26

1965 International Conference on Computational Linguistics

SPECIFICATIONS FOR A TREE PROCESSING LANGUAGE

by
R, Tabory, F. L. Zarnfaller

International Business Machines Corporation
Thomas J. Watson Research Center
Yorktown Heights, New York

Wilh,

SPECIFICATIONS FOR A TREE PROCESSING LANGUAGE

by

R. Tabory
F. L. Zarnfaller

International Business Machines Corporation
Thomas J. Watson Research Center
Yorktown Heights, New York

ABSTRACT: Description of trees and strings - both composed of
lexical values - matching of trees and strings against partially or
totally defined pattern and operations on trees and strings form the
essential part of the Processor, The notion of string has been ex-
tended to strings embedded in or extracted from trees, and a modi-
fied version of the COMIT rewriting rule applied to these strings,
Variables ranging over lexical values, strings and trees can be intro-
duced and operated on according to a '"'pushdown'' principle. Besides,
variables can be operated either in the '""connected'" or "autonomous'
mode, depending whether their connections with some parent struc-
ture are remembered or not. Variable value structures can be
matched against patterns or compared among themselves. Trans-
formations on trees and strings are defined, allowing for the devel-
opment of a given data structure into a new one. All these features
and devices were defined by extracting the elementary steps with
which linguists compose their operations and by generalizing these
steps reasonably. The resulting language specifications are pro-
posed for discussing the solution of a class of non-numerical pro-
gramming problems,

Introduction

Recent developments in computational linguistics have shown the
need for a convenient programming formalism enabling linguists to
handle data processing problems of natural languages. Especially
tree and an extended kind of string processing have to be made con-
ceptually easy for the linguistically oriented computer user. This
paper proposes specifications for such a language; it should be thought
of - theoretically only, since its implementation is not planned presently-
as a procedure package attached to NPL (New Programming Language).

The reason for this is the desire to take full advantage of the
highlights of a modern higher level programming language as well as
of the devices any general purpose programming system is in pos-
session of, Consequently, the operations described in this paper
should be thought of as being complemented by the full power of NPL,
the most interesting features of which - from the viewpoint of non-
numerical processing - are: recursive procedure calls, dynamic
storage allocation; numeric, character string and bit string data
arranged in structures and multi-dimensional arrays, etc,

Description of trees and strings, both composed of lexical values,
and operations on them form the essential part of the Processor. The
word ''processor' covers both a programming language, and a data
organizing system in the computer memory. As far as string descrip-
tions and string processing is concerned, the influence of COMIT was
dominant in elaborating the relevant part of the Processor, but the
notion of string has been extended to strings embedded in or extracted
from trees. Other existing programming languages and linguistic

programming systems were also taken into consideration, they are

all mentioned in the Reference List.

The definition of the features of the Processor has been accom-
plished by extracting the elementary steps with which linguists compose
their higher level syntactic operations and by a reasonable generaliza-
tion of these steps. Some of these devices are, however, fairly gen-
eral and any kind of tree processing, not only a syntactically oriented

one, would introduce them,

Data and Variables

There are three basic kinds of data the Processor can handle:
lexical values, strings and trees, A lexical value is a character
string; a string (sometimes referred to as 'lexical" string, as
opposed to a character string) is an ordered sequence of lexical
values separated by some conventionally chosen delimiter; a tree is
a partially ordered set of lexical values, where each element has one
and only one ancestor, except the "root'" of the tree which has no
ancestor at all, Besides, elements sharing the same ancestor are
called siblings and such a sibling set is totally ordered. Thus, each
element of the tree has at most one ''left" and at most one ''right"
sibling.

Lexical values can be numerically or logically tagged. In order
to avoid multiple tagging a tag is a fixed length decimal integer,
each digit of which can be processed separately. Besides a digit can
be logically interpreted as True or False, according to whether it
is non-zero or zero.

Variables of the form Ln, Sn and Tn - where n is an integer
freely chosen by the user - take, respectively, lexical values, strings
and trees as values. We shall see that these variables have value
lists sometimes, instead of a single value.

