1965 International Conference on Computational Linguistics

SOME MATHEMATICAL ASPECTS ON SYNTACTIC DISCRIPTION

Itiroo Sakai

Project on Linguistic Analysis
Chio State University

216 North Oval Drive

Columbus, Ohio 43210

U. S. A.

~

N

¥ sup gan®” g

g jopsr®

4.
o

%

Sakai 1
Abstract. The purpose of this paper is to help linguists contruct a consistent,
sufficient and less redundant syntax of language.

An acceptable string corresponds to an expression or an utterance: it may
be a natural text, a string of morphemes, a tree structure or any kind of
representation. A sharp distinction is made between the syntactic function
which is an attribute of strings and the distribution class which is a set of
strings. Syntactic function of a continuous or discontinuous string is defined
;:—Ehe set of all the acceptable contexts of the string, and is called a com-
plete neighborhood. Two contexts are equivalent if they accept or reject any
given string at the same time. An elementary neighborhood is the set of all
contexts equivalent to one context.

Four simple distribution classes are proposed and their properties are discussed.

Concatenation rules of a language can be described in terms of concatenated
complete neighborhoods or concatenated distribution classes. Some possible
representations and their consequences are discussed.

Transformational rules are also described in a similar way. lowever,
there is another problem of correspondence of original strings to their trans-
forms. It is useful to establish subsets of elementary neighborhoods and this
subclassification may contribute to a simplification of the clumsy represent-
ation of derivational history.

Finally, some trivial but practically useful conventions are described.

1. Introduction.

The grammar of a language should be consistent throughout its whole
system. No features should be left unformulated in order that the grammar be
a complete one. At the same time, it is desirable to prepare the grammar as
compact as possible. These are important requirements especially when the
grammar is a machine-oriented one. The knowledge on the formal properties of
syntax will help us construct an objective system of grammar. Every term used
in a description should be rigorously defined and no ambiguous expressions are
allowed. If the consequence of grammar rules deviates from the proper usage
of the language, we will be able to trace back the definitions and locate the
source of trouble.

When the grammar rules are given in terms of concatenated symbols, we
must know the formal definition of the symbols before writing a program by
which the rules are applied to the text. If a grammar rule describes the
nature of a P-marker, the label given to each node in the P-marker must have

an unambiguous definition which relates the meaning of the symbol to the strings

supplied as texts.

Sekai 2
We need, at least, an objective criterion by whichi we can specify a
language. This criterion will be & dichotomous decision whether or not a
given symbol string belongs to the language in question. We leave the decision
to native speakers and consider the acceptable strings undefined. A substring
of an acceptable string is said to have a syntactic function or a part of
speech. The syntactic function of a symbol string is considered as the set

of all acceptable utterances in which the string occurs. Ve eliminate the
N

string in question and define its syntactic function as the set of all accept-
able contexts of the string. The set of all acceptable contexts of a string
is called a complete neighborhood.

A distribution class can be defined as a set of strings wnose complete
neighborhoods are related to a given set of contexts in a specified way; Ve
propose four simple definitions of distribution classes.

With these fundamental concepts of parts of speech and distribution classes,
we can proceed to a more formal system of syntactic description. However, a
few questions may be immediately raised. Is it really possible to construct
a grammar in such an elementary way? How can we list the elements of a set
picking them up out of a practically infinite number of strings even though
¢ach string is assumed to be of finite length? Is it not useless to establish
such sets for a natural language, most of which are likely to have only one
element? Etc. Ete.

We should be better off if we were to create a new languasze by preparing
a grammar and a lexicon. Unfortunately the situation is quite contrary when
we are to handle a natural language. The language exists. We want to find
out a grammar that accounts for all and only the acceptable strings of the
language. We regard a language L as a set of strings generated by a machine M,
whose internal structure is not known to us. We can observe only a part of
the set of generated strings in a limited length of time. We want to construct
a hypothetical machanism M' thatgenerates all and only the strings in L. The
internal structure of M and M' may not be the same. The output of M' is
checked 1f it is an element of L, and strings are supplied to M' to see if M!
accepts a string if and only if it is an element of L. To do this, we must
have the set L, or a mechanism which tells us whether or not the given string
belongs to L. We call this mechanism a normative device. It is a native
speaker if a natural language is to be discussed. We simplify the situation
by asswuing a few separate strata in the mechanism. A string generated is

suprosed to have been transferred from a stratum to another before it becomes

a string of natural language. An utterance has a few different forms corres-

Sakal 3
ponding to the strata. Each form has its own grammér. The normative device
will be a linguist in this case. |

Since the number of strings is practically infinite, a linguist trying
to constuct a grammar will find it.advantageous to establish rules that hold
for a set of strings or for a set of relevant facts. A linguistic phenomenon
may be analyzed from various points of view which will help him avoid listing

a tremendous number of phenomena and rules. He will attach certain markers
to the strings according to the way he considers consistent with his usage of
language. He will then write down the rules in terms of the markers. He may
also establish his rules in terms of sets of strings which share sowme common
features in their markers. The procedure of using these rules consists of two
parts. The one is a routine that compares a rule with the text and decides
whether or not the rule is to be agrplied. The other is a transfer routine by
which the relevant information is read out of the applicable rules and trans-
ferred to the text. In these procedures, both comparison and transfer are
carried out with the coded markers. It is important that the meaning of the
codes is unambiguously defined so that the code obtained in the text is exactly
what the linguist wants to mean.

Some of his rules may account for a certain number of texts he has examined
but may fail to account for some others or to rule out similar but inconsistent
facts. He will test his rules by applying them to a natural text or by generat-
ing strings. The normative device will tell him whether or not a string sup-
plied to it is acceptable but not tell him why. It is obvious that these pro-
cedures can not be carried out practically on every string that may be supplied
to a machine in the future, and that nobody will be able to predict what can
occur when an arbitrary string is supplied to the machine. Nevertheless, it
is required that a grammar may deal with most of the texts supplied in the
future.

. His grammar is inevitably affected by the nature of the normative device.
If the normative device is so strict as to reject every string which fails to
meet such requirements as that its style must be just an ordinary one, the
statement must be logically correct, the lexical usage must conform with the
regular way of the language, etc., etc., then the linguist must prepare a
separate rule for almost every string. He can break down the decision pro-
cedure into a few separate steps. The first device will accept a string if it
finds the internal relationship of the string is acceptable, regardless of the

reality the string designates. If the grammar is to be applied to input texts

Sakai &
whose structure is always grammatically correct and unambiguous, a grammar
which satisfies the requirement of this device will be enougn. However, it
will give many unusual strings if it is used in random generation and many
ambiguous alternatives if it is used for analysis. Yhe sescond device may
reject those strings whose structure shows an unallowable combination of lexical
elements, thus eliminating some of theambiguous alternatives in analysis and
suppressing the output with improper usage of lexidcal elements in synthesis.
The third device may'réject as unacceptable those strings which are not logic-
ally consistent. If one wants to have more rigorous grammar that may be used
for random generation of only non-surprising sentences, he may add more devices
to the preceding ones, so that the grammar may be tested from such points of
view. He will prepare his grammar keeping the characteristics of his normative
device in mind. A number of digits will be assigned to the coded form of
markers corresponding to each step of decision. The procedure will be pro-
grammed so as to handle these digits independently, thus allowing a number of
rules to be applied to the same string. If certain digits are related to each
other, and a particular combination of codes is to obey a particular rule, the
rule will be prepafed independently and the general procedure will be prohibit-
ed. Tais is done by a simple technique in coding and programming.

