1.0

INTRODUCTION

Automatic text generation is the generation of natural language texts
by computer. It has applications in automatic documentation
systems, automatic letter writing, automatic repdrt generation and
HELP subsystems for time-sharing systems. This section introduces

the subject and describes the contents of this paper.

The second section describes a basic approach to automatic text
generation which makes it possible to generate a relevant text in
response to a compact text specification. The structure of the data
base (over-lapping tree structures, roughly) from which the text is
constructed makes it possible to do this in a non-ad-hoc way because
the relationships between the elements of the data base imply sentences

and relationships between sentences and groups of sentences.

In the third section, @ number of extensions to the basic approach are
discussed. These include among others: (a) paragraphing, (b) natural
language queries, (c) "flattening” of structures, and (d) elimination

of redundancy.

The fourth section of this paper discusses the application of this
approach to HELP subsystems for time-sharing systems and on-line

documentation systems.

2.0

2.1

A BASIC APPROACH

This section describes a basic approach to the generation of natural

language texts. Three subjects are discussed:

text specifications, i.e., a means for specifying

the structure of a text that is to be generated,

the structure of the data base, i.e., the way in
which the data base is organized to facilitate

the generation of natural language texts, and

the text generation algorithm which generates

a text given a text specification and a data base.

This approach represents the basic insight presented in this paper. It is
simple and generatively very powerful, but a number of improvements
are possible. Some of these possible improvements are discussed in

Section 3.

Text Specification

A text specification is a compact description of the outline of a text.

The form of a text specification is as follows:

<text specification>::=<subspecificarion>{;<subspecification>}°6’
<subspecificafion>::=<object name>(<R>{, <R>}‘8)
<R>::=<relation nclme>{(<R>{, <R>f€)};

<object name>::=one or more contiguous characters

<relation name>::=one to three contiguous alphabetic

characters.

The metalinguistic symbols have the following significance:

1= 'may be rewritten as'

<> encloses a class name

{. . }: ... occurs between a & b times
Object names are key words or phrases. They represent objects of
interest within a data base, for example, names of commands in a
programming language, people oh a project or pieces of equipment

in a system configuration.

A relation is a connection or association between one object and o
fragment of text (i.e., a part of a sentence or one or more closely
related sentences) and zero or more other objects. The following are
typical relation names: NT (narrower term); PT (part); FUN (function);
SYN (syntax); EG (example).

The significance of text specifications and of object nomes and relation
names in text specifications is developed further in the examples that
follow. The significance of objects and relations in the data base is
described in section 2.2, The algorithm for generating a text, given a

data base and a text specification, is described in section 2.3.

First Example
Consider the following request:

Please create a text that explains the function and the
syntax of the narrower terms of command. Examples of
each command should be included. Each command should
be discussed separately -~ function, first, then syntax,

and last an example.

-3-

This request can be stated briefly by the following text specification:
COMMAND (NT(FUN, SYN, EG))

The corresponding text that would be generated would have an outline

in the following form:

First Command
Function of First Command
Syntax of First Command

Example of First Command

Second Command
Function of Second Command
Syntax of Second Command
Example of Second Command

etc.

The output for one command in the outline might be:

The function of the Set Command is to set a specified
control parameter to a specified integer value. The

format of the Set Command is:
<name > = <integer>
An example of the Set Command is:

SL:OU= 100

In the example, the maximum number of on-line

users (SL:OU) is set to 100,

-4~

2.2

2.2.1

Second Example

Suppose that in addition to the text of the first example, an intoduction
is desired in which a list of all the commands is given. The appropriate

text specification would be:
COMMAND (NT); COMMAND (NT(FUN, SYN, EG))

Third Example

Suppose that instead of grouping information by command, it is desired
that all the functions should be grouped together, etc. Then, the

oppropriate text specification would be:
COMMAND (NT(FUN), NT(SYN), NT(EG))

Data Base

A data base for a particular subject consists of two parts:

(o) a thesaurus that relates objects to each other and

to fragments of text, and

(b) fragments of text.

Thesaurus

A thesaurus contains an entry for each object.

An entry for a single object consists of any number of relationships. Each
relationship relates the object to a fragment of text and, in some cases,

to one or more other objects in addition.

-5

2.2.2

_Text Fragments

An object that is being focused on (i.e., os the object in a text

specification or as the object that an entry is for) is referred to

as a subject.
An object should be included under a relation in a particular entry

if it occurs in the fragment for that relation and its meaning is not

self-evident in that context.

