
EXPERIMENTS WITH A POWERFUL PARSER

by

Martin KAY

The Rand Corporation

1700 Main Street
SANTA-MONICA - California 90406 - U.S.A.

EXPERIMENTS WITH A POWERFUL PARSER

This paper describes a sophisticated syntactic-
analysis program for the IBM 7040/44 computer and
discusses some of the problems which it brings to
light. Basically the program is a nondeterministic
device which applies unrestricted rewriting rules to
a family of symbol strings and delivers as output all
the strings that can be derived from members of the
initial family by means of the rules provided. A
subsidiary mechanism deals with the relation of dom-
inance, in the sense common in linguistics. This
makes it possible for rules to refer to complete or
partial syntactic structures, or P-markers, so that
the program can be used at least to some extent for
transformational analysis.

A program of this kind, which is intended for analy-
sing natural languages, must be capable of operating
on a family of strings as a single unit because of
the grammatical ambiguity of words. Take, for ex-
ample, the famous sentence "Time flies like an ar-
row." These five words are not, themselves, the
primary data on which a parsing program can be ex-
pected to operate. Instead, each word is replaced
by one or more symbols representing the grammatical
categories to which it belongs. The assignments for
this example might be somewhat as follows:

Wor d Grammatical category

Time
flies
like

an
arrow

Noun, verb, adjective
Plural noun, 3rd person verb
Singular noun, preposition,
verb
Indefinite article

Singular noun, adjective.

Taking one category symbol for each word, it is pos-
sible to form 30 different strings, preserving the
order of the original sentence. These 30 strings
constitute the family on which the program would
operate if set to analyze this sentence.

The program is said to perform as a non-deterministic
device because whenever two mutually incompatible
rules are applicable to the same string neither is
given any priority; both are applied, and the result-
ing strings developed independently. Given the
string "A B C" and the rules

i

A B--~X Y

B C - ' ~ Z

the program will therefore produce two new strings:

X Y C

A Z

The program contains no mechanism for guarding
against sequences of rules which do not terminate.
If the grammar contains the following rules

A B " ~ B A

B A--~A B

and the string to be parsed contains either "A B y' or
"B A," then the program will continue substituting
these sub-strings for one another until the space
available for intermediate results is exhausted. This
may hot seem to present any particularly severe pro-
blem because a pair of rules such as these would
never appear in any properly constructed grammar. But,
as we shall shortly see, entirely plausible grammars
can be constructed for which this problem does arise.

i. THE FORM OF RULES

In order to get a general idea of the capabilities
of the program, it will be useful first to consider
the notation used for presenting rules to it and the
way this is interpreted by the machine. In what fol-
lows, we shall assume that the reader is familiar
with the terminology and usual conventions of phrase-
structure and transformational grammar. An example
of the simplest kind of rewrite rule is

VPRSG = PRES SG VERB

The Y'equals" sign is used in place of the more famil-
iar arrow to separate the left and right-hand sides
of the rule. The symbols on which the rules operate
are words consisting of between one and six alphabetic
characters. The above rule will replace the symbol
"VPRSG" by a string of three symbols "PRES SG VERB"
whenever it occurs. The following rule will invert
the order of the symbols "VERB" and "ING"

VERB ING = ING VERB

The simplest way to represent a context free phrase
structure rule is as in the ' following example:

NP AUX VP = S

Notice that the normal order of the left and right-
hand sides of the rule is reversed because the recog-
nition process consists in rewriting strings as sin-
gle symbols; the rules must therefore take the form
of reductions rather than productions.

The program will accept phrase structure rules in
the form we have shown, but, in applying them, it
will not keep a record of the total sentence struc-
ture to which they contribute. In other words, it
will cause a new string to be constructed, but will
not relate this string in any way to the string
which was rewritten. One way to cause this relation-
ship to be preserved is to write the rule in the fol-
lowing form :

NP.I AUX. 2 VP.3 = S(I 2 3)

The number following the symbols on the left,hand
side of the rule function very much like the numbers
frequently associated with structural indices in
transformational rules. When the]eft-hand side of
the rule is found to match a particular sub-string, ~
the number associated with a given symbol in the
rule becomes a pointer to, or a temporary name for,
that symbol. With this interpretation, the left-
hand side of the above rule can be read somewhat as
follows "Find an NP and call it i; Find an AUX fol-
lowing this and call it 2; Find a VP following this
and call it 3."

