The Relevance of Some Compiler Construction
Techniques to the Description and Translation

Of Languages
by

Steven I, Laszlo

. e
Western Union Telegraph Co.

The framework is machine-translation, Compiler-building
can for'a variety of reasons be considered as a special case of
machine-translation., It is the purpose of this paper to explicate
some techniques used in compiler-building, and to relate these to
linguistic theory and to the practice of machine-translation,

The generally observed machine-translation procedure could
be schematized as in FIGURE 1, or to put it another way,’

1, Parsing the source-text.
2, - Translation from source to object-language.
3. 'Synthesis of grammatically correct object-text.

FIGURE 1, -

break-down, translation, and recomposition, The translation
usually occurs on the level of some simplified, cannonical form

(that is not necessarily the kernel-form) of both languages, such
that the source-text is decomposed, and the object-text recomposed
from this form. The translation algorithm usually requires a
statement of the structure of both the source and the object-language,
as well as the statement of some primitive-to-primitive

% Currently at Decision Systems, Inc,

-l-

correspondence paradigm for both syntactic and lexical primitives.
Compilers on the other hand work on the bases of only the first two
steps of FIGURE 1.: breakdown,- and translation. Consequently,
the processor requires only statements of the structure of the
source -language and of the correspondence paradigm. That does
not imply that the structure of the object-language is irrelevant to
the procéss of translation, but that it is implicit in the
correspondence paradigm, and in the selection of what is a
primitive or terminal in the description of the source-language.

Through the use of examples it will be shown that BNF and
similar language-description devices (8) are -- by themselves --
both analytically and generatively inadequate and depend on other
devices, implicit in the translation algorithm. It will be shown
that by some extensions of the notion of P-rules and some
applications of the concept of T-rules (4), a description that is bpth
analytically and generatively adequate may be constructed for
programming languages. The programming language P. O, L. 2 (12),
(13) was selected for the examples because an adequate, fully
explicit description does exist for it; furthermore, the language
contains most syntactically problematic features of other
programming languages as well as presenting a few unique problems
in description that are worthy of attention. _

The failure to come to grips with the identity problem is
sufficient to demonstrate the inadequacy of BNF and similar devices
" (8). The simplified program-segments in FIGURE 2. serve to
illustrate ’

EXAMPLE 1.

: Let A be variable.
Let B be = "7",
Let C be = '"9,5",
Let D be = ", 072",
A=B+C /D,
Print A,

U W N =
!

EXAMPLE 2.
Define Funct (A, B) = (C).

End, -
---and elsewhere -~-
Funct (Q, R) = (Z).
V = D + K * Funct (P, T).

FIGURE 2.

-2-

this problem, BNF and similar devices would generate a parse
designating "A, "B", etc. in EXAMPLE 1, as identifier (a
syntactic word-class) but would fail to indicate that the various
occurrences of a given identifier (e.g., "A' in statements 1., 5.,
and 6.) are that of the same lexical token or semantic object.
Related to the identity problem is the restriction that each
identifier occurring in a program statement must also occur in one
and only one definition. This restriction may be called the
definition'problem_. BNF, etc., do not handle the definition
problem, Other manifestations of the identity and definition
problems are associated with the use of macro- or compound
functions (see EXAMPLE 2., FIGURE 2.}, subscript expressions,
etc.

Since there exists a demonstrable necessity for establishing
the above mentioned identities and restriction (3), compilers
contain -- implicit in the translation algorithm -- an elaborate
table-building /table-searching/identity-testing procedure. Without
such procedures, the syntactic description is inadequate, full
analysis and translation impossible. In order to deal with these
problems explicitly, it was decided to incorporate a
transformational component along with the BNF -like phrase-
structure component in the description of P,O,L.2, The above
reasons for positing a transformational component are in essence
the programming-language equivalents of Chomsky's original
reasons to use transformations in the description of natural
- languages, :

Rule 1. M+ #'M’sel.l'#

where '"M"is the initial symbol, "#" is the boundary marker,
and the subscript will be explained later.