As we see on the following pages, a number of similar but different
representaions are possible. If we are not ready to understand the exact
meaning of codes and rules and to prepare the right program for the represent-
ation chosen, the rules established on the basis of ad hoc definitions will
result in a chaos. The formal property is not confined to a certain language,
but it is common to many, probably to all, languages. A grammar will not
deviate greatly from its proper constuction if its formal property is carefully
examined.

2. Symbol; String; Language.
2.1. Symbol is an undefined term. Morphs, morphemes, lexes, lexemes, or some

other units may be regarded as symbols. Any unit consisting of a number of

symbols is called a string. All the stirings are possible strings. If a string
is considered meaningful, then it is an acceptable string. Each acceptable
string is an undefined term.

These definitions are quite formal. If we confine ourselves to the
problems in morphotactics, the symbols are morphs and the acceptable strings
are what are called expressions or utterances. A symbol may be a morpheme and

a linear arrangement of morphemes is an acceptable string if it is recoznized

PR

Al

N

oe

o

sn utieriacd. A atring aeed not always

linear arrsagement of items. We may regerd a labeled tree called a P-marker

entation of the subsiring dominated

RS

]
0]
3
3
©
g

as a string, and a lszbeled node as a plge
by the node, although the term string seems inadequate in this case. A node
represeats a P-marker consisting of all the terminal and non-terminal nodes

it dominates. Ve can regard a P-marker as a irge-like string of P-mariers
dominated by the former. Another kind of branches may ve added to the syn-
tactic tree in order to indicate the relatiorship among the comstituents. We
call this representation a néé, provisicnally. Ve nay rezard a net as &
string consisting of o anumber of laveled nodis, woose arrangement 1s shown by

two kinds of branches.

ER ol P e e . A ~ R] -~
We define a lengusze as a set of acceptable strings. An acceptable string

[=2

9]

of a natural lan

L

13 Soadsiasred WO I

m . ~

strata established by linguist., Zuc. verslon of an acceptabdle string .8 an
element of the language cefined on the siratusn in gu..ilod.
one version to another is essentially a transilation.

2.2. Supnose we aave & linear string. YWe interruwt the siring by deleting

some of the a symbol of absence to each wvoint of

deletion. I a symbol ol absence is followed oy another ilmmediately, taey ar

[

contracted to onc. 4 linear string is continuous i1f it is not interrupted.
All the nodes in a syntactic tree are partially ordered. A node includes

atter is a part of the linear

]

another 17 the linear string covered oy the

siring covered by the Tormer. A tree~like string is continuous, if and only
c o \ 5 \ N o R , . e s
if (1) all the nodes of the string are included in one node D, and {2) there

are no oiler nodes wnich are not included in D.

A net string is continuous, if and only if the syntactic tree is continu-'
ous and no branches of thue second kind are dbroken off

any subsiring of a suring is called a seguent. It may be either continu-

~ o

ous or discontinuous. & discontinuous segment consists of a few parts sepa-

m~ e 3 . - -y e R DN e e ., g o P S - L v + - < o

rated Ircm each otler. Jach mert of sesnent is czlled a fragnent wilch is
- e end T DU A U SURVUUUNIIL 1L SURE R oIty

LDecCisarily COLUInuous (sarcer~noues, 1904/,

o

If the discussion is confined to a

PR T A RO -
ontext-Iree phrace

(9]

it seems more convenisii to modify the concepis acceplable
any immediate constituent of an acceptable string is also acceptadble, and a
context is acceptable to a string if the string, its context and the whole
string are all acceptable. If the constituents are continuous, the situation
becomes simpler. The context ¢ = r()t is accepitable to s, if r, s, t, ancd rst
are all acceptable. ZIither r or t may be absent.
3.2, Neighborhood.

4 context is an interrupted string which becomes a continuous string if

f

an appropriate segment is supplied to its points of interruption. Iet

y = set(cl,c ---,cn)

27
be a set of contexts and let s be a string. If all the contexts in y become
acceptable strings when s is supplied to them, then the set y defines a pro~
perty of s. We call the set y an acceptable neighborhood of s. If y is an

acceptable neighborhood of strings Sq1 5o s3, for instance, then we say y is

an acceptable neighborhood of
S = Set(sl’s2’53)’
and we consider the set y represents a syntactic property common to all the

strings in S. Hote that our neighborhood is not the same as the okrjestnostj

({ulagina, 1958). 4 set of acceptable strings with a string s is called a
varadigm of s (Parker-Rhodes, 1961); our neighborhood 1s a paradigm in waich
the string s is lacking.

4. Eouivalence of Contexts.

Let s and cj be two contexts. Suprose a string s is acceptable to both

<y and ¢,, and another string t is not acceptable to c, or cj. In this case,
J

we can not tell the difference between g and Cj as far as the acceptance of

the strings s and t are concerned. We say these contexts are equivalent to
each other and write

Cc. eqv c.
3 eav 4

il the condition "¢, is accentable to « siring s, if and only if cj is accept-
o

able to 8" is satisfied for every possible string s of the language. The

relation of equivalence 1s symmetric, reflexive, and transitive:

il

(1) c. eav c.;
i

8

! o~ .
\2) if ¢, eqv ¢., then c, .3
i €q i ; eqv ¢y

Sakai 7

3) if ¢c. eqgv ¢c. and cC. eqv ¢, then c¢. eqQv c, .
3 if o, eqv o, a 5 eV ¢ 5 .

5. Complete Neighborhood.

5.1. Let y be an arbitrary set of contexts. It may include contexts which
are not equivalent to each other and may not include all the contexts which
are equivalent to some context in it. The complete neignborhood N(y) of y is
the set of all contexts eguivalent to some context c¢' in y:

N(y) = set(c: ¢ eqv ¢' for some ¢' in y).
A set of contexts is complete or is a complete neighborhood if and only if it
is the complete neighborhood of itself. Take a string s and let C(s) be the

set of all the contexts acceptable to it. Ve show tzat C(s) is complete.

(1) If ¢ & C{s), then c & N(C(s)); thnat is C(s) < w(C{s)).
(2) 1 c & N(C(s)),

then c eqv ¢' for some c¢' in C(s),

then ¢ eqgv ¢! and c¢' is acceptable to s,

then ¢ 1s acceptable to s,

then c € C(s),

therefore N(c(s)) € c(s).
From (1) and (2), we have

N(C(s)) = C(s).

Therefore, C(s) is complete. We call C(s) the complete neighborhood of the
string s.

We may pick up an arbitrary segment of an acceptable string, call the
kother vart the context of the segment and establish a complete neighborhood of
the segment. This kind of complete neighborhood contributes nothing to a
grammar but some redundant rules. These practically nonsensical complete
Jneighborhoods give rise to no trouble, because they never appear in any rule
of the language.