It results from the above described data definitions that data
can be embedded in other data; a lexical value can be a string con-
stituent or a tree element, a string can be a portion of a broader
string or extracted from a tree, a tree can be a subtree of a larger
tree. In order to handle this property of the data, a variable can be

operated in two modes: the autonomous or the connected mode. At

each instant all variables introduced have a well defined "autonomy
status'' determining the mode in which each variable is operated on.
This status is the same for all values of a variable. The meaning
of the two modes is the following:

In the connected mode all values of a variable maintain their
connections with the larger data structure to which they belong. In
other words a connected variable ''remembers'' its connections with
some parent structure and this feature can be used for further pro-
cessing of that parent structure. Moreover, these connections are
automatically updated when the parent structure undergoes a modi-
fication. The kind of updating depends on the way the particular
value was assigned to the variable and on the modification occurring
in the parent structure.

In the autonomous mode variables don't have connections at all.
They refer to data that are independent of other data, except data
embedded in the autonomous structures in question. Variables
carrying input data into the computer are made autonomous by the
Processor, Variables introduced in various statements (except in-
put statements) are set to the connected mode; the statement

CREATE variable
creates an autonomous variable with an empty value list. In order
to change the status of a variable the statement
AUTONOMY variable
can be used, Upon execution of this statement data referred to by
the variable are copied down in some part of the storage and the
variable is made autonomous. To change the status in the other

direction, from autonomous to connected, some later described

transformation statements have to be used, Generally, some state-
ments may change the autonomy status of a variable. These changes
will be described with these commands.

It is possible to check the autonomy status of a variable, The
predicate

B AUTONOMY variable

performs this function. B stands for a logical variable (variable
ranging over bit strings of length one). B is set to True if the argu-

ment variable is autonomous, to False otherwise.

Value Assignment Statements

In the forthcoming chapters statements will be described which
assign values to variables. If the variable to which values are assigned
has already a non-empty value list the new values assigned to this
variable will be added to the list, at the beginning of it, in a '"'push-
down'' manner,

Value assignment statements use also variables sometimes, as
arguments of the statement., In such a case the first item on the
value list of the argument variable is taken into consideration, and
referred to hereafter as ''the value'' of the variable, though other
values may follow it on the list, If the value list is empty) the
value assignment statement amounts to a non-operation,

Parent referencing is another problem that arises naturally in
value assignment statements, that is to say the problem of naming
the data where from the variable will get values assigned, according
to the specifications of the statement, Two cases exist:

(a) The parent reference is mandatory in the value assignment

command. This is the case when the statement has no sense at all
without a parent reference,

(b) The parent reference is optional, In this case the following
rules prevail: if it is mentioned, the value assigned is entirely con-
tained in the specified parent reference, or else (if no suitable values
are found within the reference) the assignment statement is a non-
operation, If it is not mentioned, values will be collected from the
largest autonomous data to which the argument variable value of the
value assignment statement is connected.

Parent References are of the form (in Vn), where Vn is a variable
name (Tree or String). In the forthcoming chapters they will be
mentioned, in statement descriptions, as '"Optional Parent Reference'
‘or '"Mandatory Parent Reference''. The word ''parent' might be re-
placed by "'string', or 'tree', etc. when a restrictive condition of

this nature prevails, according to the nature of the statement,

Value Assignment to Lexical Variables

Assigning a value to a lexical variable can take place, in principle,
in three possible ways:

(1) Absolute Assignment - The lexical value collected from a

tree or a string is designated by its "absolute location' in the

parent structure, i.e., its Iverson's index vector in the tree

case, or its constituent serial number in the string case. (See

below for detailed explanation.)

(2) Associative Assignment - This kind of value assignment

takes place by naming that lexical value in the parent tree or string,

which the user desires to assign as variable value. In this case

the variable may be supplied with a value list, instead of a
single value. This happens when the specified lexical value
occurs more than once in the pérent structure. The value list
will then contain entries lh:.ving identical lexical values but each
of these entries having different connections with the parent
structure,

(3) Relative Assignment - This type of assignment uses another

variable, as argument, and determines the value to be assigned

in function of the value of the argument variable.

We are going now into the details of value assignment to lexical
variables. From the autonomy status point of view the following rules
prevail (also valid for value assignment to string and tree variables):
if the variable to which value is assigned is currently operated in the
connected mode, connections with the parent structure will be con-
served in the usual way. If the variable is autonomous, these con-
nections are -lost and only lexical values (without their 'position
information'') and possible tags are transmitted.