Rule 2. M 1 +DEFINE, functmention, program, END
sel, .

where the convention is used that terminal symbols are all -
capital letters, and members of the intermediate alphabet
are in lower case. ' oo

Rule 3. program >. . ., placehblder, M, . . .
FIGURE 3.

In FIGURE 3., in a simplified form it is shown that the phrase-
structure component generates function definitions (17), (18)
embedded in others (see Rule 3.), and that the form of the function
is generated in the definition -- as the expansion of the symbol

-3-

"functmention' -~ generating placé-holders for instances of use of
the function. Transformations replace the place-holders with the
appropriate form of the function generated in the definition, thus
accounting for both the identity and the definition problems. Other
transformations exist to handle other instances of these problems
e.g., labels, identifiers, subscript expressions., The method is:
identical: the form is generated in the relevant definition, place-’
holders are generated for instances of use, and the place-holders
are replaced transformationally with the correct form generated in
the definition, ‘
" Other transformations deal with additional notational
restrictions of P,O.L.2. One such restriction is that a function
definition may reference other functions but a definition may not be
embedded in another. Definitions (see FIGURE 3.) are in fact
generated embedded, and it becomes necessary to posit some
exbedding transformation (7), moving the nested definitions outside
the "parent” definition., Theré exist several proofs in the literature
establishing the equivalence between languages generated by
grammars with and without the use of boundary markers (5), (10).
The exbedding transformation may be expressed more simply if
boundary markers are used (see FIGURE 4.). E

#] LI Y] #' M’ #' e ay #-> #’ M, #, #. L] #
or

M

FIGURE 4.

The boundary-markers may be deleted later by another
transformation, or they may rewrite as carriage-returns on some
keyboard, depending on the orthography of the particular
implementation and medium, The T-rules may be generated by
positing a set of elementary transformations (i.e., single node
operations) and a set of formation and combination rules over the
set of elementary transformations, producing some set of compound
or complex transformations. This ig not significantly different
from having locally ordered subsets 'of a set of elementary

-4-

transformations (11), (12). '

Syntactzc descriptions of programming languages published in
the past -~ e.g., (1), (9), (19) -- generally took a program-
statement to correspond to the basic unit of grammar, denoted by
the initial symbol of the phrase-structure grammar, The grammer
discussed here takes a function definition (see FIGURE 3.) as its
basic unit. Program-statements are elements of the intermediate
alphabet and have no other theoretical standing or significance.

The natural language correlates of program- -statements are
sentences, and function definitions correspond to some larger-
than-sentence units of discourse (e.g., paragraphs or chapters),
This procedure may lead to some syntactic or at least linguistic
method of distinguishing between ”meaningﬁil" and ""meaningless'
programs. ' Using a syntax of programs, or’ 'functions also yields
an intuitively more pleasing set of relationships among elementq of
the described language. .

The present grammar makes no effort to distinguish between’
."’elegant" and inelegant' programming, but does distinguish both
‘from '"ungrammatical" code. Declaring arguments or variables
never referenced is inelegant; referencing undeclared operands is
ungrammadtical. To return momentarily to the identity and
definition problems: it is possible to generate a definition such that
there are no corresponding place-holders; but each place-holder
must be replaced by some definition-generated form of the
appropriate nature. In describing the definition and use of functions,
separate place-holders accomodate recursive use and the general
case of usage,

It is customary to give descriptions of programming languages
such that -- with the exception of some small set of key words such
as arithmetic operators, delimiters of definitions, etc, -- the
phrase-structure grammar generates character-strings for the
lexical items. In natural languages the vocabulary is fixed. There
is a stable, limited set of vocabulary elements that correspond to
-each syntactic word-class. In programming languages that is not
the case: a small set of word-classes rewrite each as a set of one
or more key-words; others will expand -- through the use of some
phrasé-structure rules -- as any string of characters. In the
description of P. O, L., 2 it was decided to separate the lexicon-
generation rules from the phrase-structure rules. Though they are
the same shape that BNF rules of the same purpose would be, it
was determined that separating the rules generating lexical items -=-
even as morphophonemic ruies of natural languages represent a
separate class of rules -~ is more intuitively acceptable: a class of
orthographic rules, FIGURE 5. indicates what some of these rules
‘might look like,

In the text of FIGURE 3. s, Rule 1., the explanation of the
subscript was deferred., Functions and operators used in
programming languages are two notational variants of the same
concept (17). Depending onthe notation of the system, any operation
may be expressed either as an operator or a function. Since in

B

Rule 1, identifier > alpha {, characterstring)
where "¢ ...) " enclose optional items.

alpha .
Rule 2, characterstring > {, characterstring)
numeral

where "§.. .)" enclose alternative options such that one and

only one of the options enumerated must;be selected.,
AN
- B
Ruie s, a1§ha.—> _ .)

