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" Summary

The aim of this communication is to obtain an explicit formula for calculat-
ing the entropy of a source which behaves in accordance with the rules of an
arbitrary Phrase Structure Grammar, in which relative probabilities are
attached to the rules in the grammar. With this aim in mind we introduce an
altetnative definition of the concept of a PSG as a set of self-embedded (re-
cursive) Finite State Grammars; when the probabilities are taken into account
in such a grammar we call it a Recursive Markov Process.’

1. In the first section we give a more detailed definition of what kind of Mar-
kov Processes we are going to generalize later on (in sec. 3), and we also
outline the concept of entropy in an ordinary Markov source. More details of
information may be found, e.g., in Khinchins ""Mathematical Foundations of
Information Theory", N.Y., 1957, or "Information Theory" by R. Ash, N. Y.,
1965. :

A Markov Grammar is defined as a Markov source with the following proper-
ties:

Assume that there are n + 1 states, say SO, Sl’ eeey Sn, in the source. SO is
defined as the initial state and Sn is defined as the final state and the other

states are called intermediate states. We shall, of course, also have a transi-

tion matrix, M = (pij)’ containing th)e transition probabilities of the source.

a) A transition from state Si to state Sk is always accompanied by a produc-
tion of a (non-zero) letter a, from a given finite alphabet. Transition to

different states from one given state always produce different letters.

b) From the initial state, SO, direct or indirect transitions should be possible

to any other state in the source. From no state is a transition to S0 allowed.

c)'From any state, direct or indirect transitions to the final state Sr1 should
be possible. From Sn no transition is allowed to any other state (Sn is an

"absorbing state'’).
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A (grammatical) sentence should now be defined as the (left-to-right) conca-
tenation of the lefters produced by the source, when passing from the initial
state to the final state.

The length of a sentence is defined as the number of letters in the sentence.
To simplify matters without dropping much of generality we also require that

d) The greatest common divisor for all the possible lengths of sentences is = 1
(i.e., the source becomes an aperiodic source, if it is short-circuited by

identifying the final and initial states).!

With the properties a - d above, the source obtained by identifying the final
and initial states is an indecomposable, ergodic Markov process (cf. Feller,
""Probability Theory and Its Applications', ch. 15, N.Y., 1950).

In the transition matrix M for a Markov grammar of our type all elements
in the first column are zero, and in the last row all elements are zero ex-
cept the last one which is = 1. For a given Markov grammar we define the
uncertainty or entropy, Hi’ for each state Si' i=0,1, ..., n, as:

n
Hi =-2 pijlog pij; i=1,2, ..., n.
j=0
We also define the entropy, H or H(M), for the grammar as
n=1 .
(l).. H-= 2 xiHi
i=0 )

- where x = (xo, x o xn-l) is defined as the stationary distribution foy the

2,‘ ..
source obtained when S, and S, are identified; thus x is defined as the (unique)

solution to the set of simultaneous equations

where M, is formed by shifting the last and first columns and then omitting

the last row and column. The mean sentence length, u, of the set of grammat-

ical sentences can now be easily calculated as



(3) b= l/xo
(cf. Feller, op. cit.)

2. Embedded Grammars

We now assume that we have two Markov grammars, M and Ml’ with states
SO’ Sl, .

and Tm are the corresponding initial and final states. Now consider two

.y Sn’ and TO’ Tl’ eey Tm’ respectively, \_avhere S.O and Sn, TO

states Si and Sk in the grammar M; assume that the corresponding transition

probability is = Piy- We now transform the grammar, M, into a new one,

1
M'l, by embedding the grammar M, in M1 between the states Si and Sk, an

2

operation which is performed by identifying the states T, and Tm with the
‘states Si and Sk respectively. Or, to be more precise, assume that in the
grammar M1 the transitions to the states Tj' Jj21, has the probabilities qu'
Then, in the grammar M?', transitions to a state Tj from the state S‘i will

take place with the probability =-Pikq0j' A return to the state Sk in the "main"
grammar from an intermediate state Tj in M1 takes place with the probability
qjm'
With the conditions above fulfilled, we propose that the entropy for the. com-

posed grammar be calculated according to the formula:

H(M) + xipik - w] * H(M})
1+ X:Pik (U'l - 1)

(4)  HM')=

where H(M) is the entropy of the grammar M when there is an ordinary con-
‘nection (with probability pik) between the states S, and S, and where x, is
the inherent probability of being in the state S; under the same conditions.
) is the mean sentence length of the sentences produced by the grammar
M1 alone. (It is quite natural that this number appears as a weight in the
formula, since if one is producing a sentence according to the grammar M
and arrives at the state S; and from there "dives" into the grammar Ml’
then By is the expected waiting time for emerging again in the main grammar
M.) The factor X; Py mMay be interpreted as the combined probability of ever
arriving at~Sii and there choosing the path over to Ml (you may, of course,

choose quite another path from Si).



The proof of formula (4) is very straightforward, once the premises accord-
ing to the above have been given, and we omit it here, as it does not give
much extra insight to the theory. The formula may be extended to the case
when there are’ more than one sub-grammar embedded in the grammar M?',
by adding similar terms as the one standing to the right in the numerator
and the denominator. The important thing here is that the factors of the type
% P; depend only on the probability matrix for the grammar M and are de-
pendent of the sub-grammars involved.

