Transformational Decomposition ¢

A Simple Description of an
Algorithm for Transformational -
Analysis of English Sentences¥

Danuta HiZ

Aravind K. Joshi
- University of Pennsylvania

ABSTRACT

In this paper, we will present a rather_simplified descriptio;'of an
algorithm for transformational'analysis (decomposifion) of English
sentences. Our purpose here is not to discuss the transformational
tﬁeory, the full details of the.theoretigal formulations of the algo-~
rithm, or of the grammar. Rather, we will present a set of exémpleé
of the decomposition and some discussion of them with the hope that -
it will give enough insight into the capability of the algorithm and

indicate to some extent the power of transformational analysis.

¥This work was carried out in the Transformations and Discourse Analysis

Project, University of Pennsylvania, sponsored by the National Science
Foundation. . ’

1,0 Here, we will present a rather simplified;description of an élgof
rithm for transformational analysis (decomposition) of English sentences.
Our purpose here is not to discuss the transformational theory, the full

- details of the theoretical formulations of the algorithm, or of the
grammar¥. Rather, we will present a set of exampies of the decomposition’
and some discussion of them with the hope that it will give enough in-
sight into the capability of the algorithm and indicate to some extent

the power of transformational analysis.

"1.1 Transformations are certain relations among sets of sentences and
in particular, it is possible to relate a given sentence to a set of
elementary sentences (kernel sentences) by means of transformations.
The kernel sentence forms (for English) are defined as the string of
class marks N t V followed by one of the kernel object strings: @, N,
NN, NPN, ND, PN, D, A (N' Noun; t: tense/aux; V: verb; P: preposi-
tion; D: adverb; A: adjective; ¢ : zero). Thus John bought' a M;

Mary will come etc. are kernel sentences. Each transformation is

characterized by certain permutations, deletions or additions of spe-
cific class marks or constants. In the resultant of a transformation
one may look for subseguencés which remain invariant even when the re-
sultant is snbjected to further transformations. The Basic fectur;s of
the algorithm are

a) stating the various invariant sequences and
.b) formulating 1) a grammar of such invariant scquences, 2) a corres
sponding recognition procedure, and 3) a systematic procedure for com-
puting the kernel sentences as well as other kernel-like sentences and

the corresponding transformational history.

It should be emphasized that it is not assumed and also not im-

plied in the algorithm thac any kind of prior analysis (either string

analysis or constituent analysis) is required as a nrerequisite‘for

the present algorithm.

-¥Such a detailed description will appear later elsewhere.

-] -

1.2 Transformations are initially defined on kerné} sentence forms.
However, they work on certain other sentence forms which are not kernel
sentence forms. Thus a transformation is completely defined by first
defining it on a suitable kernel sentence form(s) and then extending
_the d\éomain of the transformation to other sentence forms. This extei.-
sion which contains infinitely many sentence forms can be represented
by first listing a finite number of sentence forms in the extension and
all the remaining sentence forms in the extension are obtained by cer-

tain recursive rules (see the i-1ists in 1.3).

1.3 A unary transformation transforms one sentence form into another
sentence form and a binary transformation transforms a pair of sentence
A —— B
forms into another sentence form. Each unary transformation defined on
a sentence form may be represented by a sequence of class marks consti-
tuting another sentence form. Most binary transformations can be de- _
fined as interruptions of certain unary transformation sequences at
stated positions by certain other sequences of class marks., These in-
terrupting sequences are not sentence forms but are deformations of sen-
— T o seco
tence forms corresponding to the aowd sentence form of the binary trans-

formation. For example, ‘John was detained by the old woman decomposes

into woman detained John and woman t be old with a passive transforma-

tion on the first kernel and a binary transformation on the sentence

John was detained by the woman and the kernel sentence woman t be olcl:1

The sentence form corresponding to the passive'transforma’ti‘On,

Nt be enV by N is then interrupted by the sequence AN before the last

symbol. AN is a deformation of the kernel sentence form N t be A

which is the second sentencé form of the binary transformation. The

re'sulting- sentence form is thus N t be en V by A N, In the resulting
sentence form the shared symbol N appears only once, Such a symbol

which two transformation sequences share (or on which they overlap)

He ignore here the article the for simplicity.