The following is an example of an entry in a thesaurus for SET

COMMAND :

SET COMMAND
FUN: 10
CONTROL PARAMETER
SYN: 11
NAME
INTEGER
EG: 12

FUN, SYN and EG are relations. The function of the SET COMMAND
is stated in fragment 10, the syntax in fragment 11 and an example of

the SET COMMAND is given in fragment 12. The object CONTROL
PARAMETER occurs in fragment 10 and its significance is not self-evident

in that context,

I
The data base includes a text fragment for each relationship in each
entry. These fragments can be arranged (in the data base) into one or

more unified texts, perhaps with some fragments left over.
~b-

2.3

3.0

Fragments 10, 11 and 12 referred to above might read as follows:

10: The function of the Set Command is to set a
specified control parameter to a specified

integer value.

11: The fomat of the Set Command is:

<name> = <integer>

12: An example of the Set Command is:
SL:OU = 100

In the example, the maximum number of

on=-line users (SL:OU) is set to 100,

Text Generation Algorithm

A flow chart of the text generation algorithm for handling subspeci-
fications is given in Figure 2.3a. The algorithm as described does not

include any error checking.

EXTENSIONS

This section suggests some of the ways that the basic approach could be
modified to advantage. Like the previous section, it is divided into
three subsections which discuss text specifications, the structure of the
data base and the text generation algorithm. But instead of discussing
one basic approach, it discusses many possible extensions of that basic
approach, The extensions discussed often effect more than one of these
three areas. Théy will be discussed wherever they can be presented in

the most illuminating .way.

-7~

&)

Figure 2.3a

[Put Symbols into SYMBOL

l

[Push (SYMBOL (1),3) into SUBLIST j

[

Pull all of TEMPLIST

and push into SUBLIST

[Pull (CSUBJECT, IS) from SUBLIST }

No More

LsuB

®

IS
CSUBJECT a

fragment no.?

SYMBOL (1s)=","?

N

SYMBOL (IS) = ¢’ ?

N

SYMBOL(IS)=) 2

Print fragment

»{ Exit

®

pointed to
by CSUBJECT

IS=1S +1

-»{ LSUBI

LSYM

PAREN = PAREN + 1

A

LSYM

®

PAREN = PAREN - 1

r
| SYMBOL (IS) is
] a relation name

Append(fragment no., 0)
for this relation

PAREN<O?

#{ LSYM

®

LsuB

LSYM

For each object
under this re-
lation for
CSUBJECT
append
(OBJECT, 1S+2)
to TEMPLIST

®

name for CSUBJECT
to TEMPLIST

. 8~

-»{ LSYM

SYMBOL

SUBLIST

CSUBJECT

IS

PAREN

TEMPLIST

FIGURE 2.3b -
Notes for Flow Chart

a list containing the symbols of the text specification

in the order of their occurrence.

a list of items each of which is either (a) o fragment
number or (b) a pair that consists of a subject and
an index to the first symbol in SYMBOL to be
processed for that subject. ,

the current subject being processed.

an index to the symbol in SYMBOL that is being

processed.
o counter for keeping track of parentheses.

temporary list for collecting items to be pushed
into SUBLIST for one CSUBJECT . _

-

3.1

3.1.1

Text Specification

#0.8 I[UDA

4 13
Paragraph Boundaries trodD wol 10t 2atoil

With texts of any size paragraphing is desirable. A new symbol (PARG)

noitesighydse ttbovest Whibldwew ktingicatetwpaxigmph boutdamy 2Con-

3.1.2

sider the followingoesamples ofi Sréwid histights Be aised:

tnomgotl COMMANDINE(PAIRS , Fldbl ¥ MNIEG)) o Teligu2

bap tasiduz o o 2fziznos todt ving o (d) 10 1edmun
Paragrophl Bividtties lwdule: deddrcHefore:sbaidiscussion of each of the
narrower terms of COMMARIR 1ot 10t bezzesog

Section numb%rs and headings could be handled, in a simil fe])]

lar manner.
9228201G phisy 1o9due 1n1911UD 3t 238U

i-!!gg sril‘:gxg! Figggﬂsﬁ_tsv in,the (?utggt ¢ xabai Ao 2

Consider the text specification: .bezzsooig
-COMMANDIINTRUD,;§YN, BE)ptnuos o ZEELY
Thivlspacsd adttorianbestionesbid emstpooture: T2LIAMIT
. TO318U23 sao 10t TRLIGUR otni
COMMAND

NT

FUN SYN EG

In the basic approach only the fragments of the lowest level relations are
printed. The fragment that lists the NTs of COMMAND is not printed.