The numbers in parentheses after a symbol on the right-
hand side of a rule are pointers to items-identified
by the left-hand side, and which the new symbol must
dominate. In the example, the symbol "S" is to dom-
inate all the symbols mentioned on the left-hand
side.

A pointer may refer to a single symbol, as we :have
shown, or to a string of symbols. The following rule
is equivalent to the one just described:

NP.I AUX. I VP.I = S(1)

Furthermore, the string to which a pointer refers
need not be continuous. Consider the following
example

NP.I AUX VP.I -- S(1)

3

This will cause any string I'NP AUX VP" to be re-
written as "S", but the "S" will dominate only "NP" and
"VP." There will be no evidence of the intervening
"AUX" in the ~nal P-marker which will contain the
following phrase:

S

/ \ .

l ~ VP

Consider now the following pairs of rules:

A.I B.2 C.I D.2 = P(1) Q(2)

P.l Q.I = s(1)

If these rules are applied to the string "A B C D"
the following P-marker will be formed:

/\/\o
Notice that the first rule in the pair not only re-
orders the symbols in the P-marker but forms two
phrases simultaneously.

A different way of using pointer numbers on the right-
hand side can be illustrated by comparing the effects
of the following two rules:

N.I SG.1 V.2 SO.3 = NOUN(l) V(2) SG(3)

N.I SG.I V.2 SG.2 = NOUN(l) 2

What is required, we assume, is a context sensitive
phrase structure rule which will rewrite "N SG" as
"NOUN" in the environment before "V SG". The first
rule achieves this effect but also introduces a new
"J~" dominating the old one, and a new "SG". The
second rule does what it really wanted: It constructs
phrase labeled "NOUN" as required, and leaves the
symbols referred to by pointer number 2 unchanged.

The context sensitive rule just considered is pre I
sumably intended to insure that singular verbs have
only singular subjects. A second rule in which "SG"
is replaced by "PL" would be required for plura~

verbs. But, ~nce agreements of this kind may well
have to be specified in other parts of the grammar,
the situation might better be described by the fol-
lowing three rules:

SG.I = NUM(1)

PL.I = NUM(!)

N.I NUM. 2 V.3 2 = NOUN(I 2) 3 2

The first two rules introduce a node labeled "NUM'!
into the structure above the singular and plural
morphemes. The third rule checks for agreement and
forms the subject noun phrase. Pointer number 2 is
associated with the symbol "NUM" in the second place
on the left-hand side, and occurs by itself in the
fourth place. This means that the fourth symbol
matched by the rule must be "NUM," and also that it
must dominate exactly the same sub-tree as the second.
In the example we are assuming that "NUM" governs a
single node which will be labeled either "SG" or "PL"
and the rule will ensure that whichever of these is
dominated by the first occurrence of "NUM" will also
be dominated by the second occurrence. Notice that
noun and verb phrases could be formed simultaneously
by the following rule:

N.I NUM. 2 V.3 2 = NOUN(I 2) VERB(3 2)

The symbols "ANY" and "NULL" are treated in a special
way by this program and should not occur in strings
to be analyzed. The use of the symbol "NULL" is
illustrated in the rule:

4

PPH = NULL

This will cause the symbol "PPH" to be deleted from
any string in which occurs. The program is non-
deterministic in its treatment of rules of this kind,
as elsewhere, so that it zwill consider analyses in
which the symbol is deleted, as well as any which can
be made by retaining it. The symbol "NULL" is used
only on the right-hand sides of rules.

The symbol "ANY" is used only on the left-hand sides
of rules and has the property that the word implies,
namely that it will match any symbol in a string. The
use of this special symbol is illustrated in the fol-
lowing rule:

5

VERB.I ANY. I NP.I = VP(1)

This will form a verb phrase from a verb and a noun
phrase, With one intervening word or phrase, whose
grmmnatical category is irrelevant.

Elements on the left-hand sides of rules can be spec-
ified as optional by writing a dollar sign to the left
or right of the symbol as in the following rules:

DET.I ADJ$.I NOUN. I = NP(1)

VERB.1 SANY.1 NP.I = VP(1)

The first of these forms a noun phrase from a deter-
miner and a noun, with or without an intervening ad-
jective. The second is a new version of a rule
already considered. A verb phrase is formed from a
verb and a noun phrase, with or without an intervening
word or phrase of some other type.