-2-

will be called a residue of one rsequence with regpect to another.2 In
addition to the transformation sequences which are sentence forms, and
the interrupting sequences (deformed sentence forms) which correspond to
most binary transformations, there is yet another type of interrupting
sequences (again deformed sentence forms) which correspond to nominal-

izations. For example consider: the book was written by Brown and

John's travel to Italy was described by Mary. In the second sentence,'

the kernel sentence John travelled to Italy §s mapped onto the object

of Mary described before the resultant undergoes the same passive which

acted on Brown wrote the book giving the first sentence. N's nV P N
(John's travel to Ttaly) is a nominalization which appears in many dif-
ferent transformations and carries in them the associated kernel into
one of the positions which could be occupied by a noun., For each
transformation sequence in each interéymbol position we list all in-
terrupting sequences (including both the second and the third kind of
sequences as discussed.above). Of course, the interrupting sequences
have their own interrupting sequences, etc., These intersymbol inter-

rupting lists will be called i-lists,

2. A sketch of the algorithm

2.0 As stated in 1, in order to define the set of all transforms we
need a set of sequences of class marks (or class mark-like symbols)

which has 3 subsets. | .
1. Sequences each of which corresponds to a sentence form (e.g. the

passive sequence N t be en V by N); J

2. Sequences each of which represents a deformed kernel-form and is
not a sentence form, but when inserted between specified neigh-
boring symbols of a sequence of the first set, preserves the ‘
character of the sentence form (e.g. AN, en V N);

3. Sequences each of which represents a deformed kernel-form and is

2The concept of the residue can be extended to shared sequences as well
as sequences which replace a given symbol in another sequence, The
term carrier is used in this context, This device has been extensive-
ly used in this algorithm.

-3 -

not a sentence form, but, when substituted for a symbol in a se-

' quence (of set 1 or 2 or 3), preserves the character of that se-
quence (e.g. er V ord:, n A of N),

There are also rules for inserting sequences from the second set
into other sequences or into sequences of the third set, without

changing the character of either.

All insertion or replacement rules are stated in the 1nterruptioﬁ lists

appearing between every pair of adjacent symbols of each sequence.

Most of the sequences in the first set represent unary transforma-
tions of kernel forms. Many are extended (often by permitting the
replacement of certain symbols with selected sequences from the third

set) to include analogous unary transforms of kernel-like forms.

‘The second set of sequences, together with the rules of their in-
sertion in the sequences for unary trénsformations, account for most
of the binary fransformatiqns. Other binary transformations are rep-
resented by replacement in pairs of class marks in unary transformation
sequences by members ofvthe third set, most of which consist of nomin-

alizations.

An arbitrarily long English sentence form can be seen as composed
~of a finite number of such sequences recursively embedded in one
another.

2.1 Corresponding to the above three subsets of sequences and their
mutual embedding rules, we recognize three sets of strings. Each
string is a program for comparing one of‘the sequences with a portion
of the analyzed sentence form of the data. The program is equipped
to permit interruption by other such programs accofding to the i-1lists
of the sequence, Each string, when entirely matched by a segment of
data, replaces that segment with the carrier of the string. The car-
rier is sometimes null. In strings from the second set it is usually
the residue of the binary insert (e.g. the center symbol of a noun
phrase: N of AN, of ing V'N,etc.). In strings from the third set

" the carrier is a class-mark-like symbol which, Sy replacing a class-

mark in a form derived from a kernel form, extends it to one simi-

-d -

larly derived from é kernel-like form. Let the carrier belﬁ[nV] for a
noun phrase built around an nV. The extended passive form:

N[or’ﬁtnv]] t be en V by N represents the form of the_séﬁtencevjohn's

travel to Italy was described by Mary as soon as the carrier of the

string replaces in the data the nominal segment John's travel to Italy.

The carrier from all strings in the first set is 8, a symbol of a well-

formed sentence.

The program ‘of each'string, whose sequence is a deformed (or trans-

forined) kernel or kernel-like form, reconstructs that form for decom-

position and attaches to it a label descriptive of the deformation (or‘
transformation). The result of a decomposition is a set of kernel or

‘kernel-like sentences with labels. Some of the kernel seﬂ;ehces are.

