Bing.-Nra

1965 International Conference on Computational Linguistics

AUTOMATIC DEEP STRUCTURE ANALYSIS

USING AN APPROXIMATE FORMALISM

D, Lieberman, D. Lochak and K. Ochel

IBM Research Center
P. O, Box 218
Yorktown Heights, New York
U.S. A,

ABSTRACT

The aurﬁrpatic sentence structure analysis procedure described
earlier ' has been programmed. The formalism is not trans-
formational, but is sufficiently general to permit the expression
of a wide variety of structural models. It is now being used to
obtain automatic structural descriptions which are very close to
the '"deep structure'' structural descriptions of transformational
theory.

The formalism will be described, and its use for various structural
models will be illustrated. A detailed description of the reformula-
tion of a transformational grammar of English in terms of the
approximate formalism will be given.

The salient features of the computer program which operates on
the formalism will be described, and samples of output will be
presented.

(1) D, Lieberman, "A Procedure for Automatic Sentence Structure
Analysis''., Paper presented at the 1963 Annual Meeting of the
AMTCL, Denver, Colorado, August 25-27, 19€3.

Lieberman, lLochak and Ochel
-2 -

The objective of the work described herein is the development
of a computerized linguistic basis for application to practical and
theoretical problems in automatic language processing. The three
main parts of work are: 1) a formalism for expressing grammatical
information, 2) a sentence analysis procedure based on the formalism,
and 3) a grammar of English expressed in terms of the formalism,

but motivated by transformational theory.

The Formalism

The formalism is not intended to represent any particular lin-
guistic theory or model, but rather, as the name implies, is simply
a vehicle for expressing various models. It is designed to be suf-
ficiently restrictive to permit the development of an associated
sentence analysis procedure, and at the same time, to be suffi-
ciently flexible to permit the relatively straightforward representa-
tion of most current linguistic models and variants, such as IC
analysis, dependency theory, context-free and context-sensitive
phrase structure grammars, etc. The formalism is not well adapted
to the direct representation of transformational grammars, but, as
described below, can be used to obtain structural descriptions very
close to the ""deep structure' of a transformational description.

In the present system, a structural description is a single
labeled tree, with no further inherent restrictions (a sentence with
multiple syntactic readings will have multiple trees, but each reading
is répresented by a single tree). Further restrictions, such as
projectivity for example, can be imposed by appropriate use of

""condition statements'' described below.

Lieberman, Lochak and Ochel

-3 -

The grammatical information is expressed through the

formation of a set of category or node types. This collection is

called a node dictionary. Each node type in the node dictionary has

the following format:
Field A -
Field Bi -

Field Ci -

Field Cij -

Field D -

Field E -

node type

list of possible immediate ancestors

(order irrelevant)

list of possible immediate descendents
(order irrelevant)

lists of conditions associated with selection
of the items in the corresponding Ci-field,
Each condition statement consists of a
condition type and an appropriate number
of tree addresses. Conditions are used to
express restrictions such as word order,
government, agreement, etc. The types

of conditions presently in the program are
described below.

continuity (do all the lexical items dominated
by this node type (Field A) occupy a con-
tinuous segment of the input string).
blockage (list of node types blocked by the
current node type). Each of the node types
in the list may be accompanied by a Tree
Address, with the interpretation that nodes
of the given type are blocked by the current
node only if they are dominated by the node

at the Tree Address,

Lieberman, Lochak and Ochel
-4 -

Fields Gi - subcategorization features.

The following types of conditions are now included in the pro-

gram:

Type A Format At (Tree Address)
Interpretation: The current branch (the Ci under which
the condition occurs) requires either the presence (if +
is used) or the absence (if - is used) of the node at the
Tree Address.

Type B Format 1: B
Interpretation: The current branch is optional

Type B Format 2: BL (Tree Address)
Interpretation: The current branch is optional only if the
node at the Tree Address is present (if + is used) or
absent (if - is used),

Type DB Format 1: DB
Interpretation: The current branch is optionally deletable,

Type DB Format 2: pBL (Tree Address)
Interpretation; The current branch is optionally deletable
only if the node at the Tree Address is present (if + is

used) or absent (if - is used)

Type DD Format 1: DD
Interpretation: The current branch is obligatorily
deletable,

Type DD Format 2: DDt (Tree Address)

Interpretation: The current branch is obligatorily
deletable only if the node at the Tree Address is present

(if + is used) or absent (if - is used).

lieberman, l.ochak and Ochel
-5 -

Type G Format: G i/j (Tree Address)(Tree Address)
Interpretation: The presence of the current branch re-
quires identity of the features at subfield i of the G-field
of the node at the first Tree Address and subfield j of the
G field of the node at the second Tree Address.

