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1. Introduction
1.1. . Background

This work is a continuation of research reported in the paper :
Mathematical Models of Synonymy, which wes presented at the 1965
International Conference on Computational Linguistics. That paper -
presented a historical summary of the concepts of synonymy and
antonymy. It was noted that since the first book on English syno-
nyms, which eppeared in the second helf of the 18th century, dice
tionaries of synonyms and antonyms have varied according to the
particular explicit definitions of "synonym" and "antonym" that were

used. The roles of part-of-speech, context of a word, and substi-
tutability in the same context were discussed. .

Traditionally, synonymy has been regarded as 2 binary relation

between two words. Graphs of these binary relations were drawn for
several sets of words based on Webster's Dictionar¥ of Synonyms snd
matrices for theae graphs were exhibited as an equivalent represen-
tetion. These empirical results showed that the concepts of synonymy
and antonymy required the use of ternary relations between two words v
in a specified sense rather than simply a binary relation between two
words. The synonymy relation was then defined implicitly, rather then
explicitly, by -tt}ree exioms steting the properties of being reflexive,
symmetric,. and transitive. The antonymy reletion was also defined by
three axioms stéting the properties of being irreflexive, symmetric,
and antii;/i'ansitéve (the last term was coined for that study). It was
noted that these six sxioms could be expressed in the calculug of re-
lations and thst this relation algebra could be used to produce short=-
er proofa of tieorema. However, no proofs were given. In addition, .
several gecmetrical and topological models of synonymy snd sntonymy ..
were posed end examined. RS

It was noted that certein of these models were of more theoreticel
than practical interest. Each model was seen to be simple in that it
could be expressed from mathematically elementary concepts, and each
stressed certain aspects of the linguistic object being modeled at the
expense of others. However, there seemed to be little theoreticel
preference among them. Their adequacy as models could be meagured by
* their generality and predictive power. In terms of these criterie the
algebraic model, whether expressed in terms of relations, graphs, or
matrices, seemed to have the most usefulness. In part, this was due
to the fact that one geametrical model, although highly suggestive,
did not include a precise specification of the origin, axes, or co-
ordinates for words in an n-dimensional space. Similarly, one topo-
logical model required a closure operation for each of the intensions
or senses and had no linguistically interesting interpretation.
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1.2 Summary

The present paper investigates more thoroughly the cheracterizations
of synonymy and antonymy initiated in Edmundson (1965). In section 2,
synonymy and antonymy are defined jointly end implicitly by a set of
axioms rather than separately as before. TFirst, it is noted that the
originel six axioms are insufficient.to permit the proofs of certain
theorems whose truth is strongly suggested by intuitive notions about
synonyms end entonyms. In addition, it is discovered that certain
fundamental essumptions about synonymy and antonymy must be made ex~
plicit as axioms. Some of these have to do with specifying the domein
and range of the synonymy and antonymy relations. This is related to
questions about whether function words, which linguistically belong to
closed classes, should have synonyms end antonyms and whether content
words, which linguistically belong to open classes, must have synonyms
and antonyms. Several fundamental theorems of this axiom system are
stated and proved. The informel interpretation of meny of these
theorems are intuitively satisfying. For example, it is proved that
any even power of the antonymy relation is the synonymy relation,
wl{le any odd power is the antonymy relation.

In section 3, topological characterizations are posed and examined. A
neighborhood topology is introduced by defining the neighborhood of a
word. It is proved that this definition satisfies four neighborhood
axioms. Also, & closure topology is introduced by defining the
closure of a set of words. It is proved that this definition sstis-
fies the four closure axioms.

2. vAlgebraic Characterization

2.1. Introduction - Relationms _

Before investigating antonymy end synonymy, we will esteblish scme
notions and notations for the calculus of binary relations.

Consider a set V of arbitrary elements, which will be called the uni-
versal set, A binary relation on V is defined as a set R of ordered
pairs <x,y>, where X,y € V. The proposition that x stands in re-
lation R to y will be denoted by xRy. The damain &Y (R), range R.(R),
and field F(F) of relation R are, respectively, defined by the sets

{x:(@y)(xry)} ; (y:(@x)(xRy)} ; {(x:(Fy)(xRy)} U {y:(Ex)(xRy)}

The camplement, union, intersection, and converse relations are de-
fined by :

xRy & ~xRy ;3 x(RUS)y s xRy VxSy ; x(RNS)y = xRyiA xsy ;
xR-ly = yRx .
The identity relation I and null relation @ are defined by
xIy = x=y s sy = (xEx)VEAY)