. incomplete and have blanks in them because a transformation may(ﬁélete{“
elements. Some kernel-like sentences may.contéin, instead of a W9rd;
a class-mark-like symbol e.g;'ﬁ) with a reference .to a previous com-
ponent of the decomposition. If that pieviodé component 1s a kernmel
sentence (with or without blanks), thén the label (describing the de-
formation) with the kernel-like form {containing the reference) with
its label, togéther constitute a description of the transformation un-
dergone by the component kernel sentence. If the previous component
itself is a kernel-like sentence with a reference in turn to another
component , both”kernel-like‘sentenceé and all three labels constitute
the description of the transformation undergone by the component ker-

nel sentence ultimately referred to, etc.

If‘the symbol x appears, instead of a word, in a kernel or ker-
nel-like sentence, it replaces a regular noun there. It is intro-

duced in the sentence as a carrier from a nominalization such as a-

teacher of Latin, the driving instructor, etc. The same x must ap-
pear in two or more sentences of the decomposition'(onelwhefe the
nominal stands for a noun, and one in the sentence of which the nom-

inalization is a deformation, e.g. x - teach Latin) Which x's re-

quire identical substitutions is discoverable, because each x has in
a sharp bracket (< >) the names of every previous line in which the
same X appeared. Often no actual substitution is possible and the x

-5

gserves only to identify, with eéch other, two or more blanks in differ-
>ent components. The substitution of the noun replacing_ij for x in lines
ay by . . . d 1s implied when one kernel-1like cbmponent has the form
Ntbex La,b...d>.

. 2.2 The three sets of strings (programs) constitute the major portion
of grammatical material in the algorithm. Another body of such material

is the dictionary. -

The dictionary associates to each English word a symbol representing
the word's gramatical class, together with markers of certain addition-
al characteristics the word may reveal by restricting its environment in
tﬁe sentence. Some words may occur in more than one role and have there-
fore several equivalents in the dictionary. (e.g. the word labor should

“be given four different class marks: present tense V, V(uhtensed verb),

v (nominalization designating the activity of laboring), er V (nominal-
 4zation designating the actor(s), possibly laborers in aggregate)).:

The dictionary for Transformatid:fcrammr must carry far more de-
tails than is needed for the String Analysis alome. Thus for example
the transformational analysis must be able to discover in John's sleep
not only a nouh phrase, but also the incomplete kernel sentence John-
_ sleep ® which underlies each transformation containing such a noun -
phrase. Hence the class marks: nV (sleep), ing V (sharing) A (brav-
ery), exV (teacher), eeV (employee), iiN (brotherhood), aV (helpful)
~and several others. :

*4& V-entry in the St:ring‘ Analysis dictioné_ry contains information

/aﬁogt»the kind of objects required by the verb V. An _tLV may require’
objects diffefe/nt from its V and this must be indicated (e.g. they

_attacked the enemy vs. they made an attack on the enemy).

Noun phrases like nV, ingV, etc. can occur in place of a sen-
tq:ng'..e'jobject or a subject of a sentence but only when it is organized
‘around a verb requiring such subjects or objects, and such verbs are

marked accordingly in the dictionary.

"_’_.l"hey_"':sugject and object restrictions for a verb or a verb-related

-0 -

word -are recorded in pairs, because they are not mutually independent.
(60— 1is the label for a subject (Z) requirement; jéZfor an object)
requirement of a tensed or untensed verb and some ingV occurrences;

w av labe;s an object requirement of nV-nominalization, d)ingV those

of an ing V-nominalization, etc. When needed,}é?l is distinguished

from_gg 2 (which usually is the same as the correspondinggf’) to mark
the form assumed by the object when it precedes the verb or verb re-
lated word (compare'for instance house construction with construction

of house where (O avl (the\same as 03() is N, while O avo

——————

(the same

as O nv) 1s P [of] N).)

The analysis is preceded by a replacement of the words in the

sentence by corresponding entries in the dictionary.