Elements can also be specified as repeatable by
writing an asterisk against the symbol, as in the
following example:

VERB. i *NP. i = VP(1)

This says that a verb phrase may consist of a verb
followed by one or more noun phrases. It is often
convenient to be able to specify that a given element
may occur zero or more times. This is done in the ob-
vious way by combining the dollar sign and the aster-
isk as in the following rule:

SDET.I *$ADJ. I N.I *PP$.I = NP(1)

According to this, a noun may constitute a noun
phrase by itself. However the noun may be preceeded
by a determiner and any number of adjectives, and
followed by a prepositional phrase, and all of these
will be embraced by the new noun phrase that is form-
ed. Notice that the asterisk and the dollar sign can
be placed before or after the symbol they refer to.
The combination is often useful with symbol "ANY" in
rules of the following kinds

N.I NUM.2 *$ANY.3 V.4 2 = NOUN(I 2) 3 VERB(4 2)

This is similar to an earlier example. It combines
the number morpheneme with a subject noun and with a

6

verb, provided that the two agree, and ~a~ows for--
any number of other symbols to intervene. The sym-
bol "ANY" with an asterisk and a dollar s~g n cor L
responds in this system to the so called variables
in the familiar notation of transformational gram-
mar. .,.?

Consider now the following rule:

SCONJ.1 N P (S) . I = NP(1)

This will form a noun phrase from a subordinating
conjunction followed bya nou~phrase, provided
that this dominates only the "~ymbol "S." Any sym-
bol on the left-hand side of the rule may be fol-
lowed by an expression in parentheses specifying
the string of characters that this symbol must di-
rectly dominate. This expression is constructed
exactly like the left-hand sides of rules. In
particular, it may contain symbols followed by ex-
pressions in parentheses. The following rule will
serve as an illustration of this, and of another
new feature:

NP($DET.I $*ANY.I ADJ(PRPRT.2) $*ANY. 3 N.4

$ PP.5) 1 3 4 WH DEF 4 BE ADJ((2)) 5

This rule calls for a noun phrase consisting of a
noun, a preceding adjective which dominates a ~re-
sent participle and, optionally, a number of other
elements. This noun phrase is replaced by the
determiner from the original noun phrase, if there
is one, the elements preceding the noun except for
the present participle, the noun itself, the sym-
bol '~H," the symbol "DEF~" another Copy of the
noun, the symbol f~E~" the symbol "ADJ" dominating
exactly those elements originally dominated by
'~RPRT" and, finally, any following prepositional
phrases the original noun phrase may have contained.
The number "2" in double parentheses following "ADJ"
on the right-hand side of this rule specifies that
this symbol is to dominate, not the present par-
ticiple itself, but the elements, if any, that it
dominates. This device turns out to have wide
utility.

Double parentheses can also be used following a sym-
bol on the left-hand side of a rule, but with a
different interpretation. We have seen how single
parentheses are used to specify the strin~ in~ne-
diately dominated by a given symbol. DouSle'

parantheses enclose a string which must be a pro-
per analysis of the sub-tree dominated by the given
symbol. A string is said to be a proper analysis
of a sub-tree if each terminal symbol of the.sub-
tree is dominated by some member of the string. As
usual, a symbol is taken to dominate itself. As an
example of this, consider the following rule:

ART.I S((ART N.2 ANY*)).I 2 = DET(1) 2

This rule applies to a string consisting of an
article, a sentence, and a noun. The sentence must
be analysable, at some level, as an article fol-
lowed by a noun, followed by at least one other
word or phrase. The noun in the embeded sentence,
and the sub-tree it dominates, must be exactly
matched by the noun corresponding to the last ele-
ment on the left-hand side of the rule. The initial
article and the embeded sentence will be collected
as a phrase under the symbol "DET" and the final
noun will be left unchanged.

The principal facilities available for writing rules
have now been exemplified. Another kind of rule is
also available which has a left-hand side like those
already described but no equal sign or right-hand
side. However it will be in the best interests of
clarity to defer an explanation of how these rules
are interpreted.