The product and power relations are defined by

xR|sy = (3z)[xRz A z8y) ; B = B! n=21
Inclusion and equality of'relations are defined by

RES = xRy => xSy 3 R=S = RS SASER



later we will use the following elementary theorems which are stated

here without proof':

Theorem: RE S => R tc st
Theorem: RS S => SES R
Theorem: (R"l)':L R

Theorem: (R]S)|T = R|(s|T)
Theorem: (R|S)-l = S-llR'l
Theorem: I|R = R|I =R

Theorem: sS¢

2.2 Axioms and Definitions

T => R|s<R|T A s|rR< TR

Under the assumption that symonymy and antonymy are ternary relafiona
on the set C of all content words, the following definitions will be

used:
xsiy

1

word y)

xAiy

vord x is a synonym of word y with respect to the
intension i {or word x is synonymous in sense i to

word x is an antonym of word y with respect to the in-
tension i (or word x is antonymous in sense i to word y)

We will assume that the synonymy end antonymy relations are defined
jointly and implicitly by the following set of axioms rather than-
separately as in Edmundson (1965).

Axiom 1 (Reflexive):
Axian 2 (Symmetric):
Axiom 3 (Transitive):
Axiom 4 (Irreflexive):
Axian 5 (Symmetric):

Axiom 6 (Antitransitive):
Axiom 7 (Right-identity):

Axiom 8 (Nonempty):

(Vx)[xsix]

(vx)(¥y)[xs;y => xs'i'ly]_
(Vx)(Vy)(Vz)[xSiy/\ ys;z => xsiz] _
(Vx)[xxix]

() (W) [xhyy => xA7'y]
(Vx)(Vy)(Vz)[xAiy A yAjz => xsiz]
(Vx)(Vy)(Vz)[xAiy A ysiz = xAiz]

(vy)(@x) [xA.v]

The properties named in Axiams 6 and 7 were coined for this study.

The above eight axioms may be expressed in the calculus of relations

as follows:
Axion 1 (Reflexive):
Axiom 2 (Symmetric):
Axiom 3 (Transitive):
Axiam 4 (Irreflexive):
Axiom 5 (Symmetric):

Axiom 6 (Antitransitive):
Axiom 7 (Right-identity):

Axiam 8 (Nonempty):

(vy)[A(y) # @] where A(y) =

Ics

St € ST°

32 = Si

I ;Ai

Ay € Ai

2

Af S 8y

Aj_lsi c

{<x,y> ¢ x e-D’(A)}
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This relation algebra will be used to produce shorter proofs, al-
though this is not necessary. The consistency of this set of axioms
is shown by exhibiting a model for them; their independence will not
be treated.

In addition to the synonymy and antonymy reletions it will bve
useful to introduce the following classes that are the images of
these relations. The synonym class of a word y is defined by

8, (y) = {x:x57y) _
‘which may be extended to an arbitrary set E of words by
s;(B) = {x: (I)ly e EAxsy]}
Similarly, the antonym class of a word y is defined by
2, (y) = (x:xaW)
which may be extended to a set E of words by
e (B) = (x: (I)y e EAxAY])

2. 3 Thebrems

For reasons of notational simplicity, the subscript denoting the
intension i will be omitted in the sequel whenever possible. Howe
ever, the theorems must be understood as if the subsgcript were
presgent.

As with any symmetric relation, it is possible to get stronger re-
sults than Axiom 2 and Axiom 5.
Theorem: s-i = ’
Proof: S < s™! by Axiam 2. Hence §°1 ¢ (s'l)"l = S. Theree
fore 51 = S by definition of equality.
Theorems A~ = A ’
Proof: Sesme as above theorem using Axiom 5.

Also we get a stronger result than the transitivity property of
Axiom 3: . : .
Theorem: S° = §
Proof: S c § by Axiom 3. Hence § = SII c S|S = 32 by Axiom 1.
Therefore S° = § by definition of equality.

In fact, by induction we)‘have the generalization:
Theorem: SR =5 .n .
Proofs sngs'sn'1=s?(s|sn‘2) = eee = SI(S'(SI-o-'S)..c) = 8.

It cen be shown that antonymy and synonymy are distinct: A ;‘ S In
fact we have the stronger result:
Theorem: Ac ¥  _
Proof: Assume A £ S. Hence A N S £ ¢ or (Ix)(=y)(x(a N $)y].
Then xAy A xSy implies XAy A ySx by Axiom 2. So xAx, which
contradicts xAx by Axiam 4: I ¢ K. Therefore A ¢ §.