=10

It would probably be more reasonable to interpret text specifications
SooTg it ThG RAPARE HHEIIEnRUP IR oV aHBa I pasprinpe dpAW
ai yrororeid st Yo digeb sdi saogque fud bluow (((TH)TH)TLA
If it was desired that fragments at a level be suppressed,, they gopld
be marked by a special syrpbol, say a minus sign.
Inivaqez o seu 0f sd bluow msldoiq 2ifi slonod ot yow tnsinsvnos A
3.1 .3eis“ﬂfgﬁigﬁf&%ﬁ%ﬁgiéﬂﬁ{"n" noitolet o ratle (*!' agodiag) lodmye

-beniash i noiioley edi o gaiteen
There are many relations that naturally form hierarchies, e.g.,

f, t of, works for and subroutine of, Consider
norrower tem o, part of, works " zaionsbnaga(privieited B.I.E
a data base with a hierarchy of NTs. The Undettiniedte —

o o roiinlas) e i
,é?,'aé%‘e’,}r‘iu%i’eéfé’%‘ﬁ%ﬂr-‘é‘s'.”-“'*"’q o ritiw bsinisozn tnemporl A

Initaszzs e 107 dtnomgosi oot 1o 2iziznos 2isside jo roitonolaxs nA
i~ H 4

Slpitngaes 2i todw 1ul .iosido adi To moitnie

NT:1
bivovw zinside o (L1U7) eaoliaauigiors eldonueosy zmes: 1 fohg A
wiusitiog o no teizoi ot 3

T Liog {23) eslgmpxs bun lofinsses od
on bio iaifnemoim jo roitositieolo

ie 19z tHluolah o svard of 1atiad sd tdgim 1] i\iﬁ_gé} yifozzeoenny

abivoig ozlo brno U4 (ot batimif 10) pribuisni enoitolss ipitnsees

120 ouz tnemstotz o 8 12 tunleb sidy sbinievolos tilidogus o

G
T MU = JAITMI23

o w0l initnszze bewsbinos swpjorlt encifoler bosteni vo noitibbo i

.920d ofob sdt i dauz 20 bashiom ad bluos ta9jduz mlusiting

NT:4
arit 2i MIUA torit \bebulani s1p 2tnempoit Isvsl 1edpid todi primuzzA
29iansbnaqsb tortt otoaibni ztsdoord todt bap noitoler Ioitnszes yino

:noitoaitiseqe txst pniwoliofadi 1sbiznos \beikitos od of s10

[(rva)T) arAaMMOD)
-Sf-

3.1.4

What text specification would cause all four fragments to be printed?
A(NT(NT(NT))) would, but suppose the depth of the hierarchy is

‘not known.

A convenient way to handle this problem would be to use a special
symbol (perhaps '!') ofter a relation name to indicate that indefinite
nesting of the relation is desired.

Satisfying Dependencies

A fragment associated with a particular relation for a particular
subject is dependent on explanations of the objects of that relation.
An explonation of objects consists of the fragments for the essential

relations of the object. But what is essential?

A-priori it seems reasonable that functions (FUN) of objects would
be essential and examples (EG) not. But to insist on a particular
classification of relations as essential and non-essential seems
unnecessarily rigid. It might be better to have a default se-t of
essential relations including (or limited to) FUN and also provide

a capability to override this defoult set by a statement such as:

ESSENTIAL = FUN, NT
In oddition or instead, relations that are considered essential for o

particular subject could be marked as such in the data base.

Assuming that higher leve! fragments are included, that FUN is the
only essential relotion and that brackets ipdicate that dependencies

- are-to be satisfied, consider the following text specification:

[COMMAND (NT(SYN))]
-12-

3.1.5

The fragments giving the narrower terms of COMMAND and those
giving the syntax of all the narrower terms of COMMAND would be

included in the resulting text. In addition, the functions of COMMAND,

of the narrower terms of COMMAND, and of any objects of the SYN
relations would be included. Further, the functions of any objects of

these FUN relations would be included, etc.

Natural Language Queries

The approach in dealing with natural language queries is to convert
them into text specifications. In order to make the conversion, the

following types of words would have to be isolated in the query:

relations (e.g., function, syntax, example),
objects (e.g., ADD COMMAND) and
connectors of objects with relations or relations

with relations (e.g., of).