Type H Format: H (Tree Address) (Tree Address)
Interpretation: The lexical item at the first Tree Address
must precede the lexical item at the second Tree Address,
If either of the Tree Addresses does not point to a lexical
item, the condition statement is in error.

Type S Format: S
Interpretation: The current branch is self satisfying, i.e.
it is not a lexical item but has no descendents. This con-
dition is used, for example, with sentence boundary
branches.

In addition to the above condition types, a special device is
used to indicate that a group of possible descendents of a given node
are mutually exclusive. When only two branches are involved, a
Type A - condition can be used, but when more than two branches

are involved, the use of Type A - conditions becomes awkward.

The Sentence Analysis Procedure

A central feature of any automatic sentence structure analysis
procedure is the manner in which syntactic ambiguity is handled
during the processing. Even syntactically unique sentences will,
during the processing, exhibit multiple potentialities, The for-
malism for handling such intermediate representations is a very im-

portant part of the heuristic capacity of the program. In the present

Lieberman, Lochak and Ochel
-6 -

system, a compact graph-like structure is used for intermediate
representation. At the end of the analysis, all syntactic readings of
the sentence are represented by a single graph with appropriately
marked conditions on its vertices and edges. A special output algorithm
is required to extract the syntactically permitted trees from the compact
graph representation.

The scanning sequence (single-pass, iterative, multipass,
left-to-right, right-to-left, chunk and process, etc.) has been made
a semi-independent component of the procedure in order to permit
flexibility in the future application of theoretically or heuristically
motivated approaches to search strategy. In the present version of
the system, a left-to-right single-pass search strategy is used.
This very simple search strategy was chosen as a start in order to
permit concentration on the complexities in the other parts of the
procedure.

The sentence is analyzed one item at a time from left to right.
The items on which the analysis procedure operates are not the
orthographic words, but rather, the result of a dictionary lookup
step which includes some morphophonemic analysis. Thus, went

would be analyzed into go + past, painted would be analyzed into

paint + past or en, etc. The dictionary lookup step would also

yvield, for each item, the node type or types (A-field) of which the
item is a descendent, and subcategorization features to be placed
in the corresponding G-fields. Thus, after dictionary lookup, the
inpﬁt sentence would be replaced by a string of nodes. These nodes are
the items which are processed one at a time, left-to-right.
The following sketch of the analysis procedure is intended to

indicate current status; numerous details are omitted.

Lieberman, lLochak and Ochel
-7 -

Suppose dictionary lookup yielded the following string of nodes:

X T
All possible immediate ancestors of X (listed in its B-field) are built

up. Thus, if the B-field of node X contained

Bl P
B2 Q
B3 R

the following structure would result

[P [R
N7 o
| Xi Y iz

and branches PX, QX and RX would be marked as mutually exclusive
in any one reading of the sentence. Then, in the same manner, all
possible ancestors of node P would be formed, and the building upward
process would continue until a special node type without ancestors
(the root of the tree) was reached. If the grammar permits recursion,
some method for preventing infinite depth must be introduced. At
present, we use an input parameter n which limits the number of new
nodes of any one type on a single ancestor string to n. As will be-
come clearer bzlow, this does not limit the total recursion in a
sentence to n,

At this point, we have a structure of the form:

lieberman, lochak and Ochel
-8 -

‘\\\\ \1) /“

k1 [o] [&
L

vl (z)

where the nodes have been assigned numbers for convenience of
reference herein. In the actual process, they would, of course, be
specific node types.

Next, the new nodes without ancestors are built upward sys-
tematically. The end result (syntactic readings of the sentence)
should not depend on the sequence used. The sequence we are now
using was chosen for programming convenience. It is not perfectly
clear that the end result is in fact independent of the sequence, but
there are, as yet, no indications to the contrary. In the sequence we
are now using, node 2 would be built upward next. If new nodes
without ancestors were formed, they would be processed next. When
processing of node 2 and its ancestors is completed, node 5 is built

upward similarly, then node 7, 8, Q and R in that order,

lieberman, lochak and Ochel
-9 .