2.3 The process of analyzing a sentence begins in postulating (in
turn) all those strings in the grammar which may occur at the beginning
T e —r—
of a sentence (and whose initial symbol is the same as the first symbol
in the data). (See 11 of #30). Each verified postulate forces other

postulates as its consequences, until the terminal period of the sen-
tence is found which is consistent with a hypothesis., It is qui;é
" likely that an analysis will produce more than one correct reading of
8 sentence, because structural ambiguity is even more frequent in

transformational grammar than it is in the mere string analysis.

3. Examples of decomposition

Four examples of decomp081tion obtained by the algorithm follow.

&hese examples are intended to exhibit the power of the algorithm.

It is possible, without changing the algorithm, to increase the
power and depth of the analysis by incorporating more details about
transformations as they become available by adding either new trans-
formation sequences or adding new classes and new co-oécurénce:restric-
tions in the dictionary or both.

Among the various issues which are now'receiving further atten-
tion, some are as follows: a) a better characterfzation of nF-nouns
and the underlying kernel sentences in terms of which the modifiers
can be explained (e.g. school principal (example 3), French teacher;
j;g;é&_ggggg, etc)' b) the relation of classifier nouns to each other
and their kernel positions with respect to' their modifiers (e.g. organ-

etter
ic chemistry, helpful trip, friendly a&ay etc.) c) precise relation

of constants (e.g. his, both in example 4) or classifier nouns with
a definite article to other nouns or phrases for which they are a re-

placement,

Examples: The first colummn lists the kernel sentences or kernel-like:
sentences (or intermediate resultants). The second column gives the
rest of the transfbrmational history., Here the names as stated are ’
partial in the sense that the corresponding strings do not aiways '

correspond to complete transformatial sequences as discussed previously.

1.

Text: The fact that John is. a stranger makes
T Nw that N pres.be[3] T N present V[3]

his 1life here unbearable.
R's nV D av

F{Q indicates here 3rd person.

Decomposition:

Kernel or Kernel- . transformation)
like sentences jpartial names) carrier
1. John pres.be stranger (a) container® noun: N that § N <D
. i o~ ~~
2. He - live here; N-nominaliztion; Z's e N (2>
3. -~ cannot bear 'N’(2> adjectivization : aV A (3)

b, N (1>pres. make N < 2> A <3 container: N V NA

'20

Text: Our algebra teacher was requested by the school
R's N erV past be [3] enV by T N
. principal to interview a woman candidate from Swarthmore.
1 to v T N N P N

Decomposition: V ' '

Kernel or Kernel- transformations

1ike sentences » (partial names) - carrier
first reading: . ‘

_ 1. x - teach algebra x-nominalization: RerV x D
2, We- have x<1) " left modified noun: N's N x {1,2)
3. x - heads® school x-nominalization: NnF . x {3

« woman- 'V P candidate (a) compound noun: N.N ' candidate(h)
app app I -
(vapp= be; Papp = @) ‘A _ ‘
5. candidate-be from Swarthmore noun, right modified: .candidate
- , ’ - N PN, {u,5>
6. x < 1,2 - {nterview passive of container: s
candidate {},5) NtV N infinitive

x {3 past request x

<12)v ,

*

2Roughly_, container forms are sentence forms in which 1) there is a
verb (Vw) requiring a sentential subject or a sentential object or

_both or 2) there is a noun (Nw) or ~djective (Aw) requiring sen-

tential complements,

3heads is a Vappr0pr fate for nF principal as found in dictionary.

-0 o

‘Kernel or Kernel-
like sentences

second reading:

1. x - teach us algebra
2., x - head school

{partial names)

transformations
carrier

x-nominalization: ® erV x <1>
x-nominalization: NnF x £2

. -V : :
3. woman app Pappcandidate (a).'compound :_muxt N1N2 carzi;;ate
b, candidate-be from Swarthmore noun, right mod- candidate
ified: NPN, {34
5. x(l> - interview candidate passive of con- s
3,4 tainer: NtV N
' infinitive
6. x<2> past request x { 1)<)
3.. .
Text: Accident insurance of an employee by his employer
N i\ P T eeV P R's erV
protects both. '
present , - V: [3] Q
Decomposition: .
Kernel or Kernel- transformation
- 1ike sentences - (partial names carrier

first reading:

1. - -~ employ x

2, x - employ him

3. x £2>- insure x < 19 (an)
P accident
app

4. N < 3) present protect both

second reading:

1. - - employ x
2. x - employ -
3. he - have x <2>

Ah. x <2> - insure x <1>(in)

P accident
app
5. N (h) present protect both

. X <1>

x-noﬁlinal ization: eeV '

x-nominalization: erV x 42>
_nominalization: nV N[nV+8
~ . +2143)
container: Nt Vw N¥* S
x-nominalization: eeV x {1>
x-nominalization: erV x £ 2%
left modified noun:
1
" <2,3>
N-nominalization: nV N[nV+$
- +21(3)
container: N t V ‘N s

Note: The analysis would reach even deeper if the words his and both
were treated as reference words leading to a substitution, €8,

of x {1> for he, x 1> and x 2> for both.

k,

Text: Crop sharing. between the tenant and the land owner

N ingV P T

* Q may replace N,

- 10 -

and T N erV

is an economic arrangement unsatisfactory to '

present be [3] T aN = nV aV B
organized labor.
enV erV
Decomposition: '
Kernel or Kernel- ’ . transformations _
like sentences (partial names) ' carrier
1. x - own lan _x-nominalization: exV _x (17
2. tenant (the) and x <f1>(the)- N-nominalization: ingV N[ingV4~
share crop . I+ 9]
- 4>
3. - - arrange -; P___economy N-nominalization:nV N[nv]
_ app . . 3D
k, x - labor - ' x-nominalization: erV x < 4>
5. - - organize x {1 left modified noun: x< k,5>
,enVN
6. ¥ 3 -not satisfy x <h,5) N right modified: N aV N (3 6>
T. N<2> present be N <3,6} (an) container: Nt be W
b, An illustration of the procedure
Example 5 John is a good story teller

-This example illustrates the process of analysis in some detail.
Because of space limitations for this paper a rather simple structure
had to be chosen for this purpose. A short dictionary of the words in
the sentence has been prepared and also a small set of grammar strings
in provided for this illustration. Both were greatly simplified so
that rich grammatical material will not obscure the demonstration of
the choice of hypotheses, their verification or rejection, the use of

. the carrier, changes of levels in analysis and the exploration of al-
ternative readings.

The analysis always begins with the string #30 postulated. A
decomposition ends, when the program associated with this string is
finished., All possible sentence beginnings are included in 11 of #30.

After _the end of #30 alternative “decompositions are sought.

When a new string is postulated on the basis of an i-list of
“another string, the verification of the new string takes place in the
next level of a push-down memory, so that the state of computation of
the suspended string is not affected.

Whenever two or more alternative paths open up for the analysis,
each must be pursued to a successful completion or until failure occurs.
(The analysis must produce every possible decomposition of a structur-
ally ambiguous sentence). In our analysis, different paths are pursued -

- 1] -

serially. Every time an inspection of i-lists allows more than -one
hypothesis, one is chosen, while a list of the remaining ones to-
gether with all relevant positions of the memory goes on top of
another push-down storage. The contents of that storage is examined
after the end of the chosen path. The analysis ends after all pos-
sible paths have been explored and this storage is empty. In the
example of analysis given here, we mark bypassed open branches by
asterisks on the left margin and their resumption by similar aster:
isks encircled,

Dictionary used in Example 5.

John - N [proper, huTan, singular] . ,

is = present be [: Nlor x];0; N/A/PN/D, L :
_ o N[nV/ingV], w: A, N , N[nV/ingV] etc.]

a - T[a] : ’ '

good - A [A-1ly =well]

story - N - ' ~
teller - erV [6~ : human, count; w‘“’erv]_: N/N[“V]/q);"f’erv2;

PN[or x or N: nv1/p]

Grammar Strings used in example 5.