The user of the program may write rules in exactly
the form we have described or may addinformation
to control the order in which the rules are applied.
This additional information takes the form of an
expression written before the rule and separated
from it by a comma. This expression, in its turn,
takes one of the following forms:

n I ,

nl/n 2 ,

nl/n2/n 3 ,

nl//n 3 ,

n I in an integer which orde~ this rule relative
to the others. Since the same integer can be
assigned to more than one rule, the ordering is
partial. Rules to which no number is explicitly
assigned are given the number 0 by the program.

n 2 and nx, when present, are interpreted as fol-
J

lows: Egery symbol in the sub-string matched by
the left-hand side of the rule must have been pro-
duced by a rule with number i, where ng) i~ nq.
For these purposes the symbols in the 5riginal
family of strings offerred for analysis are treat-
ed as though they had been produced by a rule with
number O.

2. PHRASE-STRUCTURE GRAMMAR

It will be clear from what has been said already
that this program is an exceedingly powerful de-
vice capable of operating on strings and trees in
a wide variety of ways. It would clearly be en-
tirely adequate for analyzing sentences with a
context-free phrase-structure grammar. ~ut this
problem has been solved before, and much more sim-
ply. We have seen how the notation can be used to
write context-sensitive rules, and we should there-
fore expect the program to be able to analyze sen-
tences with a context-sensitive grammar. However
in the design of parsing algorithms, as elsewhere,
context-sensitive grammars turn out to be surpris-
ingly more complicated than context-free grammars.

The problem that context-sensitive grammars pose
for this program can be shown.~with a simple ex-
ample. I Consider the following in grammar:

E (S) (2)

B -,- F/ E J (4)

D _,. ~G/A- } (5)

l B/___.E (6)

This grammar, though trivial, is well behaved in
all important ways. The language generated,
though regular and unambigious, is infinite.

ii am indebted for this example, as for other
ideas too numerous to document individually, to
Susumu Kuno of Harvard University.

Furthermore, every rule is useful for some de-
rivation. Since the language generated is un-
ambigious, thegrammar is necessarily cycle-free,
in otherwords, it produces no derivation in
which the same line occurs more than once. Sup-
pose, however, that the gr~nmar is used for analy-
sis and is presented With the string"A D E" --
not a sentence of the language. The attempt to
analyze this string using rules of the grammar re-
suits in a rewriting operation that begins as
follows and continues indefinitely:

A D E

A B E (by rule 3)

A D E (by rule 6)

A B E (by rule 3)

e t c .

I t would c l e a r l y be p o s s i b l e , i n p r i n c i p a l , t o
e q u i p t h e p rogram w i t h a p r o c e d u r e f o r d e t e c t i n g
c y c l e s o f t h i s s o r t , b u t t h e t i m e r e q u i r e d by
such a p r o c e d u r e , and t h e c o m p l e x i t y t h a t i t
wou ld i n t r o d u c e i n t o t h e p rogram as a w h o l e , a r e
s u f f i c i e n t t o r u l e i t o u t o f a l l p r a c t i c a l con -
s i d e r a t i o n . I t m i g h t be a r g u e d t h a t t h e s t r i n g s
w h i c h h a v e t o be a n a l y z e d i n p r a c t i c a l s i t u a t i o n s
come f rom r e a l t e x t s and c a n be assumed t o be
s e n t e n c e s . The p rob lem o f d i s t i n g u i s h i n g s e n -
t e n c e s f rom n o n s e n t e n c e s i s o f a c a d e m i c i n t e r e s t .
But, in natural languages, the assignment of words
to grammatical categories is notoriously ambigious
and for this problem to arise it is enough for
suitably ambigious words to come together in the
sentence. A sentence which would be accepted by
the above gram~nar, but which would also give rise
to cycles in the analysis, might consist of words
with the following grammatical categories:

Word G r a u ~ a t i c a l Category

I A

2 B

3 C, E

i0

The program, as it stands, contains no mechanism
which automatically guards against cycles. How-
ever, if the user knows where they are likely to
occur or discovers them as a result of his exper-
ience with the program, he can include some special
rules in his grammar which will prevent them from
occurring. These rules, which we have already
eluded to, are formally similiar to all others ex-
cept that they contain no equals sign and no right-
hand side. When a P-marker is found to contain a
string which matches the left-hand side of one of
these rules, the program arranges that, thence for-
ward, no other rule shall be allowed to apply to
the whole string. The cycle in this latest example
could not occur if the grammar contained the rule:

A B E

3. TRANSFORMATIONAL GRAMMAR

We now come to the main concern of this paper which
is to discuss the extent to which the program we
have been describing can be made to function as a
transformational analyzer. The main purpose of the
examples that have been given is to show the great
power of the program as a processor of symbol
strings. The notion of dominance is provided for,
but only in a rudimentary way. It certainly could
not be claimed that the program is a tree processor
in any really workable sense. Butgrammatical
transformations are operations on trees and our in-
vestigation therefore must take the form of showing
that these operations can frequently, if not always,
be mimicked by string rewriting rules.