The comvlete neighborhood C(s) of a string s is considered to correspond
to the syntactic function or the part of speech of the string s. The elements
of C(s) share a common vroperty that every one of them can be an acceptable
context of s, while no other contexts which do not belong to C(s) are acceptable
to s. This property of C(s) leads us to the application of complete neighbor-
‘hobd to a given set of contexts supplied as text.

let S be an arbitrary set of contexts. Some elements of S may be accepted
by s and some others may not. The elements accepted by s must, at the same

time, belong %o C(s), that is, to C(s)(} s. If

Sakai 8

Cs) N 5 =0,
then the string s can not occur under the contextual condition defined by S,
and vice versa. If '

c(s)) 8 = ¢(t) N s,
then we have no means to distinguish the syntactic function of s and t with
respect to the given S. If S is the set of all the possible contexts of the
language, then

C(s) 1 S = C(s)
for any string s. If

C(s) = C(t),
then we have no means to distinguish'the syntactic function of s and t so far
as only the acceptability is concerned.
'~ 5.2. It occurs very often that a string r behaves like a string s under a
certain condition, and like % under another condition. This phenomenon will
“be restated as follows:
for some set S' of contexts,

cx)) s' = c(s)) s,
and Ior another set S" of contexts,

o)] s = c(e) (] sm.

We put x = C(r),

v = C(s),

z = C(t).
Then, x) 8N 8" =y N g+ [} s
and xN sl sh=20N8"0 sm.

Taking the union of these two, we have
x(VstNst=GU z) [} s (1 sm.
This means that r accepts every context in S'{} S" if it is acceptable to s or
t. DNow, we will see the behavior of r with respect to the context set
s =84 sm,
x5 =xf (50U s
= (x s xsm
=yn s &Osm
c (y 3 U (z{]8)
=(yUa=znNs.
This result suggests that the behavior of r may be interpreted in terms of y
and z, and that y and z may account for something lacking in x with respect to

S.

(yuz)s=1{yyz N GYd s
=(ynsHynsyzns Ulznsm
=(xNe)y NsmUYns) u ks
= N EUSNU yNsmU s
= (o Nw Uy L)y y (e s,

6. slegentary leighborhocd,

c.2. e have seen ubove that a complete neighboriocod
is inverpreted in terms of
y = C(s

N ~ 7
and z = O

N

Nia - I w ~7 N SOl . S Rt | el R SN .
we gan expect Uls) and G\, ooy ve a rejresentation ol a simpidr and more

specific syntactic funciion. If
Cc(r) () {J cle),
Cls) # c(x),
C(5> 7 G,
C(t) # 0,

then, for some c, in C(s) and scme cj in C{t), we have

il
Q G

~

C. not egv c,.
- Jd

2. A set of all mutually eguivalent contexts, called an elementary neighbor-
hood, lezds us to a concept of the ultimate unit of syntactic function. Given

a
a context c¢,, the elementary neighborhood e(i) with c, as an element is defined

as

e(i) = set(c: ¢ eqv ci).

Lnce the equivalence is symmetric, reflexive and transitive, any two distinct
gLenentiry neizhborhcods have no elenents in cowmon.

5.3, L8t X be a complete nel . borkood and e(i) an elementary neighnborhood.

bectuse x Lo cowplete. Take an element ¢, in x; then there is an e(i) such
b

~ YA . X . - - .
Icr all e(i)'s having at least one element in x. LSvery elementary

Sakai 10
neighborhood is complete. An intersection of complete neighborhoods is complete.
Every union of elementary neighborhoods is a complete neighborhood.

7. Distribution Class.

We have thus far discussed the syntactic function of symbol strings in
terms of their acceptable contexts. A context is an environmental condition
in which a string occurs. Given a context, we can classify the strings into
two distinct categories: the one is a class of strings that can occur in the
given environment and the other is the class of strings that éan not occur
therein.

If there exists at least one context ¢ in which both s and t can occur,
then c €C(s) and c¢ € C(t),
that is c € C(s)) C(t) # o.

We define the set of all strings t, that can replace s in some contexts, as
G(C(s)) = set(t: C(t) N C(s) # 0).

We introduce a convention
A(=)B

which means that the intersection of the two sets A and B is not empty:
G(C(s)) = set(t: C(t) (=) C(s)).

Suppose a string t can occur wherever s can occur, but s can not always

occur in the contexts accepted by t. In this case,
c(t) 2 C(s).

We define
H(C(s)) = set(t: C(t) D C(s)).

The distribution class I(C(s)) is a set of all the strings t that can be
always replaced by s:

I(C(s)) = set(t: C(t) € C(s)).

That the two strings s and t are mutually replaceable means that s can
occur wherever t can occur and conversely t can occur wherever s can occur.
In other words, any context ¢ is accepted by t, if and only if it is accepted
by s: |

c € C(t) if and only if ¢ EC(s),
or c(t) = C(s).
We indicate the set of such strings t by

J(C(s)) = set(t: C(t) = C(s)).

Other distribution classes are defined as sets of strings whose complete
neighborhoods are related to a certain complete neighborhood in a specified

way. Let x be an arbitrary complete neighborhood. The simple types of

Sakai 11
distribution classes mentioned above are written as
G(x) = set(t: c(t) (=) x),
H(x) = set(t: C(t) 2 x),
I(x) = set(t: G(t) < x),
J(x) = set(t: C(%)

A distribution class is said to-be real if it is not empty, and imaginary

X)e

if it is empty. Suppose, for instance, that a language consists of the accept-
able strings

they are (flying/red/making) planes,

a (flying/red) saucer is an object,

(flying/making) planes is an industry,

and only these. We observe the strings

5, = flying,
s2 = red,
33 = making
and their contexts
¢, = they are () planes,
c, = a () saucer is an object,
oy = () planes is an industry.
The complete neighborhoods of the strings are
C(sl) = C(flying) = set(cl,cz;CB),
C(sz) = C(red) = set(cl,cz),
C(SB) = C(making) = set(cl,CB).

The distribution classes are determined by these neighborhoods. The simple

types above are given in the table below.

it sy C(s,) @{C(s,)) B(C(s;)) 1(C(s,)) J(C(s,))
1: flying (01’02’C3) (51,52,53) (sl) (81,82,83) (sl)
2: red (cl’CE) (51,32,53) <Sl’52) (52) <52)

3: making (cl5c3) (51,32,53) (51,53) (83) (53)

The elementary neighborhoods

are found by consulting the table below, where "+" on the i~th row and j=-th

e(i) = set(c: ¢ eqv ci),

column means "cj is acceptable to si".

Therefore,

7.1,
(1)

(2)

Proof.

(17

if and only if

(2)

if and only if
n

then

if and only if

7.2. 'The equality C(t) = C(s) of two sets is symmetric, reflexive and

oy ©, Oy
S
s, ¥ o+ -
Stk =+ |
e(l) = set(c: c eqv cl) = set(cl),
e(2) = set(ca),
e(3) = set(cB).
C(s,) = e(1) Je(@) U e(3),
C(sa) = e(1) Y e(2),
C(§3) = e(1) U e(3).

J(x) = H(x) N I(x);
H(x) U I(x) ¢ G(x), =x # 0.

t € J(x),

c(t) = x,

C(t) 2x and C(t) ¢ x,
t € H(x) and t& I(x),
te Hx)) I(x).

t € H(x) U I(x),

t € H(x) or t & I(x),
c(t)2x or C(t)<x,

c(t) (=) x for x £ O,
t € G(x).

transitive. Therefore,

if and only if

This means that any two different sets have no elements in common and, con-

sequently, that every element belongs to one and only one set of the form J(x).