In the following example, the words that would need to be isolated

are underlined:

Please create a text that explains the function
and the syntax of all of the commands in the
data base.

Next it would have to be determined which objects and relations were
connected in the query and how. What we have is FUN and SYN of
NT of COMMAND.

This must finally be translated into:

COMMAND (NT(FUN, SYN}))
-13-

3.2

3.2.1

Data Base

References across Subject Areas

The approach described here depends on a text specification being
processed for a particular data base. The data base should be highly

controlled and relatively free from ambiguities.

Although each specification must be directed at a particular data base,
not all (or even any) of the fragments in the resulting text would

necessarily be from that data base.

Consider the following dato bases:

A slash indicates that the name of the data base for that object follows:

OVERVIEW DATA BASE

ASSEMBLER
- NT:10
META SYMBOL/METASYMBOL

MATHEMATICAL COMPILERS

NT:20
AN
N

BASIC/BASIC
FORTRAN/FORTRAN

[BASIC DATA BASE FORTRAN DATA BASE

N
BASIC FORTRAN
FUN: 10 FUN: 30

-14-

3.2.2

The text specification MATHEMATICAL COMPILERS (NT(FUN))
would result in a text consisfing of fragment 10 from the BASIC
data base and fragment 30 of the FORTRAN data base.

Higher-Level Connectives

A higherdevel connective is a connective that connects a sentence

or a group of sentences with a sentence or a group of sentences.
This is in contrast to the relations discussed so far which relate o

subject to an object or to something else.

The following are examples of such connectives:

similarly (SIM),
in contrast,
thus,

otherwise and

for example (EG).

These connectives can be incorporated into the data base by expanding
the reference to fragments. Consider the following reference to a

fragment:
FUN: 10, EG:20, SIM: X(FUN)

This reference says that the function of the subject of the entry in
which it occurs is stated in fragment 10. It says further that an
example of the function is given in fragment 20 and that the subject X

has a similar function.

-15-

3.3

3.3.1

3.3.2

Text Generation Algorithm

Generation of Fragments

The implementation of the text generation algorithm is simpler if
fragment numbers and corresponding fragments are included in the
data boses for all relationships; but for some relations (e.g., PT
and NT) the fragment can be generated from the thesourus entry
itself. In other cases (e.g., FUN) part of the fragment can

be generated.

For example, a relationship with the following format:

<subject>
PT:
<Object>
<Object>

implies a fragment of the form:

<subject> has the following parts: <object>, <object>...

Lexical information for the subjects and objects would be necessary

to include the correct articles and endings.

Eliminating Redundancies

In the context of a reference manual for a programming language,
syntax would probably be considered an essential relation. The
relations between syntactic objects is (roughly) hierarchical, but

the overall structure of syntactic objects is generally not quite a

16~

tree structure becouse of the fact that more than one object is

often dependent on a single object.
Consider a data base that contains the following objects and relations:

ASSIGNMENT STATEMENT
SYN: 1
VARIABLE
ARITHMETIC EXPRESSION

VARIABLE

SYN: 2
SUBSCRIPTED VARIABLE
SIMPLE VARIABLE

SUBSCRIPTED VARIABLE

SYN: 3
ARRAY IDENTIFIER

SUBSCRIPTED LIST

SUBSCRIPTED LIST

SYN: 4
ARITHMETIC EXPRESSION

ARITHMETIC EX PRESSIO;\’I
SYN: §
TERM
OPERATOR

-17-

3.3.3

The text specification:

ASSIGNMENT STATEMENT(SYN!)
would result in the syntax of ARITHMETIC EXPRESSION being described
twice in exactly the same words. Probably this is not desirable, and it
would be even less desirable if TERM and/or OPERATOR required further

objects to explain them.
How can such redundancy be identified and how is it to be handled?

One way would be to construct a graph for the relationships to be
included in a text plus references to all the occurrences of each object
in the graph. For any object that occurred more than once a check
would be made to determine if the subgraph going down from it in one
occurrence was the same as in some other occurrence. All but one
such subgraph would be deleted. The one that was to generate text

earliest would be retained.

Flattening of Structures

Structures that go beyond a certain depth are often confusing if they are
not broken up or flattened. Thus, in describing a programming languoge
the basic symbols (such as arithmetic expressions) are often discussed be~
fore the discussion of individual commands. This means that in dis-
cussing an individual command (such as an assignment statement), it is
not necessary to explain arithmetic expressions (or variables) in all

their complexity.