In order to enable the user to assign an arbitrary lexical value to
a variable (not necessarily collected from a tree or a string), the
following statement is permissible:

Ln = LEXICAL lexical/ m
The lexical value '"lexical' is assigned to Ln., m is an optional integer
representing a tag., Words written in upper case letters represent -
throughout this paper - statement keywords.

Absolute value assignments to lexical variables are of the form:

(1) Ln= (ml, My, oo v mk) Mandatory Tree Reference

(2) Ln= LEFT k Mandatory String Reference

(3) Ln = RIGHT k " " "

In the tree case, (ml, My oo o mk) denotes an Iverson's index
vector; each m, is an integer, m, = 1 and it denotes the root of the
tree, m, selects the m, -th sibling among the immediate successors
of the root, m, selects the m, -th sibling among the immediate suc-

cessors of the tree element selected by the previous portion of the
index vector, and so on, until m, selects a final tree element that
will become the value to be assigned to Ln.

In the string case, k is an integer and LEFT k of RIGHT k assigns,
respectively, the k -th constituent from the left or from the right end
of the string, as value to Ln.

Agsociative value assignments to lexical variables are of the form:

Lm = lexical / tag Mandatory Parent Reference

In the right side of the statement ''lexical'' denotes a lexical value
and '"tag' the description of a tag. One of the two descriptions ''lexical"
and ''tag'" might be omitted. The parent structure is searched for all
elements or constituents that match the specified lexical value and/or
the specified tag. The selected elements are added to the value list of

In. A tag specification is of the form: a, a -2y where n is the

PUREEE
number of digits in the tag; each a, is either an integer or an integer
variable specifying the required digit in the i-th position, or one of
the signs:
(1) = meaning any integer in that position
* -k, k., . ..k_) " " " en "

except the enumerated ones (each

ki is an integer)

(k1 / kZ/ o v /km) meaning one of the enumerated
integers.

Relative value assignments to lexical variables are of the form:

Ln = NEIGHBOR Lm Optional Parent Reference
where NEIGHBOR stands for one of the following keywords:
ANCESTOR, L-SIBLING, R-SIBLING, L-SUCCESSOR, R-SUCCESSOR,
The interpretation of these keywords depends on the Parent Reference,
whether it is explicitly stated or not. If the Parent Structure is a
tree, the interpretation is the following:

(1) ANCESTOR: the nearest tree element to which the
value of Lm is connected in the direction
of the root of the tree,

(2) L-SIBLING: the element preceding the value of Lm,
in its sibling set.

(3) R-SIBLING: the element following the value of Lm
in the sibling set.

(4) L-SUCCESSOR: the first element in the sibling set whose
ancestor is the value of Lim,

(5) R-SUCCESSOR: the last element in the sibling set whose
ancestor is the value of Lim,

If the Parent Structure is a string, L-SIBLING and L-SUCCESSOR
both denote the constituent to the left of the value of Lim, while R-
SIBLING and R-SUCCESSOR denote the string constituent to its right,
ANCESTOR denotes the leftmost constituent in the string.

In all these statements the argument variable Lm has to be
currently operated in the connected mode. The selected value, de-

pending on which keyword is used and what the parent structure is, is

10

assigned to the value list of Ln,

In obvious cases the "empty' value might be assigned to Ln,

Value Assignment to String Variables

String value assignments are also absolute, associative or re-
lative, The autonomy rules are analogous to the ones used in value
assignments to lexical variables, except if stated otherwise. In order
to enable the user to assign an arbitrary value to a string variable -
not necessarily collected from a parent structure - the following
statement is permissible:

Sn = CONCATENATE AAA . . . AA
where each A stands for one of the following possibilities:

(1) A lexical value with an optional tag (of the form lexical/ tag)

(2) a lexical variable

(3) a string variable,

The statement performs the concatenation in the order shown in
the statement body, by taking the first items on the value lists of the
variables involved. Parent connections of these values are not taken
into consideration and Sn is made automatically autonomous (if it
wasn't already), its value is the concatenated set of lexical values,
with possible tags.,

Absolute value assignment to string variables is of the form:

| Sn = LEVEL k Mandatory Tree Reference
k is an integer selecting the k -th level of the tree referred to. The
k -th level of a tree is the string whose constituents are at distance k
from the root, the distance being measured in number of subsequent

ancestors up to the root,

11

Lm being a connected variable, relative assignment to string

variables takes place with the help of a statement of the form:

Sn = WORD Lm Optional Parent Reference

WORD stands for one of the keywords enumerated below; the interpre-

tation of these keywords depends on the Parent Structure (explicite

or implied) being a tree or a string.