“J(x) = J(y)

J(x) (=) J(y).

Sakai 12

i=1 2,3

Sakai 13
7:3.

Z.3.1. 1If x is an elementary neighborhood, then

G(x) = set(t: C(t) (=) x)
= set(t: C(t) D x)
= H(x)
if x # 0
I(x) = set(t: C{t) < %)
= set(t: C(t) = x)
= J(x),

so that C(t) is also elementary.
7.3.2. If x is any complete neighborhood and if C(t) is elementary for all t,
then G(x) = set(t: C(t) (=) x)

= set(t: C(t) € x)

= I(x);

H(x) = set(t: C(t) 2 x)

= set(t: C(t) = x)

= J(x)
if x £ 0,

so that x is also elementary.

7.3.3. If C(t) is elementary for all t and x is also elementary and non-
empty, then
G(x) = H(x) = I(x) = J(x).

Zobo If X =y 2z then

(1) G(x) = G(y) U G(a),
(2) H(x) = d(y) N H@(z),
(3) I(x) =2 I(y) U I(2).
Proof.

(1) t € G(x) = Gy 2),
if and only if Clt) (=) x = y | 2,

wes C(t) (=) y or C(t) (=) gz,
" t £€a6(y) or t€& G(z),
" t € G(y) Ualz).
(2) t € H(x), »
if and only if Clt) Dx =y U 2z,
" C(t) oy and C(t) Dz,
n t £ H(y) and t €& H(z),

(3)
if and only if

then
if and only if

2:3. If x=y(Q z

(1)

(2)

Proof.

(L)

if and only if
n

then

if and only if

(2)

if and only if

8. Concatenation.

Sakai 14
t € B(y) () (=),
t & I(y) Y I(z),
Ct) ¢y or Ct)e =z,
ct) gy yz=x
t € I(x).
then
G(x) < aly)) a(z),
I(x) = I(y) N I(z).

teG(X)g
c(t) N x # 0,
cYNyNz #0,

C(t) Yy A0 and C(t) 1z £ 0,
t € aly) (Valz).

t € 1(x),

C(t) x =y) 2y

c(t) cy and . C(t)c z,

t £ I(y) and tE& I(z),

t€ I(y)) 1(=).

8.1. Concatenation of Strings.

Let p be a string and let rl, ra, -~y be segments of p which do not

mutually overlap.

A segment t consisting of rl, ra, —— rn is the concaten-

ation of these segments. It is a segment of p, consisting of fragments of

Toy Loy ===,T
1’ - 2? *n

arranged in their relative order in the original string p. It

is convenient to assign a definite notational order to a concatenation in order

to specify the arrangement of fragments.

8.2. Concatenation of Contexts.

Tet

Toy Ty ===, T
2! ' 'n

be segments of p with no fragments in common. 7The contexts

cp(ri) of r, inp,

i=1, 2, -, 1

correspond uniquely to the segments T respectively, and so does cn(t) to

the concatenation

Sakal 15

t = r.r —-——-r_.
n

12
We write
——— = t
cp(rl)CP(ra) CP(rn) CP().
if and only if t = riry===r, - in .

8.3. Concatenation of Sets.

Let a, b, ¢, -~ be elements of sets. We call an ordered string of these
elenents a concatenation. Let A, B,'C, --~ be sets. We define the concate~
nation.of sets as

AB---D = set(ab---d: a €& A, b €B, =--, d £ D).
In our present discussion, the elements are either all strings or all contexts.
8.3.1. We confine ourselves to binary concatenations for simplicity. The fol-
lowing discussions can be easily generalized to longer concatenations. An un-
ambiguous concatenation, ABCD for instance, 1s considered as one of the three
~ binary concatenations

A(BCD), (aB)(CD), (ABC)D
when the discussion is strictly binary. In a morphographemic description,
however, this is not very important. One may assume one of these three accept-
able and discard the other two as unacceptable. 1In a morphotactic description,
some one of these three will be chosen so as to make the whole description of
the language simpler. If any one of the sets which constitute a concatenation
is empty, then the concatenation is also empty.

We assume that the binary concatenations required by the grammar are

(aB)(CD), A(BC), (BC)D
and only these. The possible binary tree structures of ABCD are covered by
ABCD = A(BCD) U (4B)(CD) U (4BC)D.
Since we are to handle binary concatenations only, we consider itwo concatenations
of elements are different if their structures are‘not the same:
(AB)(CD)) A(BCD) = O,
(aB)(cD)) (ABC)D = O.
Then, the condition

ABCD = (AB)(CD)

i}

yields

(1) (AB)(CD) # 0,
(2) 4(BCD) = 0,
(3) (4BC)D = O.

By assumntion, AZC = 4(3C) |J (aB)C = A(BC).

Sakal 16

Therefore,

(L) A(BC) # 0,

(5) (AB)C = O,

because Aze) N (AB)C.= 0.

Similarly, BCD = B(CD) |J (8C)D = (BC)D,

(6) (BC)D £ 0, |

(7) B(CD) = 0.

From (2), A(BCD) = A(B(CD) U (BC)D) = 0.

By (7) and (6), A(BCD) = 0 JA((BC)D) = O,

oT,

(8) : A#£0, (BC)D#0, .A((BC)D) =0.
From (3), (ABC)D = (A(BC) U (AB)C)D = O.

By (4) and (5), (ABC)D = (A(BC) U 0)D = (A(BC))D = 0,
(9) A(BC) £0, D#0, (a(BC))D =0,

Now, we can describe the syntax of these strings in terms of binary concate~
nations only, if we establish the rules numbered from (1) to (9).

8.3,2. The following formulas are frequently used.

(L) AB = CD, if and only if 4 = C and B = D,
because, for any ab in AB,

AB = CD
if and only if (ab & AB if and only if ab€ CD)

" ((a € A, bg B) if and only if (a&€ C, b€ D))
" (a¢g A if and only if a EC,

bE B if and only if bE D)
" A=C and B =D.

(2) A(BU C) = ABU AC,
because ab & A(BU C)
if and only if a €A and bEBUC

" (a £A and b EB) or (a £A and bg Q)
"o ab € AB or abg AC
n ab & AB U AC.

(3) Similarly, (A JB)C = AC U BC.

(&) ABNcD=(ANC)BD),
because ab & AB () CD

if and only if ab & AB and ab g CD

- . afAs and bEB and a £C and b ED
" aéAfJC and b €BD

Sakai 17
" ab € (ANCYB ND).
9. Concatenation of Complete Neighborhoods. ’
9.1. If the distribution classes J(x) and J(y) are real, then there exist

strings r and s, such that

c(r) = x
and c(s) = y.
By definition,

C(ri).= x forall r, in J(x)
and C(sj) =y for all S in J(y).

Any string

———] | ———

1

U

p(ri)
with the segment r, in it is acceptable if and only if

plr) = —--r---
is acceptable, and the string

p(s,) = ==-5 -n-

.1s acceptable if and only if
p(8) = ==mgm=-
is acceptable. Suppose

p(risj) e
is a string with both ri and sj in it. Any such string is acceptable if and

only if the string

p(ris) = emel, e =Sm——
is acceptable, and P(riS) is acceptable if and only if

p(rs) = —=—re-=g=——-—

is acceptable. Therefore, p(risj) is acceptable if and only if p(rs) is

acceptable. That is
C(risj) = C(rs).