Only because of Axiom 8, can we get a stronger result than the anti-
transitivity property of Axiom 6,

Theorem: A2 = § _ ’

Proof: A2 A|S by Axiam 7. Hence A2 = AJA 2 A|(a]s) = A"1|(a|s) =
(A'llA) S sipce A=l = A. Now (Vy)(Zx)[xAy] by Axiom 8. So
(Vy)(Zx)[yA™x A xAy] by Axiom 5. Hence (Vy) Iyly => ya~1i|ay).
Thus T € A~L1|A. S0 A2 2 I|S =5. Therefore A> = S since A2 < §
by Axiom 6 and S < AZ.



The right-identity property of Axiom T can be strengthened to:
Theorem: Als =A
Proof: A|SS A by Axian 7. Now A = A|I < A|S since I < s.
Therefore A|S = A by definition of equality.

As a corollary wel: get 1I;hat S and A camute:
Corollary: A|S = S|A .
Proof: Als=4=4a"1=(a]s)"1 = (a"1|s" 1)L =5s]|a
From the above two theorems it follows that: '
Theorem: sja = A
Proof: S|A =A|s =a.
As a special case we get:
Theorem: A3 = A|A = AIS = A."

In fact, we have the generalization:
n S if n even

Theorem: A = A if n odd

Proof: For n even, A" = A2K = (Az)k =& =S. For n odd,

AR = 229 _ A1(%)* = als = A,
Next, several theorems about synonym classes and antonym classes will
be stated and proved. First, the synonym class of a word is not
empty:
Theorem: s(y) £ ¢
Proof: Now I € S by Axiam 1. So (Vy)[ySyl. Hence (Ix)[xSy].
Therefore, s(y) # &.

Because S is a symmetric relation, we have:
Theorem: y € s(x) <> x € s(y)
Proof: y € s(x) <=> ySx <=> yS-lx <=> x8y <=> x € s(y).

Since S is reflexive, symmetric, and transitive, S is by definition
an equivalence relation on the set C of all content words. Hence, we
have the important result:

Theorem: xSy <==> s(x) = s(y)
Proof: (=>) Assume xSy. First let u € s(x). Then uSx A xSy
=> usfy => uSy => ue s(y). Hence s(x) c s(y). Also
s(y) € s(x) by a similar argument. Therefore s(x) = s(y).
(<=) Assume s(x) = s(y). Thenu e s(x) => u e s(y). So
uSx ==> uSy. Hence xSu A uSy => x5y ==> xSy. Therefore
xsy. ’
In fact, we have the stronger result:

Theorem: s(x) N s(y) = s(x) if xiy

i if xSy

Hence for a given intension i the equivalence relstion arti-
tions the gset C of all content wordg into subsets that ﬁep

disjoint (i.e., the subsets have no word in comon) and exhaustive
(i.e., every word is in some subset):

Theorem: C =k2 s, (x)
xet 1



Second, the antonym class of a word is not empty:
Theorem: a(y) £ @
Proof: Axiam 8: (Vy)(&x)[xAy] implies a(y) # @ .

Note that a word does not belong to its antonym class:
Theorem: y £ a(y).
Proof: Assume y € a(y) so that yAy. t this contradicts
Axiom b: yIy => yRy. Therefore y £ a(y).

Next we will establish some relations between synonym classes and
antonym classes.

Theorem: xAy <=> a(x) = s(y)

Proof: (=) Assume x € a(y). First let u_e a(x).

Now u € a(x) A xAy => uAx A xAy => uA%y => uSy

= u e s(y). Hence a(x) ¢ s(yg. Also s(y) < a(x) by a

similar argument. Therefore a(x) = s(y). (<=) Assume a(x) = s(y).

But y € s(y) = a(x). Hence yAx. Therefore xAy by Axiom 5.

In fact, we get the following necessary and sufficient condition
for equality:

Theorem: a(x) = a(y) <=> s(x) = s(y)

Proof: (=>) Assume a(x) = a(yg. Now a(x) Na(y) £ 8 =>
2)[z € a(x) A a(y)] = (3z)(z € a(x) A z € a(y)] =
232 [zax A zAy] => (H3z)[xAz A zAy] => xASy => xSy.
Therefore s(x) = s(y) by & previous theorem. (<=) Assume s(x) =
s(y). Then xSy. First, let u € a(x). Then uAx. Hence uAx A
xSy => uAlsy => uly => u € a(y). Therefore a(x) < a(y).
Also a(y) € a(x) by an identical argument. Therefore a(x) = a(y).

