-
M contains a finite set of states sufficient to "remember"
two tables: a rule table and a right-context table. The rule
table plays a dual role; it is used to determine that a node of
the input is tentatively indicated as satisfying a rule only iif the
left-context of that rule is indeed satisfied when the left bracket
determining the node is reached in the input and it is used to
store an indicator at that point which will allow M to check as
the input is read further whether the immediate constituency
and the right-context of the riode are as required by the rule.
The right-context table is used in checking whether the right-
context of a rule tentatively identified as being satisfied by a
node does indeed appear immediately to the right of the right
bracket determining that node. For each rule (1) of _13., the rule
table contains m + 1 positions and the ith position contains an
entry consisting either of the symbol (3) or the symbol (4).
(4)_,4_\-—511... %Q / I ALY Im—gl... E_‘_‘_
The rule table will be updated as the input is read so that when
any position corresponding to any rule (1) of _I_{ contains the
entry (3), then immediately to the left in the input of the scanned

symbol is a string analyzable as ccl ... a. Thus if a pointer
R =5

appears in the entry of a position i:nmedi_a_tely to the left of the

symbol (dash), then the left-context of the corresponding

-9.
rule is satisfied at that point in the input, It is clear that the rule

table can be "remembered" in a finite set of states. For each dis-
tinct string & .. % appearing as the right-context of a rule in R,
the right-context t:ble contains n +1 positions the ith one of which
can contain either the entry_gl... |£l_8_n or -El'gn | When

the right bracket determining—a node—is reached in the input, a

position corresponding to the right-context of the rule which was
tentatively identified as being satisfied at the node receives a pointer
to the left of its leftmost symhol. As the input is read further,

pointers are advanced to the right in this string as each successive

portion of the context appears under the scanning head. This
allows M to check whether the tentatively identified rule is indeed
satisfied by the node. ''Remembering'' the right-context table also
requires only a finite number of states.

When started in its initial state scanning the leftmost symbol
on the input tape with an empty pushdown-store, M pripts § on the
store and initializes its tables as follows: for each rule (1) of R
a corresponding position of the rule table receives the entry (4)
and each position of the right-context table receives an entry with
a pointer at its extreme right. At each successive step of its
computation, M performs whichever one of the operations (5)...
(8) is possible in view of the top symbol on its pushdown-

store, the scanned symbol on its input tape and the contents

-10-
of its tables. If none of the operations can be performed, M
blocks and fails to accept the input. Since 1:1 is nondeterministic,
a particular input string is accepted if some computation of
M on that input terminates in the accepting state with an empty
pushdown-store.
(5) If you see a nonterminal symbol A, on top of the pushdown-
store if the scanned input symbol is [A and if some rule table
position contains the entry (3) with é—to the left of the arrow and
a pointer immediately to the left of the dash, then (i) advance the
input tape one square, (ii) remove the symbol A from the top of
the pushdown-store, (iii) for every rule table entry E—-—> 21 .o Eu/

[SR]A ...{ ~v ...v nondeterministically decide whether to
=1 - = =1 ~w

leave it unchanged or to change it to B ~—> 61 oo 8/ I Cl .o
bl 2 = 2

-~ ..v and insert in the pushdown-store the single symbol
- _.1 -w

B——>25 ... cee Ao L~V ... s (iv) for ever
B> b b /g e B Ly ey s () for every

right-context table entry 8 ... | A... 5 nondeterministically

decide whether to leave it unchanged or to change it to 21 fee -ék]

and inserttle single symbol § ... A l... 8, in the pushdown-

store and (v) insert in the pushdown-store the,g_,+ 2 symbols

.

St

g ...

£ P Y Yy (so that Y, i;s on top).

(4™

A
(6) If you see a member a of ‘YT on top of the pushdown-store,

-11-
if the scanned input symbol is a and if every right-context table
entry has a pointer either at its extreme right or immediately to
the left of an a, then (i) advance the input tape one square, (ii)
for every rule table entry (3) change it to A—y ... ¥ /

1
“‘_1_91‘5111 —E_l..ug’_‘_ fo =a orto(4)1f§1#3 or

the | is next to the dash, (iii) for every entry 21 .o ‘i - -ék

in the right-context table change it to _6_1 . Ek | and enter

5 ...al... gk in the appropriate table position and (iv) remove

-t had

the a from the top of the pushdown-store.

(7) If a right bracket], is on top of the pushdown-store and if

]A is the scanned input symbol, then (i) advance the input tape one

square, (ii) remove the symbol] A from the top of the pushdown-store
and (iii) if every right-context t;ble entry has a pointer at its
extreme right, then nondeterministically decide whether or not
to enter the accepting state.
(8) If you see a member of R' on top of the pushdown-store, then
enter it in the appropriate position of the rule table or the right-
context table.