We define the concatenation C(r)C(s) of complete neighborhoods as the complete
neighborhood C(rs) of the concatenated strings. GCenerally, we put

xy = Clrs), re J(x), sé& J(y)
for any complete neighborhoods x and y, where J(x) and J(y) may be real or
imaginary. lote, however, that

if x = C(r), y = C(s),

ai 18

(]
o
N

C(rs>1
C(rs)

L]

then Xy

1]

while Xy
does not always result in
x = C(r). or vy =C(s). .

We have generalized and transferred the concatenation of strings to
concatenated sets of strings and then to concatenated complete neighborhoods.
The complete neighborhood representation provides us with a less complicated
approach, especially when the strings are syntactically ambiguous. The dis-
tribution class J(x) means the narrowest classification of strings and no
further subclassification is possible, while its complete neighborhood x can
be subclassified if x is not an elementary neighborhood. If

r€ J(x) and x =y Uz,
then we can talk about imaginary strings r' and r'", such that

C{r") =y and clx") = z.
These imaginary strings, always referred to implicitly in terms of distribution
classes, can be discussed explicitly in terms of complete neighborhoods.
9.2. We make distinction between the concatenation

xy = C(ric(s)
of complete neighborhoods and the complete neighborhood

z = C(rs).
The former means a set consisting of concatenated contexts. The properties of
the language is introduced when it is written in the form

Xy = 2
or C(r)C(s) = C(rs),
where the property x of r and the property y of s result in another property
z of rs. Thus, z can be an empty set even if neither x nor y is empty, and
ambiguous even if neither x nor y is ambiguous.
9.3. We find it advantageous to have a system which represents every complete
neighborhood in a unified way. We saw that a complete neighborhood x can be
represented by a union of elementary neighborhoods e(i):

x = e(d) with x N e(i) # 0.
Let us introduce coefficients x(i), such that

x(i) =0 if e(i) N x = 0,

=1 if e(i) < x;

and no other cases possibly occur. We put

x(1)e(i) = e(i) if x(1) =

=0 if x(i)

it |
o
. -

Sakai 19

In virtue of these coefficients, we can write

x = UYx(ile(i),
y = Uy(ield),
z = [Jzlk)e(k).
(L) If 2z =x Y,
then x Uy = (Ux(De(i)) U (Uy(Hle())
= JxG) + y(k))elkd
= Yalkle(k).
If e(k) ¢ x or e(k) < v,
then e(k) ¢ z.
Therefore, for x(k) + y&) = z(k),
we have 0 +0 =0,
1+0=0+1=1+1=1.
(2) 1f Z = Xy,
then z = (Ux(DeldN{Yy(le(d))
= Pyx(y(Glelile(d)

]

Uy z(i,elide(y).
By the definition of concatenation,

e(i)e(3) € xy

if and only if e(i) ¢ x and e(j) cy.

That is, z(i,j) = 1

if and only if x(1) = y(3) = 1.

Therefore, for x(1)y(3) = 2z(i,3),

we have 1X1=1,
0X0=0X1=1X0=o0.

(3) A concatenation of two elementary neighborhoods is a complete neighbor-
hood, and it is also a union of elementary neighborhoods:
e(i)e(j) = Yali,jrklelk).
Writing z = Xy
UU z(1,3)eldde(3)
Yy 2z, 5)ald, jrklek)

It

= Yazlklelk),
we have elk) ¢ =
if and only if e(ide(j) c z and e(k) € e(L)e(j).

Therefore, for the expression
z(i,3)ali,j,k) = z(k),

we have 1X1=1,

0X0=0X1=1X0=0.

10. Concatenation of Distribution Classes.

10.1.

because

if and only i

t

then

if and only
10.2.
because

if and only

then

if and only
10.3.
because

if and only

then

if and only
10. k.
because

if and only

"
"

then
if and only

if

if

if

if

if

if

if

G(u)a(v) < Gluv),
rs € G(uw)G(v) .
r & G(u) and s & G(v)

clr) Qu #0 and Cs) Nv A0
(clr) Nwicis) Nv) = c(r)C(s) Nuv £ 0
C(rs) Nuv # 0

rs EG(uv).

H(wH(v) ¢ Euv),

rs £ H(wE(v)

r £ H(u) and s € H(v)
C(r) Du and C(s) 2 v
C{r) Nu =u and C(s) v =v

(c(r) A wi(cls) Nv) = Cr)C(s) nuv = uv
c(r)c(s) 2 uv

C(rs)o uv

rs € H(uv).

I(wI(v) e I(uv),

rs € I(WI(v)

re I(u) and s & I(v)

clr)cu and C(s) v

c{r) nu = Cr) and C(s) N v = C(s)
(c(x) N w)(cls) Nv) = c(r)C(s) Nuv = C(r)Cc(s)

C(r)C(s) ¢ uv
Clrs) € uv

rs & I(uv).
J(w)J(v) ¢ J(uv),
rs € J(u)d(v)

r € J(u) and
C(r) = u and
c(r)C(s) = uv

s & J(v)
C(s) = v

C(rs) = uv

rs € Jluv).

Sakai 20

Sakai 21

1l. Rules for Recognition and Gencration.

Each rule of a grammar indicates the arrangement of a few items to be
concatenated, accompanied by some other necessary informations. We assume the
items arranged in a rule are either complete neighborhoods or distribution
classes. Let us see what happens during the generation and recognition of a
string of symbols.

In case a grammar is given in terms of complete neighborhoods, the input
text is converted to a string of complete neighborhoods before the syntactic
analysis begins. At the very end of generation, a terminal node accompanied
by a complete neighborhood x is replaced by a string s whose compiete neigh-
borhood C(s) shares at least one elementary neighborhood with x.

When the syntactic rules are expressed in terms of sets of strings, the
input text to be analyzed is replaced by a string of distribution classes.

If a symbol string belongs to more than two sets of strings, their meet
replaces the symbol string. At the end of a gerneration, the synthesized out-
put string is obtained by revlacing the set of strings on &ach terminal node
by a string which i1s a member of the set.

1l.1l. An acceptable string can be generated and analyzed making use of a tree
with its nodes marked by complete neighborhoods. The expansion of a node z
to a concatenation xy of nodes x and y implies z D xy, because otherwise
further expansion of x and y may yield a structure which can not be accented
by z. Transformational rules can be arplied more freely because a trans-
formation does not imply such a restriction. However, attention ahould be
paid not to add any other contexts to the complete neighborhoods attached to
the nodes already generated. Finally, each terminal node is replaced by a
lexical element. The string obtained after applying all the obligatory
rules must be an acceptable string.

The analysis is carried out by testing all the possible transformations
and trying all the possible contractions. At any rate, both generation and
analysis can be carried out if we have a set of rules which gives concatenation
z = x~--y for any x, =---,y of the language, and the transform y(l)y(2)---y(n)
of any string x(1)x(2)---x(y) of complete neighborhoods.

