Programming of Reversible Systems in Computational Linguistics

Gerhard Engeliemn, Forschungsgruppe LIMAS, Boun

In my paper I shall report on some aspects of programming rever-
sible systems, in particular the special problems involved with
Programming non-numerical systems.

Dr. Alfred Hoppe of Forschungsgruppe LIMAS has developed a pro4//
cedure for a reversible data flow (Figure 1). In the matrix-three
different quantities are comnnected together. For analysis the
grammatical description of an inflected form is determined by
combining the inflectiomn class with the ending. For example the
German verb gehen is composed of the stem geh aund the ending en.
The lexicon tells us that geh belongs to inflection class B. By
combining the chanmnels of inflection class B and the ending en

we are able to determine the grammatical description of the v verb -
(whlch is in this case amblguous) Each of these groups contains
a series of binary variables whose value is either zero or one.
The synthesis process unites the channels with the grammatical
variables, the result being the appropriate ending.

The matrices contain only "and" and "or" gates and an element
which can block the flow in omne directiomn, as certain linguistic
forms will be analyzed but not synthesized. Techmically realized,
the matrix displays an example of parallel processing which is
both complex as well as rapid.

For the presemnt time the LIMAS system will be programmed for con-
ventional computers, which operate more or less sequentially.
Thus programming such a matrix involves simulating this parallel
data flow on a sequentially operating machine., One must, however,
take into comsideration that this will result in an increase of
running time., But for purposes of testing whether or mnot the end
data have been correctly combined to deliver the final result
this time increase is irrelevant.

Besides the parallel processing one must also consider reversi-
bility. We have discovered that reversibility has not made pro-
gramming more difficult; on the contrary, it has facilitated the
program debugging process,

At first the matrices will be programmed to flow only in the di-
rection of synthesis. For analysis one would have to write every
-possible form of a large number of words on punch cards in order
to test all the variatioms, This, of course, would require an
immense amount of work. It is a great deal simpler to let the
computer print out the inflected forms, and then check the ‘output
to see if they are correct. The feature of reversibility thus
makes it possible to test both directions, i.e. analysis and syn-
thesis, at the same time.

Fig. 1 -

- -

SYWNIT addni6sbunyossio4

1

L1l

!
N

-'I would like to discuss briefly various procedures which facili-
tate the simulation process, All descriptive categories such as
case, numbey, person, etc., are coordinated with the various en-
dings. The problem is therefore to compute the combined values of
certain binary variables from the combined values of certain
other binary variables, List processing is probably the best sui-
ted method for this type of problem. i

Figure 2
Ending ’ Inflection Class I'Grammatical Information
L] X . L] X . . . L] X - 1] * X . L] -
geh/ en B 1-pl 3-pl etc.

The variables assume their meaning according to the arrangement
in the rows and columns. It is obvious that each line of such a
list can be stored in one or more machine words.

It is necessary to have a program which will encode endings, in-
flection classes, and grammatical information in bit-combina-—
tions, and a search program which can locate the respective bit-
combinations in the list., For analysis the suffix bit pattern
and inflection class bit patterm are given, and the list is
searched for the line in which they are stored. This line also
contains the grammatical bit pattern, the object of the search,
The results can be printed out with the help of a decoding pro-
gram, or else they can remain encoded and be processed at a
higher level in the ~system., The synthesis process is similar
except that the grammatical bit pattern is given in place of the
suffix bit pattern., The suffix bit pattern is then the object of
the search, '

The list method has the advantage that necessary expansions or
changes can easily be carried out during the developing stages
without affecting the actual program.

Another programming possibility results from a formula-like
representation. All variables of a line in the list are to be
consecutively indexed.

(a1, Bys eeey an)

With the aid of logical functions (e.g. the Boolean full form)
‘it is possible to represent the Process in the following way:

a; & Fy (215 a5y veey a) i = 1,n
. e
A search procedure is no longer necessary. Instead, as many
logical equations will be computed as there are variables. Of
course the variables will have to remain stored until the final
result is available, It is possible to obtain these formula—
like representations automatically from the lists, and to auto-

-3 -

matically minimize the obsained formulas, i.e. to establish the
smallest number of binary operations. :

The iists can also be stored in a three-dimemsiemnal binary matrix.

- ‘ E o N

> Ki VMkngié?

Such matrices can be processed by’fqrmulas‘of the following type:‘

gl B A (xR)

Pel= G ;,(1‘: (K & Mk-.g.e))

(where Y, § are binary operators).

[7]

The procedure becomes clear if one imagines that the list is
divided into sublists, and that for any givemn channel only omne
of the sublists is to be searched. The saving of time which re-
sults from such a procedure is evident. .

One can also increase the throughput by taking into account the
frequency of the forms, in that the list is arranged in decrea-
sing order of frequency.

If the matrices are internally wired these cdnsiderations are no
longer valid, as the acceleration factor would be about 1000.

There are several basic features which distinguish numerical .
from non-numerical data processing. Numerical data processing is’
generally characterized by:

A relatively small amount of input
non " " output
Extensive intermal computatiom

Most conventional computers are designed for such tasks, On the
other hand non-numerical work involves:

A large amount of imnput

non n output

A relatlvely small amount of actual computation
The use of a large storage capaecity

No floating point computation

Forschungsgruppe LIMAS uses the computing center at the Imnstitut

-4 -

‘fiir Instrumentelle Mathematik at Bonn University. The main pro-
gramming language is FORTRAN II. Although FORTRAN was developed
for numerical purposes it represents a relatively useful compro-
mise between the various programming languages. The flexible sub-
program system and the possibility of calling machine language
programs from FORTRAN programs serve to facllltate the programming
of non-numerical problems. ‘

In order to simplify and expedite the pro gams, a computer with
the following features would be desirablej ‘
Byte~structure storage B

Magnetic tape readers which operate in both directlons
A large disk storage area
A high-speed printer with upper and lower case and
‘'special characters
A sophisticated wired addressing procedure
Biatuinthid

. The last desideratum is justified in that non-numerical data pro-

-~vessing is highly dependent on address manipulation., -For—this -
same reason, relative addressing, indirec¢t recursive addressing
‘and multiple addressing should be available. It should also be
possible to annex extra hardware such as Dr. Hoppe's matrix.
Wired search and sorting programs would also be practical.

With this sketch of some technical aspects of data processing I
shall close my remarks. Thank you.