Nominal strings (each gives a noun-1like carrier):

' 4 ~ L
1. T[the/a/an] = N[or x; or N: nV/ingV/nA/nN]
1, 2,3,4,5 S
L -
name: -
kernel: -
‘carrier: N[the article] (as matched)

-~

i N{or x]
1, 2,4,5,
12 | |
name: . left modified noun: AN o .
kernel: - N - be A (N,A as matched from data)
carrier: N<address of kernel) N " W »)

2. A

l'D'esignates. third person,

5'

10 -

11 -

A | 1
A b Aﬁ[nV/ingV; or x] 2

11 3)
12 -

name: left modified’_g_omi‘nal A 'I;Iv [or x]

addition to kernel of N: 3 A-ly . (A, as matched)
carrier: N (Y as mat:ched from data) ' o

i
erV 1
11 -
name: x-nominalization
kernel: x-V-

carrier: x [subclasses required from subject of V] (address

, of kernel)
S i. .
N[object] 1 erV 2
il’ -
name: x-nominalization
kernel: x- VN (N,V as matched from data)
carrier: x [subclasses required from subject of V] (address
. of. kernel)
R T i
w lg 2
Do v
. 11 -
.12 -
name: N-nominalization: - nV[+9] o
kernel: _- - V2 (as matched from data)
. carrier: N[nV] <aXdress of kernel) .
Object Strings: -
. il ~
Nlor x]
11 -
name - object
contribution to kernel in carrier .
carrier: $©[N] (N as matched in data)
i i i
Nlor x] L »p 2 ‘Nlor x] 3
11 -
1, 1,2,4,5
i, -
3

- 13 -

name - object
contribution to kernel in carrier

carrier: £[N P N] (N P N as matched in data)
Sentence Strings
T 3 4
20 - N t v Q
11 - _
L - |
13 - 10,11,1,2,3,k,5,6
ih -
name: identity of kernel form: N t V &
kernel: Nt V& (as found in data)
carrier: S ¢ address of kernel)
SR T B - S
21 - N t be N
11 - '
12 -
13 - 1,3,6
1, -
‘pames _containing "he' 3 N is ’E
kernel: N t be N (as matched from data)
carrier: S < address of kernel) ’

Monitor String

Y 1 i
o. g 2.1
1 1,2,3,4,5,6,20,21
1, - v
13 -

Illustration of the process of analysis:

Data:t » N[John] pres.V[3,be] T[a] Afgood] N[story] erViteller].

#30: . 8 . ‘ (level 1) _ <
§ £ N '

11 of 30 allows the following strings beginning with N to interupt 30
here: 5,20. Try 20, mark * for the branch opening with 5 on level 2,

* Data: N[John] pres V[3,be] T[a] Algood] N[story] er V[teller]
20 : N tv 2 (level 2)
N=N[John] :

t =present] .
V=V be accepts John as subject, For a human subject, the ob-
ject cannot be# 6(in this simplified grammar), The verb be

- 14 -

rejects object form of #11. :
€+ T Among the remaining strings of 13 of 20 (1 2,3, ,5,10).

only 1 starts by T,
Data: T[a] Algood] N[story] erV[teller]. (level 3)
N - _ _

#1 : T
T=T
N£A B *
11 of 1 has 2,3 beginning with A. Try ‘2, mark ¥ %X _ for
bypassed 3. .
" Data: A[good] N[story] er V[teller]. (level h).
¥ #2 : A N '

A=A '
#f ~ N=N note'.:L1 of 2 has string 5 beginning with_l‘_!.

‘Mark *¥*¥ for the bypassed branch.

end 2, kernel 1: story-be good. Resume 1,

Data: N[story] L1 erV[teller] (1evel 3).
continue #1

*jélﬂ' N=N note:i; of 1 has string 5 beginning with N, Mark
open branch ¥¥¥, ‘end 1. Resume 20.

Data:. N[story] < 1> (a) er V[teller]. (level 2)
continue #20 ’

OFN .

of the strings from 13 allowed by object requirement of the

~ verb be, 5 and 10 begin with N. Try 10, mark ¥¥¥¥ for by-
passed 5.

Data: N[story] <1> (a) erviteller]. (level 3)
#10: N _ _ _ ,
N=N
end 10. Resume 20.

Data: & [N[Story]< 1y (a) J erV[teller]. (level 2)
continue #20.)