During the building upward of the very first ancestor string
X-P-6-4-3-1-ROOT, there was no choice but to continually create
new nodes to serve as the required ancestors. However, in sub-
sequent build-ups, a required ancestor node type may already exist,
in which case it is used, providing that it doesn't result in a node dom-
inating itself. If two or more nodes share a common ancestor, the
corresponding branches are marked as mutually exclusive even if the
descendent node types are different and compatible from the point of
view of the ancestor node (i.e. they attach to different parts of the
ancestor's C-field), because we are still considering the buildup of
a single item, node X, which could not serve as two constituents
simultaneously in any given syntactic reading of the sentence,.
Following completion of the building up of node X, the re-
sultant structure is scanned for closed branches. A branch is called
closed if all readings of a sentence require the presence of that branch.
The test for whether a branch is closed is whether removal of the
branch would completely disconnect node X from the root. For

example, in the following structure:

RO

3

=

B,
g

El

lieberman, Lochak and Ochel
- 10 -

branches U-T and P-X are closed, Closed branches are marked
accordingly,

A node with a closed branch is called definite. If a node is
not definite, it is called potential. This nomenclature will be used
below.

The next step is the testing of the conditions associated with
the various branches established during the buildup. The conditions
to be tested for a given branch are listed in the corresponding part of
the C-field of the node from which the branch descends. Since the
results of condition testing depend on blockage, which has not yet
been discussed, a detailed description of condition testing will be
postponed until processing of the next jtem (one which is not the
leftmost item) is considered.

After condition testing, blockages are applied. There are two
types of blockage - permanent and temporary, and each type can be
definite or potential. The information causing blockage is in the
D-field and the E-field of each node type. The D-field is used to in-
dicate whether or not the node is continuous, i.e. whether the lexical
items dominated by the node occupy a continuous segment of the input
string, Each of the continuous nodes created during the building up
process causes temporary blockage to be applied to every node which
it does not dominate. If the node causing blockage is definite, the
blockage is definite; if the node causing blockage is potential, the
blockage is potential. When a node causes temporary definite blockage
a list is kept, at the node causing blockage, of all the temporary
blockages caused by that node. Later, when the node causing blockage

has been filled with the required constituents, the blockage it caused

l.ieberman, lochak and Ochel
- 11 -~

is removed. In the case of temporary potential blockage, a similar
list is created and, in addition (for reasons described below), a
record of the node causing blockage is made at each blocked node,

The next blockage action involves permanent blockage (both
definite and potential) and is guided by information in the E-fields of
the various nodes created during the building up process. However,
we are still discussing the processing of the very first (leftmost)
item in the input string, and in this case, permanent blockage does
not apply. Permanent blockage action will be described below when
processing of the next input item is considered.

This completes processing of the first item, and we proceed
to the next input item. The same building up process is carried out,
except that now, a node (other than the root of the tree) required as
an ancestor may already exist. In this case, the existing node is
used as the ancestor, providing that: 1) it is not definitely blocked,
and 2) the required branch is not closed. If the existing node is
potentially blocked; a connection is made, but the connection and the
node which caused the potential blockage are marked as mutually
exclusive in any one reading of the sentence. This is why (as
described above) a record of the node causing potential blockage is
kept at the potentially blocked node. If a connection is made to a
potentially blocked node, alternative ancestors are also created
since (as described below) the potential blockage may later be
changed, retroactively, to definite blockage and the previously made
connection would be erased,

It can now be seen why (as mentioned above) the recursion

parameter n does not limit the total recursion in a sentence to n.

lieberman, l.ochak and Ochel
- 12 -

The recursion parameter limits the number of new nodes of a given
type which can be created along an ancestor string during the building
up of a given input item. Thus, in the building up of item 2, for
example, n nodes of a given type may be created along an ancestor
string and the string may then be connected to an already existing
node which in turn may have had n nodes of the given type created
along its ancestor string.

After the building up of item 2 is completed, closed branches
are marked on the newly created structure as was done in the process-
ing of item 1. However, in the case of item 2 and subsequent items,
further action is taken. If a branch marked closed had also been
previously (during the building up) marked as mutually exclusive
with some other branch, the other branch is erased.