Let @ be any labeled bracketing in LG) Since p is
analyzed by G, every node (h, iz, _\3_3) of @ satisfies some rule in

R, say (). By Definition 2, ® can be factored into 1's, o's, [A
- - - - ’

212~
x's, w's,]A » p's and 1's with the appropriate properties. But
then as M scans the first symbol of gl it can advance a pointer past

& in its rule table (and store the resulting symbol if A is a

member of _YN) Continuing in this fashion, M can advance a

pointer across the entire left-context of (1) since if any a is in

Yo

the symbol (3) appears in the pushdown-store just below the

]“. determining the node which satisfied this portion of the environ-
1

ment and thus will be reentered in the rule table for further advance-
ment of the pointer just after the corresponding]0. has been
=i

scanned on the input tape and hence just in time for % to be

spotted. So the pointer in the left-context of (1) will be immediately
to the left of the dash when the first symbol of #2 is scanned. At

this time the A which can be on top of the pushdown-store can be

removed and replaced by cee Y B ... B . Then as each
A\ - A3 -n

L is scanned M can proceed ultimately removing the]A from the
= - :

pushdown-store and entering | Bl ... B in the right-context
=] -n

table, The pointer can be advanced across the -B-j ‘s just as

across the a's and thus the right-context table will contain no
—i
bar to acceptance of @ when the end of the input tape is reached.

For this reason M accepts o. i

For the other direction, let 9 be any string which is

-13-
accepted by h_l[» it is clear that ¢ must be well-formed. Let
(!1, !-2' !3) by a node of . Coqsider a computation by which
M_ac;ept: @ and let (1) be the rule which was utilized by operation
(5) when the first symbol of ¥, was scanned on the input tape.
From the desceiption of M on: can find the 1's, g's, [,. x's
w's,] 5 9's and Y's of Definition 2 and thus determine that the
node s_atisfies rule (1). But since (11. -'—2' !_3) was any node of
®, @ is analyzed by G, completing t;e s;etclrof the proof of the
theorem.,
Corollaryl: For every phrase structure grammar G, P(G) is a
context-free language and _conversely.
Proof: Let G be any phrase structure grammar. By Theorem 1,
A(G) is a context-free language. By Definition 3, P(G) is the image
of A(G) under the homomorphism d. The context-free languages
are closed under homomorphiam (Chomsky, 1963, Theorem 31).
Therefore P(G) is a context-free language. For the converse, let
G by any context-free grammar. Clearly L(G) SA(G) since any
labeled bracketing that can be obtained by rewriting the initial
symbol of G is analyzed by G. But AlG) s L(G) also since a top to
bottom, left to right derivation of any p € A(G) can be obtained by

reading off the left labeled brackets of . Thus L(G) = A(G) and

14~

so L(G) = d(L(G)) = d(A(G)) = P(G).
Remark: For any phrase structure grammar G, a pushdown-storage
automaton M' accepting P(G) can be obtained from the automaton
M described in the proof of Theorem 1 by altering operations (5)
and (7) so that they apply regardless of what input symbol is
sca@ed and do not move the input tape.
4. Applications

In a context-free grammar, the only way to express
grammatical agreement between phrases which are not immediate
constituents of the same phrase is by introducing additional
nonterminal symbols and rules into the grammar. For example,
there are good reasons to split an English declarative sentence
into a subject noun phrase and a predicate verb phrase. The
noun phrase will contain the subject noun as a constituent and the
verb phrase will contain the main verb of the sentence. Now the
noun and verb must agree in number and person and with the
constituency described the only way to achieve this effect with con-
text-free rules is by means of rules such as (9).
(9) S—> Npsg VPa

:4

S—>NP_ | VP, ,

-15-
NP -—> Det N,

. et Ngg
NPpl——> Det Npl

VP ~—V
sg 8g

VP —>Vy
VP_—>V__NP
sg sg
VP —>Vp NP

NP —> NP
8sg

NP —> NP‘,pl
It would be better to use context-sensitive rules such as in (10) to
~ describe these constructions. |
(10) S—> NP VP

NP—> Det N

Ne—> ng

N—> Np)

VP—>V

VP—> V NP

V—> Vg, / Ngg

V—>Vy / Npy
i we are concerned only with analyzing context-free languages, we

can use such rules to parse sentences rather than to generate them,

Straightforward modification of existing context-free analysis

=16 -
computer programs such as that of Earley (1969) will permit them
to handle arbitrary phrase structure grammars with the same
efficiency they possess for context-free grammars. Thus for each
grammar G, there is a constant F-G such that Earley's program can

parse an input string of length n in an amount of time no more

than 1_<G23. But }—(G depends on the number of rules in G, so using

fewer context-sensitive rules rather than more context-free rules
can speed up parsing by a constant factor. This gain in speed

could be of significance in natural language processing situations.

References

- Chomsky, N. (1963) "Formal Properties of Grammar", In R. Bush,
R. Luce and E, Galanter (eds.) Handbook of Mathematical
Psaychology, Vol. II, New York, Wiley.

Earley, J. (1969) "An Efficient Context-Free Parsing Algorithm"
(to appear).

Peters, S. and R. W._Ritchie (1969a) "Context Sensitive Immediate
Constituent Analysis —Context-Free Languages Revisited",
(submitted to J_A.C. M.).

(1969b) "On the Generative Power of Transformational
Grammars", (submitted to Information Sciences).