2=8 [N[story] <15 (a))
End 20. Kept(el 2: John pres. be story < 1> (a). Resume 30.
Data: S < 2D erV[tellerj (level 1)
continue #30
§=8
- Fer » - |
There is no string in 12 of 30 which begins with er. Resume the near-

est open branch: #5 at level 3. Erase mark **** (kernel 2 is also
erased)

@ Dat:a' N[story] (1) (a) erV[teller]. (level 3)
5 N erV
N= N
er s er

V=V story is a proper object fbr teller

- 15 -

End 5. Kerpel 2: x - tell story <1»{a). Resume 20,
L

Data: x <2>. (level 2)

continue #20

8 f x : .

The only string beginning with x among those of i
object of be is 10 '

Data: x< 2). (level 3)
- #10: Nlor x]
"N=x

end of 10. Resume #20.

Data: 8[x <2>7]

continue #20. . o .

£ = £ [x[human, ct., singular] < 2>7, However, the verb be with
a count-noun subject requires from a noun object an ar-
ticle or an article-replacer. This lacking, the current
branch fails, the branch marked ¥** is reopened with #5

on level 4. (Kernel 2 of the failing branch is erased.)
Erase *¥X%,

&=® Data: N[story] erV[teller]. (level)
#5 : N erV
N =N
er = er
V = V story is appropriate object for teller.
End 5. Kernel 2: x - tell story < 1>. Resume 1.

allowed as

3

Data: x< 2>, (levei 3)
continqe #1)
N=x

end 1. Resume 20.

continue 20
2 4 x

only one string beginning by x can interrupt here; it is 10.

Data: x <2 (a). (Level 3)
#10 : Nlor x]
N=x
end 10. Resume 20
Data: 2[x <27 (a)] . (1level 2)
continue #20

' Data: x <2>(a) . (1evel 2)

Q=9 .
end 20, Kernel 3: John pres. be x ¢ 2>£a). Resume 30.
Data: 5 . level 1)
continue #30 (
§=8
* = &
End 30 _
Print output: 1. story - be good (left modified noun)
-+ 2. % - tell story 1> (x-nominalization: ZerV)

3. John present be x < 2)> (a) (identity of extended NtVN)

= 16 -

Are there any branches open? Yes, ¥¥* at lével 5 #5 will be tried.
Erase ¥%,

€T - Data: N[story] erV[teller]. (level 5)
#5 : N erV .
N=N
er = er

V =V story is apprOpriate object of teller
end 5. Kernel la: x - tell story. Resume 2,

Data: x £1% . (level L)
continue - .

N=x . ’
End 2. Kernel 2a: x £ 1) - be good. Resume 1,

Data: x {1,2). (1level 3)
continue #1

N=x

end 1. Resume 20.

Data: x <1,2) (a)- (1evel 2)

continue

Q #£x A
The only string allowed to interrupt here is 10.

Data: x £1,2> (a)« (level 3)
#10 : Nlor x] :
N=x
End 10. Resume 20.

Data: x <1,2> (a)] -(1eve1 2)

continue 0:

'End 20. Kernel 3a: John pres. be x <1;2> (a). Resume 30.

Data: = S 3. (1evel 1)

continue 30

85=S8

end 30.

print output: 1. x - tell story ! gx-nominalization: QerV)
2. x £1> - be good left modifier noun)

3. John pres. be x £ 1,2 (a) (identity of extended
NtVN) ~
Are there any branches open? Yes, *%ae at 1evel L, :
(To abbreviate, we will.just say that this branch will be very much like

the ‘last one, except that, due to the difference between strings 2 and
3, it will give the output: -

- 17 -

1. x- tell story; well (x-nominalication: ferV;
left modified nominal)
2. John pres. be x ¢ 1> (a) (1dentity of extended
NtVN)

The last open branch, marked x 'fgils immediately.)

- 18 -

4
-References

1. Joshi, A. K., Hi%, D., "String representation of transformégiqh§5
and a decomposition procedure", Part I and Part II, Transforma-
tions and Discourse Analysis Project Paée;,.Universi;y of
Pennsylvania, Dec. 1965. '

2. Joshi, A. K., "Transformational analysis by computer with some..
applications", Presented at the National Institute of HealthQA
Semin: r on Computational Linguistics, Bethesda, Oct. 1966;:
(To be pnblished). ‘

=19