The table below enumerates all

the cases:
Keyword Tree Case String Case
ANCESTOR The ancestor string of the argu- The longest string
ment element is the one that in which the argu-
connects it to the root of the ment is a con-
tree. stituent.
SUCCESSOR The successor string of the Same as ANCESTOR

L-SUCCESSOR

R-SUCCESSOR

SIBLING

L-SIBLING

argument element is the sib-

ling set having the argument as

ancestor element,

The L-successor string is the
one composed of the sequence
of subsequent L-SUCCESSOR
elements in the downward
direction.

Same definition as above, but
taking the subsequent R-
SUCCESSOR elements,

The sibling string of the argu-
ment is the successor string
of its ancestor element.

The part of the sibling string
preceding the argument,

The left portion of
the string upto the
argument constituent,

The right portion cf
the string from the
argument constituent.

same as ANCESTOR

Same as L.-SUCCESSOR

12

Keyword Tree Case String Case

R-SIBLING The part of the sibling string Same as R-SUCCESSOR
following the argument,

TERMINAL The terminal string of the argu- Same as ANCESTOR
ment element is composed of
elements having empty succes-
sor strings and on whose an-
cestor strings the argument
element is a constituent,

All these statements assign the selected string as value to Sn,
Associative assignment to string variables takes place with a

statement of the form Sn = STRING (kl’ k, string structure specifi-

2
cation) Mandatory String Reference. String structure specification

is a string over the alphabet of lexical values and a few special signs;
- we are going to call it a metastring. It describes the internal com-
position of the Parent Reference. k1 and k2 stand for integers or in-

teger variables denoting the k, -th and the k2 -th constituent of the

metastring. The portion of thle metastring falling between these con-
stituents delimits a portion of the parent string. Upon execution of
the statement this portion of the Parent String is attributed as value
to Sn. In case of more than one portion referred to in the parent
string, the leftmost one is taken into consideration., In case of ''no-
match" Sn gets the empty value,

The metastring's internal composition is very close to the one
used by the programming language COMIT, If AAAAA . . . AAAA is
the form of such a metastring, where A stands for one of its con-

stituents, the following context-free grammar (or Backus Normal

Form) would generate it:

13

A—b/b/. . ./b

A—$% - b.b..b.b

b— $n

b—3%

b~—>Ln or Sn

(meaning an arbitrary choice among the
enumerated b's)

(meaning any string except the ones
described by the b's,)

(meaning n arbitrary consecutive con-
stituents in the parent string; n stands
for an integer. $0 denotes the empty
string.)

meaning an arbitrary string within the
parent string, the empty string in-
cluded.)

any lexical value/ tag description com-
bination as described in a previous
chapter,

(meaning the first value of the variable
involved, tag included, and the position,

if the variable is connected.)

Value Assignment to Tree Variables

In order to enable the user to assign an arbitrary value to a tree

variable, the following statement is permissible (the equivalent of
the LEXICAL and CONCATENATE statements in the previous cases):
Tn = STRUCTURE k, Ak_A, . .. knA

where each ki is a level number (see COBOL, NPL) and each A stands

for one of the following possibilities:

(1) A lexical value with an optional tag

(2) A lexical variable

(3) A tree variable

14

If A is a tree variable the subsequent level number should not be
superior to the preceding one, The statement builds a tree accord-
ing to the structure shown by the level numbers, by taking the first
items on the value lists of the variables involved, without position
information. This tree is assigned as value to Tn, by making Tn
automatically autonorous,

Absolute, associative and relative value assignments to tree
variables cannot be so clearly separated as in the previous cases,
The following statement amalgamates various kinds of assignments:

Tn = TREE Lm, A Optional Tree Reference
where Lm is a connected variable and A is an optional list of con-~
stituents of the form {(a_,, a

U a)
the following possibilities:

Each ai stands for one of

(1) A lexical variable

(2) A lexical value and/or a tag description (see a previous

chapter on the specifications)

The effect of the statement is the following: a subtree is selected
whose root is the value of Lm. If the A-list is empty, this entire
subtree is assigned, as value, to Tn. If the A-list is not empty, all
the subtree elements matched by the A-list are considered terminal
(i. e. their successors are neglected) and the assigned tree value
stops - at its bottom - with these matched elements, In case of
conflict the element closer to the root is considered terminal. The
autonomy rules are like in the previous cases.

The following statement provides for obtaining the parent tree
of a string or lexical variable:

Tn = PARENT Lm or Sm

15

The broadest autonomous tree containing the argument is assigned,

as value, to Tn.,

Movement of Variables

Variable values have to be moved, erased, 'ransmitted, etc, The
following statements provide for these operations:
Vn = PUSHDOWN Vm, k
where Vn and Vm are variables of the same type and k is an unsigned
integer. The first k values on the value list of Vm are added to the
value list of Vn, by '"pushing down'' the previous values on the list of
Vn. The value list of Vm remains unchanged,
The statement
PUSHUP Vn, k
erases the first k values on the list of Vn. In both cases, if k is
superior to the number of values on the list, the operation stops

after the exhaustion of values,

Structure Questions

The user can question the structure of a variable value by com-
paring it to a given or partially specified pattern. The general form
of such a question is:

B Assignment Statement
where B is a logical variable (bit string of length one) and Assignment
Statement stands for any of the assignment statements described in
the previous chapters. The interpretation of an assignment statement
in a structure question is different, however, from its original inter-

pretation. An assignment statement is of the form:

16

Vn = specification
and the = sign assigns a value to Vn, according to the specification.
When an assignment statement enters a structure question no value
assignment takes place, the = sign means equality between the variable
value and the specification. In case of equality B is set to True, to
False otherwise,
Below we list these structure questions with their interpretation,

(In the list the various types of parent references are abbreviated,)

Assignment Statement Structure Question Interpretation

Ln = LEXICAL lexical/ tag Is the value of Ln equal to '"lexical'
and to the tag?

In = (ml, m,_., . ‘,mk) MTR Does Ln occupy the position speci-

- fied by the index vector in the
specified parent tree?

Ln = LEFT or RIGHT k MSR Does Ln occupy the k -th constituent
position in the specified parent
string?

Ln = lexical/ tag MPR Does Ln match lexical/ tag and is
it in the specified parent structure?

Ln = NEIGHBOR Lm OPR Is the position of Ln in agreement
with the specification?

Sn = CONCATENATE AAA, , A Is Sn composed of the constituents
specified, position information
being disregarded?

Sn = LEVEL k MTR Does Sn correspond to the k ~th
level string in the specified parent
tree?

Sn = STRING (kl, kz, specif.) MSR Does Sn match the specification?

17

Assignment Statement Structure Question Interpretation

Sn = WORD Lm OPR Is the position of Sn in agreement
with the specification?

Tn = STRUCTURE k, AK_A, . .k A Is the tree value Tn composed as
1 2 n

indicated by the structure descrip-
tion, position information disre-

garded?

Tn = TREE Lm, A OTR Is Tn the subtree extending as
indicated?

Tn = PARENT Lm or Sm Are Lm or Sm located in Tn?

All these structure questions compare the first item on the value
list of the variable involved with the pattern specification, If the user
desires to search through the whole value list he can formulate his
structure question as:

B EXTRACT Assignment Statement

In this case the whole value list is searched through and the first
item encountered satisfying the pattern specification is extracted and
put at the top of the value list, while B is set to True. If no item
satisfying the pattern specification is encountered B is set to False
and the value list remains unchanged.

In a previous chapter the CREATE statement was described that
creat=s an autonomous variable with an empty value list. The question

"B CREATE variable
sets B to True, if the variable's value list is empty, to False,otherwise.
The statement
B AUTONOMY variable

-built in an analogous way - has been described earlier.