We shall take it that a transformational grammar
consists of a context-free or context-sensitive
phrase-structure component and a set of transforma-
tions ordered in some way. To begin with, very
little will be lost if we assume that the transfor-
mational rules are simply ordered.

Gonsider now the first transformation in the list.
In general, this may be expected to introduce
phrases into the P-markers to which it applies which
could not have been generated by thephrase-structure
component. Let us now write some additional phrase-
structure rules capable of generating these new
phrases. Let us insert these rules into the grammar
immediately following the first transformational
rule and establish the convention that, when they

ii

are used in the analysis of the string, their out-
put will be used only as input to the first trans-
formation. Now treat the second transformational
rule in the same way. It also can be expected to
create new kinds of phrase and phrase-structure
rules can be written which would recognize these.
It may be that some of the phrases formed by the
second rule could also be~formed by the first, and
in this case, it may be possible to move the ap-
propriate rule from its position after the first
transformation to a position after the second and
to mark it as providing input only for these two
rules.

Notice that the rules we are proposing to construct
will not constitute what has sometimes been called
a surface ~rammar. The phrases they describe cer-
tainly do not belong to the base structure and
many of them may not be capable of surviving un-
changed into the surface structure. In general
these rules describe phrases which can only have
transititory existence somewhere in the genera-
tive process. Notice also that in order to describe
these phrases adequately it may sometimes be nec-
essary to extend the notion of phrase structure
grammar somewhat. Consider for example the fol-
lowing transformation:

X - A - B - Y

i 2 3 4

Adjoin 2 as right daughter of 3

If we make the usual ass~ption that a rule is
applied repeatedly until no proper analyses of the
P-marker remain which can be matched by its struc-
tural index, then this transformation, and many
others, may produce phrases of indefinitely many
types. Let us suppose that, before this trans-
formation is applied for the first time, all pos-
sible phrases that can be dominated by the symbol
"B" are describable by context free phrase struc-
ture rules of the following form

B--~ ?2
I
!

~k

12

where the 4. are any strings. The phrase struc-
ture gramma~ needed to describe all the phrases
that can exsist after the operation of this trans-
formation must co~tain the following rules, or
more accurately rule schemata

41

B ~ . t 2 . A* , .
I

f . " .

=k
Where the asterisk indicates one or more repeti-
tions of the symbol "A". If the left and right-
hand sides of these rules are reversed and they
are presented to the program in the proper nota-
tion, then the transformation itself can be re-
presented by the following pair of rules:

B(*$ANY. I *A.2) = 2 B+ I +B

B+ B.1 +B = i

Since there are no facilities for specifying~dom-
inance relations among elements on the right-hand
sides of these rules, it is necessary to resort to
subterfuge. The phrase dominated by the symbol
"B" is reproduced in the output of this rule with
copies of the symbol "A" removed from the right-
hand end and the remainder bounded by the symbols
"B+" and'tFB ". These symbols serve to delimit a
part of the string which can only figure in the
complete analysis of the sentence if it constitutes
a phrase of type "B'. The second rule removes
these boundry symbols from the phrase of type 'B"
and, since no pointer is assigned to them, they will
leave no trace in the final P-marker. ,~

/

Another, and perhaps more economical, way to write
recognition rules corresponding to this transforma-
tion involves conflating the additional phrase-
structure rules with the reverse of the transfor-
mational rule itself to give rules of the follow-
ing kind :

=. i *A.2 = 2 B+ i +B (i ~ i < n)
1

B+B.I+B= i

13

In fact, the elementary transformation for daugh-
ter adjunct!on that we are providing for here is
moregeneral than that often allowed by transfor-
mational grammarians. It is common to require that
if some element ! is adjoined as a daughter of an"
other element b then b must have no daughters be-
fore the transformatiolltakes place.

Sister adjunct!on c a n b e treated in an analogous
manner. Consider the. following transformation:

X - A - B - Y

i 2 3 4

Adjoin 2 as right sister of 4.