1l.2. Acceptable strings are also generated by starting from the node P(0O)

which is the set of all écceptable strings.. It is replaced by its subset
P(1)2(2)--~P(1)~--F(m) < F(0)

which is a concatenation of nodes P(i)'s. Each node F(i) also represents a

set of strings, and it may or may not be replaced again by

P(11)---P(13)~--P(in) < F(i).

Sakai 22
On each step of expansion, a choice is made by taking a subset of strings.
The possible choice becomes narrower and narrower. It is expectecd that the
string obtained by applying obligatory rules and by replacing each terminal
node by a lexical element is an acceptable string.

This is not always true if the replacement of a node is independent of
the other nodes already generated. Tnis difficulty is overcome by executing
a syntactic analysis after every step of expansion. If the analysis does not
prove the possibility of obtaining an acceptaovle string, another subset should
be chosen as a candidate. The check by analysis should be tried after a
transformation if it is a local or a gemeralized one. All the nodes, terminal
and non-terminal, are sets of symbol strings. A generated string of nodes is
analyzed by tracing back the path of generation. If the analiysis goes back to
P(0) which covers the whole string, the generation is acceptable, and aot
acceptable 1f otherwise.

Any given string can be analyzed by applying rules to the string. In
this case, however, the tree siructure is not known. Rules should be fested
on every possible combination of terminal and non-terminal nodes, so that the
whole string may be covered by a single node and the possible derivational
history may be accounted for by the concatenational and transformational rules.
11.3. The Rules for generation and those for recognition are essentially the
same. They may be prevared in terums of complete aneighborhcods or distribution
classes. The rules will be ©vrepared without any formal ambiguity if their
definitions are carefully observed. Some formal systems are given in the
following pages as examples of silmple types of grammar.

12. Complete deighborhood Rewresentation of Concatenation Rules.

We say a set of concatenation rules is complete if it gives the concate-

ration
Z = XYy

of any complete neighborhoods x ahd y of the language. It is not necessary,
hovever, to list all the possible x's and y's. Much less number of rules
can cover all the vossible commlete aneijhborioods if thelr use is yreoperly
yrogrammed.

We consider a rule f(uv;w) represents a relation between the concatenated

complete neighborhcods uv and another complete neighborhood w. Bach rule

Salkai 23
will give . information to xy if x (=) u and y (=) v:
N wlynv =xyuv;
which is a part of xy = z.

In order to obtain the given concatenation xy, we determine a set Rixy)
-of rules applicable to xy. Each rule is decided whether or not it is applic-
able to xy by the condition g, so that

fluv;w) € Rixy)
if and only if glx;u) and g(y;v).

The term w is read out of the rules in R(xy) so that z = xy may be
determined. It is obvious that there exisf certain restrictions in choosing
the type f of rules, the condition g for determining R(xy), and the procedure
of finding z. We have to specify these three for the grammar to be written.

When the complete neignborhood z is given and its expansion xy is to be
found, the set R(z) of applicable rules is determined by the condition h(zjw):

_ R(z) = set(f(uviw): hlz;w)).
The situation is a little complicated in this case. We can possibly expect a

case where both

z = X;¥; and 2 = X5,
are true under the condition
Xy N x, =0 and/or vy N ¥y, = 0.

Note that this is not the case of formal concatenation of sets
ABNCD=(aNC)BND.
and x

The concatenations x happened to be z by the syntactic reason of

171 272
the language being studied. A storage space is assigned to each X,y, as soon

as any rule in R(z) proves a possibility, and X,V is modified every time a
o~

rule is applied to it. However, if

X. © X, and, V. .
i="] i-=v]

then either X;y; or xjyj is just trivial. The choice depends upon the type Qf
rules and the program which applies the rules to the text. Finally, we have
a set of x y, accompanied by the subset R(z;1i) of R(z). Possible types of
rules for this purpose will not be discussed here, because the principle is
similar to the case of finding z from x and y.
In order to see some properties of rules, we assume simple forms of F(uviw):
uv (=) w,

uv o w,

uv € w,

Sakai 2k
uv = W,
The condition g will be assumed simply as
(=), 2, < or = .
The condition of constituents can be replaced by a condition imposed on

the whole concatenation:

(v xy (=) uv

if and only if xy Quv = (xNn Wy Nv) £0
L x (=) u and y (=) v;

(2) ' Xy 2 uv

if and only if xynpuv = (xNuwily Nv) = uv
n u=xMu and v=yv
" xX2u and Y2V

(3) similarly, Xy ¢ uv

if and only if X< u and vy v;

&) Xy = uv

if and only if X = u and y = V.

12.1. Suppose we have the rules of the form
uv (=) w,
applicable to xy if
x (=) u and y (=) v.
Then, for such a rule, we have
xy (=) uv (=) w.
We can also assume the rules are applicable if
Xy D uv,
XY € uv,
Xy = uv.
We can not decide which part of w belongs to uv, unless some other information
is available. |
12.2. If each rule represents the relation
uv o> w
then N WlyNv) =xyQurxyN w.
12.2.1. Let the rules of the form
uv o w
be applicable to xy if and only if
X2 u and yo2 V.
Then Xy D uv-ow.

This is true for any rule in '
R(xy) = set(uv 2 w: xy 2 uv).

Sakai 25
If the set R(xy)has sufficient rules to give
Xy = Uw,
we can find xy by simply taking the union of all the w's in R(xy).
£2.2.2. If the rules are applicable to xy when
Xeu and yC Vv,
then Xy € uv 2.
12.2.3. VWe know that a concatenation xy of any two neighborhoods is broken
down to the concatenations of elementary neighborhoods e(ide(j) and that each
e(i)e(j) is represented as a union of elementary neighborhoods.
If x = e(1),
' vy =e(2) Y e(3) U ell),
for instance, and if we have the rules
e(L)e(2) 2 e(5) U e(6),
_ e(L)e(3) 2 e(5)
and ' e(l)e(k) 2 e(6),
then xy 2 e(5) U e(6).
These rules will be broken down as
e(L)e(2) o e(5)
e(l)e(2) o e(6)
e(L)e(3) o e(5)
e(Le(k) o e(6),
and then contracted as
e(1)(e(2) (+) e(3)) = e(5)
e(1)(e(2) (+) e(k)) o e(6),

where the symbol (+) means an alternative choice.

n

The number of elementary neighborhoods increases rapidly as the linguistic
analysis becomes more precise, and hence a grammar prepared in terms of
elementary neighborhoods comprises a great number of entries. However, this
type of rules is preferred wnen a varticular technique is available on machine
(Opler et al., 1963). .

12.3. Let us consider a set of rules of the form
uv < w.
We assume a rule is applicabie to xy if
x (=) u and y (=) v.
We have, then,

xNwly Nv) =xyNur ¢ xy (v

kai 26

[42]
[O]

12.3.1. Suppose the rules of the form
uv o w
are applicable to xy if and only if
x2u and ¥y V.
For all the rules in the set R(xy) of applicable rules, we have
Xy o uv ¢ w.
12.3.2. Let the set R(xy) of applicable rules be
R(xy) = set(uve w: x € u, yc v).
Then, for each rule in R(xy), we have
Xy € uv < w.
Taking all the rules in R(xy), we can expect
xy = (Jw,
andy 1f the set of rules is prepared so as to meet this condition, we can find
xy by taking the intersection of w's in R(xy).
12.4. Let the rules be given in the form
uv = W,
and let R(xy) be the set of rules such that
x (=) u and y (=) v,
12.4.1, If R(xy) is the set of all the rules satisfying the condition
X2 u and yo v,
then we have
XyDuv = w
for all the rules in R(xy). Then,
Xy 2 Juv = {Jw,
where the union is to cover all the rules in R(xy); if the rules are prepared
so that
Xy = |Juv,
then we can find the concatenation simply by taking the union of w's of the
rules in R(xy).