2.4 Comments on the Algebraic Characterization

Even though s(y) # @ since ySy by Axiom 1, it may be necessary to
add the following axiom:

Axiam 9: (Yy)(Ex)[x # y A xsy]
to guasrantee that the damein of the relation S is not trivial, i.e.,

s(y) - (y) #£8

Axiom 9 is not necessery if s(y) is permitted to be a unit set for
certain words. Thus, we might define s(y) = (y} for any function
word y, e.g., s(and) = (and). But this will not work for antonymy
since a(y) might be considered empty for certain words such as
function words, e.g., a{and) = @. The elternative of defining
a(y) = TyY is not reasonable since it produces more problems then
it solves. Axiam 8: (Vy)(&x)[xAy] is reasonable if the contraries
of woz(-di (e.g., nonuse, impossible, etc.) are permitted, i.e.,

y € a(y).



The theorems
=5 , A=3s , Als=a , sla=a

can be summarized in the following multiplication table for products
of the relations S and A

S

A
SIS|A

Alals
which is isamorphic to the table for addition modulo 2
01

0lol1l

1110
Note, even without Axicms 1-8, for

)a2=s , ((@a3=a , @) als=a

that (1) and (2) imply (3), (1) and (3) imply (2), but (2) and (3) do
not imply (1). ' -

Suppose that for every pair <x,y> of words in the vocabulary V of a
language exactly one of the following ternary relations holds:

(1) x and y are synonymous, XSy
za) x and y are antonymous, XAy
3) neither (1) nor (2), xMy

This can be expressed by

(vx)(¥y)[x,y € V => xSy V xAy v xMy]

which is an exclusive disjunction. Thus the vocabulary V is
partitioned as follows:

v =s(y) U a(y) Un(y)

for every word y. This also cen be pictured in the lattice of
relations
U=vxv

g

It cen be shown that the multiplication table for products of
the relations S,A, and M is

|||

M
M
M
M2

Zirinln




3. Tapologicgl Characterizations
3.1. Introduction

" We will now examine two topological models of synonymy. Being
topological, they concern "semantic spaces" of words without any
notion of "semantic distance" between two words. Again, we will
restrict our attention to content words. Topological models for the
antonymy relation will not be considered.

3.2, Neighborhood Topology
The first model considers a neighborhood topology, i.e., & topology
based on neighborhoods. A set is sald to have a neighborhood
topology if there exist elements x called points end sets Nx called
neighborhoods of x which satisfy the following axioms:

Axiom 1: (Vx)(ENx)[x € Nx]

Y % " " ¢

Axiom 2: (VNx)(VNx) (me)[Nx SN .0 Nx]

Axiom 3:  (Vy)(VN,)(@N )y € §, => N € N,]

Axiom %:  (Vx)(Vy) (EINx) (ENy) xfgy = N, N Ny = ¢

These axioms can be pictured informally by the following Euler
diagrams:

N N

x
Define & neighborhood m,(x) of & word x as any subset of the synonym
clags si(xs of x that c%ntai.ns x, i.e.,

X € ni(x) < si(x)

Aéain, for-reasons of notational simplicity, the subscript denoting
the intension i will be omitted whenever possible.

First, neighborhood Axiom 1 is satisfied.
Theorem: (¥x)(3n(x))(x € n(x)]
Proof: By definition s(x) is a neighborhood n(x) of x
containing x.

Second, neighborhood Axiom 2 is satisfied. :
Theorem: (Vn(x))(Vn'(x)g(an"(x))[n"(x) c nix} N n'(x)]
Proof: For arbitary n(x) and n'(x), let n"(x) = n(x) A n*(x).
Then n"(x) < 3(x) since n"(x) = n(x) N n*'(x) < s(x) N s(x) = s(x).
Also, x € n"(x) since x € n(x) A x € n'(x) imply x € n(x) N n'(x) =
n"(x). Therefore, (Vn(x))(V¥n'(x))(&n"(x))[n"(x) & n(x) N n*(x)].

Third, neighborhood Axiom 3. is satisfied.
Theorem: (Vy)(¥n(x))(&n(y))ly € n(x) == n(y) < n(x)]
Proof: For arbitrary y € n(x), let n(y) = n(x). But y € n(x)
implies s(x) = s(y) since y € n(x) ¢ s(x) = (z : 25x} implies ySx
and ySx implies s(y) = s(x). Then n(y) < s(y) since n(y) = n(x)
c s(x) = s(y). Also y € n(y) since y € n(x) = n(y). Therefore,

(¥y) (¥n(x)) (@a(y))(y € n(x) => n(y) < n(x)].