Given the capacity for eliminating redundancies, it is possible to flatten

structures. As an example, consider the following text specification,

ARITHMETIC EXPRESSION(SYN1); ASSIGNMENT STATEMENT(SYN!)

~18~

4.0

4.1

First, the fragment for the syntax of arithmetic expressions would be
printed along with the fragments for the objects it depends on, efc.
Second, the fragment for the syntax of the assignment statement would

be printed along with the fragments for the objects it depends on, etc.,

except that the fragments for arithmetic expressions and the fragments

for objects it depends on, etc. would not be printed because they

are redundant.

APPLICATIONS

The approaches to text generation described in the previous two

sections have applications in many areas including the following:

HELP subsystems for time-sharing systems,
Automatic Documentation Systems,
Vocabulary Control,

Automatic Letter Writing and

Automatic Report Generation.

The first two of these applications are discussed below.

HELP

A HELP subsystem is a part of a time-~sharing system that helps the user
to understand the system and the various parts of the system. Two main

types of help may be provided:

-—ability to answer questions about the system
(without reference to the current state of

the system) and

~-ability to answer questions about the current

-19-

state of the user's job.

The techniques described in this paper are oriented more towards

the former capability.

The user of a HELP subsystem is typically in the middle of a task when

he needs help. He wants what he has done so far to be intact when

he returns to his original task. Moreover, he does not want to have to
make a special effort to achieve this because (a) he might forget and

(b) it takes time and he is in a hurry, Often these goals can be achieved
by incorporating the HELP capability into the terminal executive

of the system.

It is especially important that a HELP subsystem help the user to
understand how it should be used. For example, if the user types
in an illegal text specification, the HELP subsystem might offer to

display some material concerning the proper format of a textspecification.

Ability to handle simple natural language queries is very desirable,
at least the first time a user uses a HELP capability. It means that

he can use it without having already learned to use text specifications.

Example

A user of a time-sharing system is entering the statements of a BASIC
program on-line when a syntax error occurs on an assignment statement.
But the error message does not make clear to him how he can correct

the error. So, he exits to the terminal executive. Then he asks a
series of questions about the syntax of an assignment statement in BASIC,
finds the information that makes clear how to correct the error, and
returns control to the on-line BASIC compiler with the same environment

~20-

4.2

(including the partly entered program) as when he left. Then, he
can reenter the statement that was in error and continue as if

nothing had happened.

On-Line Documentation Systems

An automated documentation system consists of capabilities for
maintaining a data base and for producing formal documents such as
reports or documents for individual use. The approach discussed in
this paper has primarily to do with the generative capabilities. The

documents generated would be natural language texts.

Some of the advantages of an on-line system are: (a) the system can
be accessed when the information is needed; (b) the information that
is received may suggest further queries and (c) syntactic or semantic

errors in the text specification can be corrected at once.

A system using the approach described has the advantage of suggesting
gaps in the documentation. For example, one might discover that
a particular object never occurs as a subject or that a relevant relation

is missing from an entry.

As a fall-out of the approach, one has a thesaurus (or glossary)

for vocabulary control .

A couple of examples of the use of such a system may be helpful in

communicating its significance.

First Example

A new person has been assigned to an implementation project. He

would like up~to-date documentation of parts of the system relevant to
-21-

the work he will be doing. In different areas he wants different
types of information. The structure of the texts generated for him
con be tailored to his needs by use of appropriate text specifications.
If he needs more information in some areas, he can use the system

interactively.

Second Example

The information in a particular area changes frequently and a number

of people need to receive up to date information periodically. A text
specification can be created to generate the oppropriate information, and
(assuming the structure of the data base doesn't change significantly)

the same specification can be used to generate a text with the same

structure (but different information) as often as is desired.

-22-

BIBLIOGRAPHY

Lauriault (Loriot), James

Shipibo Paragraph Structure

unpublished paper, Summer Institute of Linguistics, August, 1957.

Jacobson, S.N.

"A Modifiable Routine for Connecting Related Sentences of
English Text."

in Computation in Linguistics (edited by Paul L. Garvin and

Bernard Spolsky), Indiana University Press, Bloomington,
Indiana, 1966.

Woolley, George H.

Syntax Analysis beyond the Sentence

(presented at the Fourth Annual Meeting of the Association for
Machine Translation and Computational Linguistics), Computer

Associates Inc. document no. CA-6607-2121, July, 1966.

-23-