12.4.2. If the rules are wnrerared so that they may be applied to xy when

X< u and ¥ C Vs
then XYy € uv = W,
If xy = {Juv

is true for all the rules in R(xy), then we can find the desired concatenation
by

xy = (}w.
12.4.3, If the rules are represented in terms of elementary neighborhoods in

Sakail 27
the form
e(ide(3) = w(i,j),
then, in virtue of the coefficients x(i) and y(j), we have
xNu=xeld)
yAv=yNeli =y35elil
(x N wyN v) = x(Dy(felile(i).

Therefore, a rule is applicable to Xy if

X(i)e<i)1

x(i) = y(3) = 1.
The result z = xy is obtained as the union of all the w(i,j)'s of the
applicable rules:

z = Jw = Ux(L)y(Giwliy).
12.5. The rules are prepared and used more freely according to the given
condition and requirement. In the following scheme (Sa@ai, 1961), a com-
plete neighborhood is represented by a code consisting of a number of digits
and each digit is checked, modified‘and transferred independently.

Suppose x and y are given and their concatenation z = Xy is required.

Both x and y can be syntactically ambiguous and their ambiguity is to be
reduced in the course of finding z. Initially, z is assumed to be the set
of all the possible contexts. x, y and z are transferred to a temporary

storage space (xl,yl,zl). A rule is applicable if

x (=)u, y(=)v and =z (=) w,

and the set (x ,zl) is modified everytime a rvle is applied. If a rule

171
proves

x., (=) u, ¥y (=) v, zl(} w = 0,

1
then the rule is not applied to this set, and another set (Xz’y2’22) is

stored in another storage space as another possible result. All the applic-
able rules are applied one after another to all the possible sets of

(xi,yi,zi). Similar procedure is repeated over again on two languages

simultaneously, so that the syntactic structure can be transferred from the

tree structure in one language to that of another. language. The form of the
tree is preserved but their nodes are marked by the labels specific to each

language, input, intermediate or output language.

1%. Distribution Class Representation of Concatenation Rules.

Possible concatenation of a language can be formulated as concatenated
sets of strings. Let

R = set(r: alr))

Sakai 28
and S = set(s: h(s))
be sets of strings satisfying the conditions h(r) and h(s), respectively, and
let their concatenation have the property k(rs), so that
rs € T = set(t: k(t)).

We consider the concatenation rules of the form

RSC T,
which reads:
if r €R and s €8,
. then rs £ T.

The point of this representation is that,

w o €3, 070 - N,

and s €5, N8 N--- ﬂsk’

then as many rules are applicable to rs and they give
- Tom m ——— T =rl.
lSé'lhﬂ .I.lﬂ Kk T

The intersection T' has less number of elements and, if the rules are precise,
the character of the strings in it is determined as precisely as required. Of
course, these procedures are not to be done by listing up all the members of
the sets. Each set in the rules is represcnted by a code. Every entry of the
lexicon has a code and it can be determined whether or not the string belongs
to any given set. These codes are to be generated and attached to rs to
indicate that it belongs to the set T'.

Practically, it is convenient to classify the strings in terms of their

complete neighborhoods:

R = set(r: h(C(r);u)) = R(u),
S = set(s: h(C(s);v)) = S(v),
T = set(t: k(C(t)3w)) = T(w).

A grammar of concatenation will be given as a set of rules of the form

R(u)s(v) ¢ T(w)
with a relation

‘ fluviw),

and the rules can be described in a number of different ways according to the
choice of R(u)S(v), T(w) and f(uv;w). In order to see the principle, we
sinplify the situation by making use of the distribution classes G, H, I and
J, and by assuming the relation f(uv;w) as

uv (=) w,

uv o w,

Sakai 29
uv c w,
or uv = W.

The type of T(w) is chosen so that the grammar may describe the language

adequately.
13.1. G Representation.
Put

R(u) = G(u), S(v) = G(v).
If r € Glu), s €alv), uv (=)w,
then rs € G(u)a(v) < Gluv),
then Clrs) (=) uv (=) w.
If r € Gu), s EGH), uvow,
then rs € G(walv) ¢ Gluv),
then C(rs) (=) uv o w.
1f r €Gu), s Ealv), uveg w,
then rs € G(wa(v) ¢ Gluv) € G(w).
If r €Gu), s £G(v), uv=w,
then) rs € G(u)G(v) < Gluv) = G(w).

Even if a few rules are applicable to rs in these cases, that is,

rs £ G(wh) N G(wi) N ---0 G(Wk),

we have no simple way to find C(rs) from w's. We can not specify a set of
less members which adequately indicates the property of rs, unless more spe-
cific information is available.

1%.1.1. Suppose, however, u and v are elementary.

If clr) (=) u and c(s) (=) v,
then c(r) 2 u, c(s) o v.
That is, r € G(u) = H(u), s € G(v) = H(v).

For further discussion, see "H Representation', where u or v is not necessa-
rily elementary.

1%3.1.2. Assume C(r) and C(s) are elementary.

If - Clr) (=) u and c(s) (=) v,
then Clr) < u and C(s) < v.
That is, r £ I(u) and s € I(v).

For further discussion, see " I Representation', where no neignborhoods are
" necessarily elementary.
1%.2. H Renresentation.

Put

R(u) = Z(w), S(v) = H(v).

. Sakai 30
r € H(w), s € Hulv),

If
then rs ¢ Hw)H(v) < H(uv).
13.2.1. If uv (=) w,
then rs € H(wH(v) ¢ H(uv),
" then C(rs) D uv (=) w,
then Clrs) (=) w,
then rs £ G(w).
We put

T(w) = G{w).

However, there is no simple procedure of finding the intersection of G(w)'s.

We can not specify the features of the strings by finding more rules applicable

to rs, unless more specific information is available.

1%3.2.2. If
then
because

We put

uv o W,
rs € E(w)H(v) ¢ H(av) € HElw),

Hluv) = Hw gy w') = Hw) [} E(w') ¢ Hw).
T(w) = E(w)

to have the rules of the form

HwE(v) ¢ Hw).

If a number of rules are applicable and

then

then

rs & H(uh)H(vh) c H(wh)

rs € 2u JH(v,) < HEw,)

rs E H(uk)H(vk) c H(wk),

rs £ H(wh) N E-I(wi) N --- OH(Wk)
= H(wh vy ka),

Clrs) 2w,y w; U === VA

The rules of this type are essentlially the same as the rules of
complete neighborhoods
Xy D uv D W,

although they are encoded as the sets of strings.

15.2.2. 1If uv ¢ w,
then C(rs) 2 uv € w,
then rs £ G(w).

13.2.4, Put
uv = w.

Then rs € H(WH(v) ¢ H(uv) = H{w).

Sakai 31
The situation is the same asthe case above, where uv o w.