Whenever a branch is erased, a routine called CLEANUP is
brought into action. This routine follows up all the consequences of
erasing a branch, and cleans up the structure accordingly., For
example, if the branch being erased is marked as a necessary co-
occurrence of some other branch, the other branch is also erased.

If the branch being erased is the sole ancestor of some node, that

node is erased, i.e. all of its branches are erased, If a branch

being erased is an obligatory constituent of some permanently
definitely blocked node, and there are no competing branches
representing that constituent, the node is erased. During cleanup,

a branch which was not previously closed may become closed,thus
making some previously potential node definite., If the node in question
caused blockage at the time it was created, the blockage would have

been potential. The blockage is now made definite retroactively,

lieberman, l.ochak and Ochel
- 13 -

This is the purpose of the bookkeeping described above regarding
connections made into potentially blocked nodeé, A record was kept
of all branches connected into potentially blocked nodes. When a partic-
ular potential blockage becomes definite, the corresponding marked
branches are erased. Or, cleanup may operate in the reverse
direction. If a branch which had been connected into a potentially
blocked node becomes closed during cleanup, the node which caused
the blockage is erased.

The above account of cleanup is not meant to be exhaustive,
but simply to describe the main features of the CLEANUP routine.

The cleanup routine may run into a contradiction. For
example, a definite node or a closed branch might be marked for
erasure. When this happens, the analysis is terminated, and the
sentence is labeled '"non-grammatical'',

Returning to the main routine (CLEANUP is a subroutine
used repeatedly during the main routine), the next step is condition
testing., Each of the conditions listed in the various newly created
node Ci-fields which received candidates are tested. The result of
a condition test is YES, NO, or UNTESTABLE. YES means the
condition is satisfied, NO mseans the condition is violated, and
UNTESTABLE means that the condition was untestable because one
or more of the nodes involved in the condition did not exist at the
time the condition was tested,

If the result of a condition test is YES, no further action is
taken. If the result is NO, the subsequent action depends on the
status of the various branches involved in the test. If none of the

branches (including the one under which the test is listed) are

lLieberman, l.ochak and Ochel
- 14 -

closed, they are marked as mutually exclusive. If the branch under

which the test is listed is closed and the other branches involved in
the test are not, the latter are erased. If both are closed,

the analysis is terminated and the sentence is labeled ''non-gram-

matical', The erasures are carried out by the CLEANUP routine

and all consequences of each erasure are followed up as described
above,

A few UNTESTABLE results can be acted upon. For example,
if a condition on X is that it follow Y, and Y does not exist, the re-
sult is equivalent to a NO result. However, with most condition tests
resulting in UNTESTABLE, no immediate action is taken. A list of
such events is kept and the tests are reapplied after the last item in
the sentence is processed. It is, of course, highly desirable to
reapply previously untestable conditions the moment they become
testable. Methods for accomplishing this, without paying so high a
price in machine time and/or space that the advantages are nullified,
are being considered, but at this point in the work are not of the
highest priority, because the end result (the structural description)
should depend only on the collection of conditions and not on the order
in which they are applied. This and other problems concerned
primarily with machine running time will receive increased
emphasis in the future.

Continuing with the main cycle, the next step is application
of blockage. First, temporary blockage, as indicated by the D-fields
of the newly created nodes, is applied to all relevant nodes, both
newly created and previously existing. The procedure is the same as

in the case of the first input item.

lieberman, lochak and Ochel
- 15 -

Next, permanent blockage, as indicated by the E-fields of the
newly created nodes, is applied. The procedure is similar to that
used for applying temporary blockage, the essential difference being
that blockage is applied only to previously existing nodes, and not to
newly created nodes. This explains why permanent blockage did not
apply during the processing of the first item -- there were no pre-
viously existing nodes, only newly created nodes. In the actual
program, it was convenient to allow permanent blockage to be applied
during the processing of the first item, but the result is, of course,
vacuous.

Application of permanent blockage provides possibilities for
cleanup which do not occur in the case of temporary blockage. If a
node is marked permanently definitely blocked, it is checked to see
whether it contains all of its non-deletable obligatory branches. If
it does not, it is marked for erasure and the CLEANUP subroutine
goes into action.

This completes the processing of item 2. The next and sub-
sequent input items are processed similarly, until the final item,
representing end of sentence, is reached, This item has only one
possible ancestor (the special node at the root of the tree) and its
E-field lists all node types. Thus, it permanently and definitely
blocks all nodes. When all of these blockages have been applied and
the resulting cleanups have been carried out, the analysis is com-
pleted, and we proceed to the output routine.