18

Equality Tests

Given two variables Vn and Vm of the same type (both lexical,
or both string or both tree) the following statement tests the equality
of the variable values:

B Vm=Vn
whereB is a bit string of length three. The setting to True or False
of this bit string is as follows:
First bit True is the lexical composition of Vm is identical to the
one of Vn, tags and autonomy status being disregarded.
Second bit True if the largest parent structures are identical or if
both variables are autonomous,
Third bit True if the two index vectors are identical. The index
vector of a lexical value has been defined earlier, for string and
trees it is - respectively - the index vector of the leftmost constituent
and of the root. The parent structures may be different and yet the
third bit set to True. If both variables are autonomous the bit is set

to True,

Numerical Properties of Data and Variables

The following statements establish connections between variables
and their numerical properties: |
X being a numeric (decimal) variable the statement
X=NUMBER Vn
assigns té X, as value, the number of items on the value list of Vn,
The statement
X = WEIGHT Vn

assigns to X, as value, the number one if Vn is a lexical variable, the

19

number of constituents or tree elements of the value of Vn, if this
latter is a string or tree variable. The statements implementing
tag handling are:

X = TAG Ln
which sets X to the tag value of Ln, and

In=TAG X

which assigns X, as tag, to the value of Ln.

Transformations

Transformation statements change strings and trees into new
strings and trees., During the processing of a transformation data
may move, or get deleted, This raises the following problem:
variable values are affected by these movements and they must be
correspondingly modified, updated, deleted, etc. The relevant con-
ventions are as follows:

Whenever a piece of data moves all variable values equal to or
entirely contained in that piece of data, have their connections up-
dated, in function of the new position the piece of data moved
occupies. If, instead of being moved, the piece of data is deleted,
all variable values equal to or entirely contained in tue piece of data
deleted are deleted.

Variable values overlapping with data moved or deleted are either
modified or deleted. They are deleted in the following cases:

(1) The argument of the assignment statement which defined the

value gets deleted. (Ec. Sn = ANCESTOR Ln and Lm gets

deleted by a transformation; then the corresponding value of

3n is deleted.)

20

(2) All string variables defined by a STRING Statement.

In all other cases updating and due modification takes place.

String Transformations

The string transformation statement of the Processor is strongly
inspired by the "Rewriting rule' of the COMIT programming language,
but it is adapted to strings embedded in trees too.

In the case of an autonomous string the transformation statement
is a straightforward adaptation of the COMIT rule. Its form is:

string structure specification = REWRITE rewrite indication

Mandatory String Reference.

The "string structure specification' is identical to the one used in the
description of the STRING statement, in the chapter on value assign-
ments to string variables. The ''rewrite indication'' is a sequence
composed of:

(1) Integers sequentially numbering the constituents of the

"gtring structure specification' and showing the new position

(or deletion, if an integer is omitted in the ""rewrite indication'')

of these constituents after transformation of the string.

(2) Lexical values and string and lexical variables introducing

new constituents into the string to be transformed.

The statement verifies if the '"string structure specification"
matches the Parent Reference. In case of no match, no transformation
takes place. In case of match the string is rewritten in the order of
the constituents indicated by the "rewrite indication'',

In the case of strings connected to trees two classes of strings

have to be distinguished: vertical and horizontal strings. A string

21

embedded in a tree is horizontal if no constituent of the string is the
tree-ancestor element of another constituent. It is vertical in the
opposite case,

For vertical strings the form of the REWRITE statement is
identical with the one for autonomous strings, its interpretation is,
however, different: in case of match, if a constituent is8 moved or
deleted, the entire subtree whose root is the constituent in question,
is also moved or deleted, except that branch of the subtree which has
an element in the string to be transformed. Moreover, in the new
position, the former order of the elements of the moved constituent's
successor string is maintained; if an element of this successor
string didn't participate in the move - because of the above mentioned
restriction - it is replaced by the new left neighbor of the moved
constituent in the string,

For horizontal strings the form of the REWRITE statement is
slightly different:in the '"rewrite indication'" each constituent must
have a left parenthesis somewhere to its left and a right parenthesis
somewhere to its right and no other parenthesis can appear between
the constituent and these parentheses. In other words the whole
"rewrite indication' is simply bracketed. A left parenthesis might
be followed by a right parenthesis, with no constituent in between,
this couple being placed in the "rewrite indication'. After trans-
formatiqn in case of match, constituents between the same couple
of parentheses will have the same ancestor element in the tree, in
left-to-right order of the parenthesis couples and of the possible
ancestor elements of the string.