The phrases exsisting before this transformation is
carried out, and which have "B" as a constitutent,
can be thought of as being described by a set of
rules as follows:

a I ~ B ~I

---~B ~2 a2 |
|
!
!

a ---~ B ~
n n

Here the a. are nonterminal symbols and the u. are
1 ° 1 •

strings, possibly null. The grammar which descrlbes
the phrases existing after the operation of this
transformation must contain, in addition, the fol-
lowing rules :

a l ~ B ~i A*

a2T-~B ~2 A*
!
!

t
a - - - - ~ B ~ A*
n n ~

The reverse transformation itself can now be re-
p r e s e n t e d b y a s e t o f r u l e s a s f o l l o w s :

B.I ~..i A*.2 ffi 2 B+ I +B
l

Notice that the strings referred toby the symbols
"X" and "Y" in both of the above examples are
unchanged by the transformation and are therefore

14

not mentioned at all in the analysis rules.
Experience shows that it is in fact rarely nec-
essaryto write separate rules for each =.. In
most cases, a transformation of this kindlcould be "
handled in the program with a rule of the follow-
ing form:

B.I ANY. I A*.2 = 2 B+ i +B

This is one of a large number of cases in which it
has been found that the analysis rules can be made
more permissive than the original grammar suggests
without introducing spurious structures and without
seriously increasing the amount of time or space
used by the program.

While it is possible that transformational analy-
sis can be done in an interesting way with a pro-
gram of this sort there seems to be little hope of
finding an algorithm for writing analysis rules
corresponding to a given transformational grammar.
The following rule also involves sister adjunction
but poses much more serious problems than the pre-
vious example:

X - A - Y - B - Z

i 2 3 4 5

Adjoin 2 a~ right sister of 4

The problem here is that a variable "Y" intervenes
between "A" and "B". On the face of it, the analy-
sis rule corresponding to this transformation would
have to be somewhat as follows:

*$ANY. I B.2 *A.3 -- 3 1 2

And in principal the program could carry out a
rule of thfs kind. However the first symbol on the
left-hand side of this rule will match any string
whatsoever, so that, if the rule can be applied ~t
all, it can be applied in a prodigious number of
ways. But, with real grammars, it usually turns out
that quite a lot can be said about the pa~t of the
sentence covered by the variable "Y" so that analy-
sis rules =an be written which are sufficientlY
specific to be practiable. L~

15

i

Deletions are notoriously troublesome in grammars
of any kind because theycan so easily give rise
to cycles and undecidable problems. Transforma-
tional gran~arians require that lexical items
should only be deleted from a P-marker if there
is some other copy of the same item whichremains.
This condition insures what they call the recover-
ability of the transformation. However, it is very
important to realize that recoverability, in this
sense is a very weak condition. The requirement
is that, knowing that a n item has been deleted
from a certain position in the P-marker, it should
be possible to tell what that item was. But there
is no requirement that a P-marker should contain
evidence that it was derived by means of a dele-
tion transformation or of the places in it where
deletions might have taken place.

Deletions are more easy to cope with in certain
situations than others. Consider for example the
following transformation:

X - A - B - A - Y

i 2 3 4 5

Delete 4.

The recoverability requirement is satisfied be-
cause of the identity of the second and fourth
elements in the structural index. The corres-
ponding rule for the program might be as follows:

23/22, A.I B.2 = 1 2 1

It is necessary to provide ordering information
with a rule of this kind because it would otherwise
be capable of operating on its own output and
cycling indefinately. But presumably this trans-
formation can be carried out any number of times
and the same therefore should be true of the cor-
responding analysis rule. Once again, experience
shows that the grammarian almost invariably knows
more about the environment in which a deletion
takes place than is stated in the rule, and if
this information is used carefully, analysis rules
can be written which do not lead to cycles.

In principle the situation is even worse in rules
of the following kind:

16

X - A - Y - A - Z

I 2 3 4 5

Delete 4

Here the third element is a variable which can
cover any number of nodes in the P-marker. In
analysis we are therefore not only without in-
formation about how many times the rule may
have been applied but we know nothing about
where to insert new copies of the symbol "A",
except that they must be to the right of the
existing copy.