The purpose of the output routine is to print out, explicitly,
each of the possible syntactic readings of the sentence assigned by

the analysis procedure. The individual readings are not explicit at

lLieberman, Lochak and Ochel
- 16 -

the end of the analysis routine because they are all represented by a
single compact graph-like structure with dependencies (required co-
occurrence and mutual exclusion) marked on various branches, The
output routine scans the graph-like structure systematically and
prints out all trees which satisfy the marked dependencies, have the
special root node as their root, and in which each input item appears
once and only once as a leaf,

The results are printed out in a tree format. As a compromise
between readability and machine convenience, the tree is rotated
counterclockwise through 90°, and the constituents of each node are
justified upwards (after rotation) to the level of that node. Thus, the

usual form of a tree, such as

)

S
D

N

>0

B
N

E F I J K P
/\ AN
G H L M
l
N

would appear in the following output format:

A D P

L
C J
I
B F H
G

tieberman, lochak and Ochel
=17 -

The problem of lining symbols up properly is simplified by our re-
quirement that all symbols be five or less characters long.

As indicated above in the description of the types of conditions
currently used, a distinction is made between optional and deletable
constituents. The essential difference is that a deleted constituent
should be filled in if the structural description is to be a reasonable
approximation to deep structure. For example, the subject or object
in a relative clause is deleted in the surface structure, but can be
filled in in the deep structure by copying the noun in the noun phrase
whose determiner contains the sentence which is relativized. Or, if
the agent in a passive sentence is deleted in the surface structure, it

can be filled in at least by an indefinite such as someone or some-

thing in the deep structure. At present, our output only indicates
that a deleted constituent exists in the deep structure, but we have
not yet formulated and programmed the rules for filling in such
constituents. These rules are also needed during the analysis to
permit condition testing where deleted items are involved. At
present, if a condition test turns out to involve a deleted item, the

test is ignored.

The Grammar

An overview of the grammatical categories (node types) and
their relations in structural descriptions is given in Figure 1. Most
of the underlined symbols are pre-lexical items, but some (those
beginning with S) will be expanded later. The overline on some of
the symbols is used to indicate that they are expanded elsewhere in

the diagram. An example of a node type and its associated fields

t.ieberman, l.ochak and Ochel
- 18 -

is given in Figure 2 in the form in which we work with the grammar,
Each line is on a separate punched card.

The collection of categories was taken, for the most part, from
the phrase structure portion of a transformational grammar of English
being developed at IBM. Some additional categories such as SREL,
SMNL, SFT, SPT and SCOND were introduced to simplify condition
statements using the current set of condition types. As more condition
types are formulated and incorporated into the program, these
additional and essentially redundant categories may be eliminated.
Symbols beginning with X have no descriptive significance. They
were also introduced as a temporary expedient to overcome certain
defects in the present formalism, and will be eliminated when the
formalism is appropriately modified. If these structurally super-
fluous nodes cause too much clutter in the output, they can be
eliminated by simply erasing each one and connecting its immediate
descendents to its ancestor as each tree is printed out,

The present grammar is very far from complete, in any sense
of the word. The category types are reasonably extensive, but only
a smattering of conditions are present, and these were selected
mainly to test various portions of the program as they were
completed. However, problems encountered thus far in using the
formalism to express grammatical information have been solved
without undue difficulty.

Some samples of output, and details regarding the programming

will be presented during one of the informal afternoon group meetings.

SENT

tieberman, Lochak and Ochel

- 19 -

SZ

POSTS X CONC
TIME X COND
Imu

vP
sp/\”
/XCY
ING

AUX

NP
DET N
CMP

Figure 1

lieberman, Lochak and Ochel
- 20 -

SRzl

33

XSREL SRZu
PRE=-S IRZL
SR

A -{Z1C1) SREw

NP SREIL
oD +(C422C3C2C1ICL) 32IL

H {Ce2C21{C3C) 33I .

H (C2C2Y(L=C2cCl) SRIL

H (81B13331C2)(C2) SRZIL

AUX SRZL
H (C3C1)icucz) SREL

VP SXEL
POSTS SRIk
’ 8 SREIL
SREL SREL

Figure 2