—
—_—

.
Rule 4. numeral> _ * 1
’ 0
y
FIGURE 5.

P.O.L.2 there are both functions and operators, depending on
notational convenience, newly defined operations may be defined
as either. Being defined as one or the other, however, restricts

. " their distribution or "embeddability" to certain contexts. This
phenomenon is accounted for by the use of a device similar to the
notation of complex symbol theory (4), (11), (12), (15). The
P. 0. L.2 notation is such that functions (i.e., defined macros)
may occur as functions, coordinate transformations (linear or
otherwise) or as operands (denoting their value for a particular
set of arguments) and operators may appear as arithmetic,
relational or logical operators, depending on range and/or domain
as well as distributional restrictions. In P.O.L.2 every program -
however simple or complex -- must have an "outermost' function,
one into which all others are embedded by the P-rules. The first
rule of the grammar (see FIGURE 3., Rule l.) expands the

- Youtermost'' function. Elsewhere in the phrase-structure
component, depending on context, other,

"Mge], 18" are introduced, as well as i-'Msel.Zs"" "Mgel, 38"

"M s'", and "M

11
sel. 4 sel, 5% °

-b-

Th\ese correspond to the various embedded occurrences of funct1ona
and operators. The rewrites or expansions of the several versions
of "M" are almost identical except for the string denoting the left
bracket delimiting the definition, Alternative solutions exist but
the above one appears most intuitively satisfying.

There are proofs and demonstrations in the literature to the
effect that full, left, or right parénthesis notation is context-free,
but not much on elided parenthesis notation, We have in the past
constructed several context-sensitive grammars generating elided
parenthesis notation, but they did not seem very satisfactory,
Adding a device not heretofore associated with production-rules, a
set of rules was produced to generate the elided parentheses :
notation such that the rules look and process very much hke context-
4£ree rules (see FIGURE 6.). i

Rule 1, expression + expression® ;
' /

fexpression®®, operator®, expres sion?]
. + »
expression™" ©

Rule 2, expressionn->< "(", expression,)"

identifier placeholder

émaryopera)tor, expression
where for one cycle (11) n remains the same integer between
subrules 1’ and 2and e remains the same mteger increment,

.FIGURE 6,

Though the "counter" n and the "increment' e are not part of a
known system of productmn rules, their nature and the reason for
their use can be clearly stated. Their use permits a simpler
scanner for the syntax than context-restricted rules do.

A similar counter is used to handle the concatenations of n-
tuples.. In P, O.L.2 an item of data may be declared as a pair,
triple, or n-tuple, and operations may be performed over n-tuples
of identical n-s (see FIGURE 7.).

[y

Rule 1. n-tuple-expression > n-tuple, operator, n-tuple

where n = n =n. Any of the n- tuples may however be
concatenates of two or more n-tuples of smaller n-s such that:

Rule 2. n-tuple > (m) - tuplé, concatenator, (n-m)-tuple

where n and’ m are positive integers and the arithmetic
relat10nsh1p des1gnated obtains.

FIGURE 7.

Of course, the (m)-tuple or the (n-m)-tuple may be further broken
down by the same rule into further concatenates.