The other commonly used elementary transforma-
tions (substitutions and Chomsky-adjunction) do
not present special problems. The main outstand-
ing difficulty comes from the fact that trans-
formationalrules are ordered. We have already
said that the theory of transformational grammar
is in the state of continual change and this is
particularly true of the part that concerns the
ordering of rules. For this reason we have as-
sumed that the rules are simply ordered in the
hope that other possibilities will not be notably
more difficult to deal with. We shall also make
the assumption that transformational rules are all
obligatory.

Consider now the following grammar

Phrase structure

i. S--~A (D) B C

2. C--~D E

Transformations

i. A - B - X

1 2 3

0 2+1 3

and suppose that the program is required to
analyze the string "A D B E". Since, in genera-
tion, the list of transformations is read from
top to bottom it is reasonable to suppose that
in analysis it should be read from bottom to top.

17

We may take it that the analysis rule corres-
ponding to the second transformation is some-
what as follows:

D.I B.2 = 2 1

This, together with the two phrase-structure
rules, is sufficient to give a complete analysis
of the string with this underlying P-marker:

But if this is an underlying P-marker, the second
transformational rule could not possibly be used
to produce a derived structure from it because
the first transformation, which according to our
assumption is obligatorY , can be applied to it
giving the following result:

It is in fact not sufficient to scan the list of
transformations from bottom to top because this
procedure does not make allowance for the fact
that the transformations are obligatory. To re-
gard transformations as optional which were in-
tended to be obligatory isJin general to associate
spurious base structures to some sentences. The
solution for the present gr~,mar is to use the
following set of analysis rules:

I/0, B D
2/1, D.I B.2 = 2 1 1
3/2, A B
4/3, B'I A. 2 = 2 1

D.1 F.1 = c(1)
A.I $D.I B.I C.I = S(1)

The first and third rules contain, in effect, the
structural indices from the second and first
transformations respectively. The first rule says
that no string is acceptable as a sentence which
contains "B D" as a sub-string because to this it

18

would have beenpossible to'apply transformation
2. The second rule reverses the effect of trans-
formation 2. The third rule, excludes any P-
marker existing at this stage with a proper analy-
sis containing "A B" as a sub-string. This is
the structural index of transformation i which
therefore shouldhave been applied to any P-
marker containing it. The fourth rule reverses
the effect of transformation i and the remaining
rules are the phrase-structure component of the
grammar. Once again it turns outthat what may
be necessary in theory is only rarely needed in
practice. Experience with t, his program is, so
far, very limited but no cases haveso far been
found in which incorrect analysis have resulted
from omitting rules such as those numbered one
and three above.

CONCLUSIONS

It requires skill to write rules for analyzing
natural sentences with the program described in
this paper. A program can only properly be call-
ed a transformational parser if it can work dir-
ectly with the unedited rules of the transformation-
al grammar. But no algorithm is known, nor is it
likely that one will shortly be found, which will
produce from a transformational grammar a set of
corresponding rules of the kind required by this
program. It is not d~fficult to construct a
transformational grammar for which no exactly
corresponding set of analysis rules can be writ-
ten. However, other programs have been written
which, though they are still in many ways im-
perfect, can more reasonably be called transfor-
mational parsers. What then are the advantages
of the present program?

The current version of the program is written in
ALGOL and with very little regard for efficiency.
But the basic algorithm is inherently a verygreat
deal more efficient than any of its competitors.
The various interpretations of an ambiguous sen-
tence, or a sentence which seems likely to be
ambiguous in the early stages of analysis, are
allworked on simultaneously. At no stage can
the program be sa~d to be developing one inter-
pretation of a sentence rather than another. If
two interpretations differ only inseme small part
of the P-marker, then only one complete P-marker

19

is stored with two versions of the ambiguous
part. Work done on the unambiguous portion is
done only once for both interpretations.

The program, though undoubtably very powerful,
seems naive from the point of view of modern
linguistic theory. The program embodies very
little of what we know or believe to be true
about the structure of natural languages. It
might well be said that a computer program for
analyzing natural languages is only interesting
to the extent that it makes a claim about the
basic form of those languages. But the program
described here is intended as a tool and not as
a linguistic hypothesis. There is much to be
learned about natural language from ruminating
on the form of universal generative grammar and
trading counter-example for example. But there
is also much to be learned from studying text as
it actually occurs. The small amount of work
that has so far been done with this program has
been sufficient to suggest strongly that a set
of rules derived algorithmically from a trans-
formational grammar is unlikely to be the most
effective or the most revealing analytic device.

20