3. Recursi‘ve or Self-embedded Sources &

It is now quite natural to allow a'gr>ammar to have itself as a sub-grammar
or to allow a grammar Ml‘ to contain a grammar M2 which, in its tﬁrn, con-
tains Ml’ and so on. The grammars thus qbtained cannot, however, be re-
written as an ordinary Markov grammar. The relation between an ordinary
Markov grammar and a recursive one is/exactly similar to the relation be-

tween Finite State Languages and Phrase Structure Languages.

To be more precise, assume that we have a set of Markov grammars M},

_ M'l, sy ME where M’o is called the main grammar and in the sense that
the process always starts at the initial state in ME) and ceases when it-
reaches the final state in MO' Each of the grammars may contain any number
of thé others (and itself) as sub-grammars. The only restriction is that from
any étate in any one of the grammars there should éxist a path which ends up
at the final state of M. ' ‘

Remark

If we interpret a source of our kind as a Phrase Structure Language, the re-

writing rules vé.re all of the following kind:
(5) Si—' Ag + Sl‘< or . S -4

where the S's are all non-terminal symbols. (They stand for the names .of

the st_atef; in the sources - M('), M'l, eers M%I-a.nd wher;e S0 is assumed to be
the initial symbol /the Chomskyan S/ and Sn is the terminating state which
produces the sentence delimiter #. The symbols Aik are either terminal sym-
bols /letters from a finite alphabet/ or non-terminal symbols equal to the

name of the initial state in one of the gré_mmars Mb, M'l, ey Ml'\I /one may
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also say that Aik stands as an abbreviation for an arbitrary séntence of that

grammar/.)

We associate each grammar Mj' wifch the grammar Mj’ j= O,._ l_,"_.. «..3 N, by
just considering it as a non-recursive one, that is, we vconsidgr all the sym-
bols Aik as terminal symbols (evén if they are'.“i-‘i:q;c).. The grammars thus ob-
tained are ordinarily Markov grammars according to our definition, and the
entropies Hj = H(Mj) are easily computed according to formula (1), as are
the stationary distributions /formula (2)/. The follwoing theorem shows how
the entropies HJ' for the fully recursive grammars MJ! are connected with the

numbers Hj .

Theorem

The entropy H! for a set of recursive Markov grammar M;, j=0,1, ..., N,

can be calculated according to the formula

(6)  HI{1+) vy (n - DY-) vy HL = H
k k

j=0, 1, sy N.

Here the factors yjk are dependent only of the probability matrix of the
‘grammar and the numbers % defined as the mean sentence length of the
sentences of the grammar Ml'(, k=0,1, ..., N, and computable accord-

ing to lemma below.

Hb is the entropy for the grammar.
The theorem above is a direct application for the grammar of formula (4),

sec. 2.

The coefficients Yk in formula (6) can, more precisely, be calculated as

a sum of terms of the type x;p, = with the indices (i, m) are where the gram-
mar M1'<
tionary distribution and probability matrix for the grammar Mj'

appears in the grammar Mj; x5 and Pim are the components the sta-
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Assume now that we have a Markov grammar of our type, but for which
each transition will take a certain amount of time. A very natural question

is then: "What is the expected time to produce a sentence in that language ?"
The answer is in the following lemma.

Lemma

Let M be a Markov grammar with states S,y i= 0, 1, «.+, n, where S, and

Sn are the initial and final states respectively.

Assume that each transition Si - Sk will take Yik time units.

Denote the expected time for arrival at Sn given that the grammar is in state
Si by ti‘ i=0, 1, ..., n, (thus tO is the expected time for producing a sen-
tence). The times ty will then fulfill the following set of simultaneo;.lsly linear

equations:

My =2 Pyt + 1)
k .

Formula (7) is itself a proof of the lemma.
With more convenient notations we can write (7) as
(E-P)t= P,

where E is the unit matrix, P is the probability matrix {with Pt 0) and

P, is the vector with components

P; (t)=2pim t i=0,1, ..., n
m .

The application of the lemmma for computing the numbers By in formula (6) is

now the following.

The transition times of the lemma are, of course, the expected time (or
"lengths'' as we have called it earlier) for passing via a sub-grammar of the
grammar under consideration. Thus the number t.y is litself the unknown en-

tities p, .
k
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For each of the sub-grammars M1, j=0,1, «¢d¢, N, we ’get.'a.. set of linear
eﬁuation's of type (Z) for determining the vectors t of lemma. The first com-
ponent of this veétor, i.e., the number to, is then equal to the expected
length, u, of the sentences of that gfammar. (Unfortunately, we have to
¢compufe\extra the expected time for going frox;n any state of the sub-gram-

mars to the corresponding final state.)

The total number of unknowns involved when computing the entropy of our

grammar (i.e., the entropy H(')) is equal to

(the total number of states in all our sub-grammars) plus

(the number of sub-grammars).

This is also the number of equations for we have n +1 equations from formula
(6) and then (n + 1) sets of eqﬁations of the type (7). We assert that all these
simultaneous equatidns are solvable, if the gramrnar fulfills the conditions

we earlier stated for the grammar, i.e., that from ‘each state in any sub-

grammar exists at least one path to the final state of that grammar.