The above are selected examples rather than an exhaustive
list of the transformations in the syntax of P,O,.L.2. A rigorous
statement of the transformations is available, stated as mappings
of structural descriptions into structural descriptions, accounting
for the attachment and detachment of nodes. Presenting the
selection of transformations here in a descriptive rather thana
rigorous form offers an idea of the general approach,

Constructing the phrase structure component, many alternative
solutions or approaches came up at every juncture; in specifying
the transformational component, the alternatives quickly multiplied
beyond manageable proportions. It is certainly the case that
throughout its brief but exciting history, one of the aims of
transformational theory has been to describe language in terms of
the most restricted -- hence simplest -- system possible, But one
may well regard the sets of devices sofar advanced as parts of
transformational theory, as algorithmic alphabets (in the A.A.
Markov/Martin Davis (5), (15) sense). Specific algorithmic
alphabets are more or less arbitrary selections from some universe
of elementary and compound algorithms bound by formation and
combination rules. This paper is not a proposal toward the
modification, extension or restriction of transformational theory,
merely an indication that an overlapping set of algorithms may be
selected to deal with a similar but not identical problem: the
structural description of some formal notation systems such as
programming languages,

Beyond doubt, substantial simplification and sophistication may
be achieved over the model described here. The effort here has
been toward the application of linguistic techniques to artificial
‘languages, conforming to the linguist's notion of what it means to
"give an account of the data', rather than to the laxer standards of
the methods used to describe programming languages.

-8-

BIBLIOGRAPHY: -

1.

io.

11-'

12.

13.

14.

15.

16.

117.

Backus, J.W. "The Syntax and Semantics. of the Proposed
International Algebraic Language of the Zurich ACM-GAMM
Conference", Information Processing; Proceedings of the
International Conference’ on Information Processing. Paris:
UNESCO, 1960.

- 'Cheatham, Jr., T.E. The Introductxon of Definitional Fac;lltles
_ into Higher Level Programmmg'Langgages Draft Report

. CA-6605-0611.; Wakefield, Mass. : Computer Associates, Inc. , |

1966. .
The Theory and Constructxon of Compilers

“Draft Report CA-6606-0111.; Wakeﬁeld Mass. : Computer

Associates, Inc., 1966,
Chomsky, Noam. Aspects of the Theory of Syntax. Cambndge,

Mass. : MIT Press, 1965.

."On Certain Formal Properties of

" Grammars'', Informatxon and Control, 2, (1959), pp. 137-167.

Davis, Martin. Computability and Unsolvability. New York;
McGraw-Hill, 1958. .
Filmore. C.J. '"The Position of Embeddmg Transformations

in a Grammar', . Word,19, 2, (1963).

Gorn, Saul. '"Specification Languages for Mechanical Languages
and their Processors -- A Baker's Dozen', Communications of

the ACM, 7, 12, (1961).

Heising, W.P. "History and Summary of FORTRAN Standardi-

- zation Development for the ASA', Communications of the ACM,

7, 10, (1964). .
Landweber, P.S. "Three Theorems on Phrase Structure
Grammars of Type 1", Information and Control, 6, (1963),

‘pp. 131-136.
. Lakoff, G.P. Cycles and Complex Symbols in E ghsh Syntax.

Unpublished Manuscript, Indiana University, 1963.
Some Constraints-On Transformations.

‘Unpublished manuscript, Indiana University, 1964.

Laszlo, S.I. '"Report on a Proposed General Purpose Procedure

~ Oriented Computer Programming Language'. Report of the

Institute of Educational Research, Bloomington: Indiana

University, 1965.

"P.O.L., A General Purpose, Procedure

Oriented Computer Programming Language' Report of the

Institute of Educational Research, Bloommgton Indianan

University, 1965.

Matthews, P.H., "Problems of Selection in Tra.nsformatxonal
Grammar', Journal of Linguistics, 1, (1965).

Markov, A.A., Theory of Algorithms. Washington, D.C.:
U.S. Printing Office, .1965, , "

McCarthy, John 'A Basis for a Mathematical Theory of
Computation', in Computer Programming and Formal Systems.
P. Braffort & D. Hirschberg (ed.), Amsterdam: N. Holland

. =9Q-

18.

19.

Publishing Co. 1963.: ‘ .‘
et al., LISP 1.5 Programmer's Manual;

Cambridge, Mass.: MIT Press, 1962,
Naur, Peter (ed.) "Revised Report on the Algorithmic Language

ALGOL 60", Communications of the ACM, reprinted in
E.W. Dijkstra, A Primer of ALGOL Programming. New York:

Academic Press, 1964.

-10-