A couple of parentheses with no constituent in between attributes

no constituent of the string to the ancestor element in that position.

22

Tree Transformations

Three statements ATTACH, DELETE and DETACH provide for

the transformation of trees, Variables V referred to below in the
description of these statements must be single valued, because of
automatic changes in their autonomy status:

(1) ATTACH This statement inserts data in a tree. Its general

form is

ATTACH V, P, Ln

where V is an autonomous variable, the value of Ln is a tree element
(Ln must be connected) and P stands for one of the words LEFT,
RIGHT or UNDER, V is attached to the parent tree of Ln and becomes
automatically connected after the attachment. The place of attach-
ment depends on P:

If Pis LEFT or RIGHT, V is attached to the left or to the right
of the value of Ln, in the sibling string of Ln. In this case Ln cannot
be the root of an autonomous tree. If V is a tree, the root is inserted
in the sibling string and the remainder of the tree will continue to be
attached to the root. All the inserted elements are, of course, con-
nected to the ancestor element of Ln,

If P is UNDER,the specified data will be attached in the successor
string of Ln, as its leftmost part, according to the same principles
as above.
(2) DELETE This statement deletes data and frees memory in
the computer. Its general form is
DELETE V
where V is a variable. If V is autonomous, the corresponding data

will entirely vanish. If V is connected, it must be connected to a

23

tree and the following cases prevail:

(3)

(2) V is a lexical value, (In this case it cannot be the root
of an autonomous tree.) It is deleted and its descendant

tree is attached to the ancestor element of V, in the same
sibling position as the one that was occupied by V., Practically,
this means that the successor string of V gets inserted at V's
place in the sibling string of V, with the remainder of the
tree descending from this successor string.

(b) V is a string. All its constituents are deleted except

the one that might be the root of an autonomous tree. The
descendant trees of the constituents are also deleted.

(c) Vis a tree. It is deleted entirely. If the terminal
elements (elements with no successors) are not terminal

in a larger tree in which the tree to be deleted is embedded,
the whole remaining descendant structures of these local
terminal elements are deleted.

DETACH This statement detaches data from a tree and

holds it in memory. Its general form is

DETACH V

where V is a connected lexical or tree variable, After detachment V

becomes automatically autonomous. The detachment of a string can

be accomplished with the help of (elementary) statements. The

effect of the statement on the parent tree whereupon the detachment

takes place is the same as in the DELETE case, Data, however,

are not deleted, but separated from their parent tree,

24

References:

ARMENTI, A. W. et al, A Data Processing Formalism
(Tech. Report 283, Lincoln Lab.,
MIT, 1962)

BERKELEY, E. et al The Programming Language LISP
(Information International Inc., 1964)

CHOMSKY, N. On the Notion of "Rule of Grammars"
(Proc. of Symp. in Appl. Math,,
Vol, 12, . Am. Math, Soc., 1961)

GENUYS, F. Commentaires sur le language ALGOL
(AFCALTI Seminar on Programming
Languages, Paris, 1962)

IVERSON, K. A Programming Language (John Wiley
and Sons, Inc.)

MATTHEWS, G. H. Analysis by Synthesis in the Light of
Recent Developments in the Theory of
Grammar (Department of Modern
Languages, MIT, 1964)

MOYNE, J. A, Restrictive Language Defining System
(IBM Data Systems Division, Advanced
Computer Utilization, ACU-011, 1963)

NEWELL, A, et al, IPL-5 Manual (Prentice Hall, Inc., 1961)

OETTINGER, A.G. -KUNO, S, Multiple-path Syntactic Analysis
(Proceedings IFIPS 1962)

RADIN, A, -ROGOWAY,H.P. NPL, Highlights of a New Programming
Language (Comm. ACM, Vol, 8, No. 1,
1965)

YNGVE, E. et al COMIT Programmer's Reference Manual
(MIT-RLE Publication)