In fact, the neighborhood topology satisfies Axiom 4, which is a
separation axiam:
Tmﬂm:(WNWKh&DﬂMﬂﬂx#V=®'MﬂﬂnW)=
Proof: Assume x £ y. Let n(x) = (x} and n(y) = {y}.
Then x € n(x) € s(x) and y € n(y) € s(y). -Thus n(x) N n(y) =
{(x} N {y) = @ since x # y.
Therefore, with respect to synonymy, words have a neighborhood
topology since
(1) (Vx)(ﬁn(X))[x € n(x)]
52 (¥n(x))(¥n’ (x))(En"(x))[n"(x) € n(x) N n'(x)]
3) (¥y)(3n(y))[y € n(x) = n(y) < n(x)]
(4 (HKWNhh»@Mﬂﬂx#y=$ n(x) N n(y) =g

3.3. Closure Topology

The second model considers a closure topology, i.e., a topology based

on a closure operation. A set ig said to have a closure topology
if there .exists a unaery operation on its subsets, denoted by o and

celled the closure, which satisfies the following axioms:

H S

Axiam 1:
Axiom 2:
Axiam 3:
Axiom 4: .

=RE W

in in

F=FUF

=
[

|

Define the closure of a set E of words as the synonym class of E, 1i.e.,

£ = s(E)
The closure axicms can be shown to be satisfied by using the original
definition of synonym class
s(E) =® (x: (3y)ly € E A xsy])

However, shorter proofs are possible by noting that the synonyin
class of a set E of words can be expressed as

s(E) = y&;)E s(y) J\E)E {x : xsy)

First, closure Axiom 1 is satisfied:

Theorem: s(@) =
\\,) s(y) =
vyEP

Proof:’ s(2)

Second, closure Axiam 2 is satisfied:
Theorem: E ¢ s(E) ‘
Proof: s(E) = kéJE s(y) 2 U {¥} =E since y € s(y) =>
(¥} s s(y). 7 veE



Third, closure Axiom 3 is satisfied:
Theorem: s[s(E)] < s(E)

Proof: Now s(s(y)) = s({u : usy}) = {v : vszy] :_vSy] =
s(y) since f c S, Thus s{s(E)]} = U s(x) .= U s(x)

in
—
<

x e s(E) X € ‘UES(Y)
ye
U U sw = Usen s s =
.yeE xe€ s(y) YyEE y€E

Fourth, closure Axiom 4 is satisfied:
Theorem: s(E U F) = s(E) U s(F)

Proof: s(EUTF) = U ! FS(Y) = Us(y) U U s(y) =

. YeEE YEE YEF
s(E) U s(F).

Therefore, with respect to synonymy, words have a closure topology
since ) .

(1) s(@) =¢

(2) E < s5(E)

(3) s[s(E)] < 8(E)

(k) s(E UF) = s(E) U 5(F)

Note that from Axioms 2 and 3 we get
Theorem: s[s(E)] = s(E)

3.h. Comments on Topological Characterizations

Note that for the neighborhood topology a separation axiom has been
added to the three axioms proposed in Edmundson (1965). Also, the
neighborhood topology seems more intuitively satisfying than the
closure topology. However, for the closure topology if we define the
‘derived set of a set E of words as the set of all words that
‘are synonymous to soame word of E, but not identical to that
word, i.e.,

E' = {x: (8)y e EAx #£yAxsyl)
then we have the following result:
Theorem: s(E) =E U E'
which may be given a reasonable linguistic interpretation. An

exsmple is (y}' = s(y) - {y) which was discussed in the section on
algebraic characterization.

-

4, Conclusions

These results support the belief that the algebraic characterization
is insightful and appropriste. For example, the assumption that
synonymy is an equivalence relation also has been made, either
directly or indirectly, by F. Kiefer and S. Abrahdm (1965),

U. Weinreich (1966), and others. Since the axiom system defines the
notions of synonymy and antonymy jointly end implicitly, it avoids
certain difficulties that are encountered when attempts are made to
define these notions separately and explicitly.
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These topological characterizations provide s nonmetric represen-
~tation of what has been called informelly a "semantic space".
Previous attempts to construct a semantic space that is metric
(i.e., one for which a distence function is defined) have not met
with much success. The consideration of general topological spaces
avoids this difficulty. :
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