13.3. I Representation.

Put ‘
. R(u) = I(w), s(v) = I(v).
If r € I(u), s €1(v),
then rs & I(wWI(v) ¢ I(uv).
1%.3.1. If uv (=) w,
then C(rs) ¢ uv (=) w.

No relationship is relevant between C(rs) and w.

13.3.2. If uv o W,
then Clrs) ¢ uv 2 w.

No definite T(w) is available, such that I(u)I(v) ¢ T(w).
13.%.3. We consider the rules of the type

I(w)I(v)
with uv < w.
Ir ré I(u), s € I(v),
then rs € I{uv) ¢ I(w).
If a number of rules are applicable to rs,
then rs £ I(wh) N I(wi)ﬂ - DI(WK)

= I(wh n wiﬂ _— ﬁwk).
Therefore, the rules of this type are equivalent to those of the type

Xy< uv € w.

13.3.4. Put
uv = .
- Then rs € I(wW)I(v) € I{uv) = I(w).

This is the same to the case mentioned above.
13.4. J Representation.
Put

R = (w), S(v) = 3(v).
This type of grammar is not practical because every real distribution class
J of the lanpguage must be listed in the rules. This condition corresyonds
to the comrlete neighborhood representation of rules f(uv;w) applicable to
xy only if
‘ X =1 and y = V.

15.5. Practically, the rules can be written more freely and the program

can be more flexible and efficient, provided. that a more sophisticated

| Salkal 32
scheme is introduced to the G Representation and the condition f(uv;w). This
is realized by representing the sets of strings hy codes, so that the union
and the intersection of any two sets are determined by the operation on the
codes.

;ﬂ. Some Remarks on Transformation.

14.1. It is generally agreed that we generate acceptable strings by starting with
an axiom and expanding it repeatedly into a string of constituents. This pro-
cedure is taken care of by concatenation rules. After generating one or more
strings by this procedure, they are transformed to yield another string.
let us imagine another fuaction of our normative device. We give it a
pair
r = (r|,rn>

of acceptable strings

r' = r' ()2 (2)==~r" (i) ===r'(n")
r”(l)r”(a)—-~r“(i”)——-r”(m”).

The pair r will be referred to as a string

and r'

r = r(1)r(2)mm=r(i)=m=r(m)
with m=um"'+ '
We put m'" =0

if the string r' is absent. We then give it another acceptable string

s = s(1)s(2)~==s(j)===s(n),
and ask it whether or not the string s as an expression is true if both r'
and r' are true. If the device says "yes', we consider the string s is gene-
rated from r by a transformation. We call r the original string and s its
transforn. If it says 'mo", rno such transformaticn exists. Conversely, we
ask it whether or not r' and r" are true if s is true. If the device says
"yes', we consider an inverse transformation exists, such that s is expressed
by r' and r'. We can find many cases in which the device would say ''yes' for
transformation but "no" for inverse transformation. Some information is sup-~
posed to have been lost in generating the string s, which can not be retrieved
unless appropriate, possibly non-~linguistic, information is supplied. This
situation 1z beyond the scope of syntactics.

A transformation or an inverse transformation is called singularly if r
in r is absent, and it is a generalized one if both r' and r" are present. If
it is an embedding transformation, r' and ' are called matrix and constituent
strings, respectively.
| If we understand the transformation in the sense mentioned above, the
tranafer of syntactic structure from one language to another is also a trans-

Sakai 33

formation (Gross, 1962).

14.2. If it is known that r is transformed fo s, then this fact is used to
generate a particular string. If r is known to be an inverse transform of s,
then this is used to recognize s, giving a possible derivational Listory.

If no other such transformations are found, r is the only nearest aistory.
Otherwise, the ambiguous history is to be accouanted for by other rules.

If we find r and s such that r is true if and only if s is true, then we

say r and s are equivalent and write

r eqv s.
Obviously, this equivalence is symnretric, reflexive, and transitive. 4
transformation that transforms a string into an equivalent string is called
an equivalence transformation. If we have a grammar consisting of equivalence
transformations only, it can be used for both synthesis and analysis.

Iet us confine ourselves to the equivalence transformations in order to
simplify the discussion, and assume we have a set of rules or a normative
device. A generalized transformation transforms a vair r = (r',r'") of strings
into one string s. The inverse transformation by the same rule dissolves a

string s into a pair of strings (r',r"). Then, r' or r" is regarded as an s,

®

and, if we find an appropriate rule, it is again dissolved into two acceptable
strings. By repeating the same, we have a number of equivalence relations
which can be arranged as a tree:
s eqv (r(1),r(2));
r(1) eqv (r(11),r(12));
r(2) eqv (r(21),r(22));
r(11) eqv (r(111),r(112));
r(12) eqv (x(121),r(122));
If an acceptable string t can no longer be dissolved into two acceptable
strings, we call t a terminal or an atomic acceptable string. Throughout
this procedure, the strings are expected to become shorter and simpler, because
equivalent information is expressed by many separate strings. It will be
still possible to transform an atomic string to another atomic string by means
of a singulary transformation. We have different atomic strings which are
matually equivalent. We may pick up one of them and call it a kernel string.
The sequence of inverse transformations is not always uniquely determined.
There can be other orders of dissolving a given string into atomic strings.

We can make the grammar less redundant by studying the possible sequences of

Sakai 3k

inverse transformations. If the rules are all equivalence rules, there is né
theoretical problem of ambiguity. The investigation of these problems reguires
quite a different treatment, and will not be included in this paper.

14.3. Sometimes, it is considered more ling istically reasonable to assume
that a string is not acceptable but its transform is an acceptable string or
a constituent of an acceptable string. In some other cases, a string may be
an acceptable string and its transform may not be an acceptable string or a
constituent thereof. In other words, a transformation is applied to an un-
acceptable string or a transformation results in an unacceptable string.. We
may prepare the rules in such a way that a sequence of obligatory transformn-
ations is contracted to a single rule. This seems formally simvler and con-

-
{

sistent. However, it will result in & more entangled system of graumar. We
adnit some of such strings as potentially acceptab

le and indicate it by a
marker., This convention is sometimes useful not merely as a technigue but also
as a consistent and more plausible derivation of acceptable strings. It is
known that a string of a Chinese dialect marked potentially acceptable for the
derivation of apparently inconsistent strings is quite acceptable in another
dialect (Wang, 1964). '

14,4, A generalized transformational rule consists of terms u and v, where

u = (u',u"))

= u{L)u(2)=~-u(i)~=~ulm),
w' o= u' (Du' (@)= (L) m==u' (m'),
' o= wt(Wu(2) e (1) et ('),

m=mn"+na",
u becomes v,
v = v(1)v(2)=~=v(j)===v(n).

Most rules are accompanied by a nuuber of restrictions imposed on the
original strings and their transforms as well as some manipulations of strings.
Tese are classified into a few tyves and subroutines are to be vrepared for
them. Some of the operations are listed below, which have been picked up
sporadically from the rules for generating Chinese strings (Hasimoto, 1964).
(O) A routine supervising the subroutines takes care of the whole procedure

of applying the rules to a string. I the rules are prepared in a defin-

ite format, they are automatically checked and applied to the given string.
(1) Certain segments r(h) and r(i) in the criginal string must or must not

share a certain feature in common and/or a segment r(3i) must or must not
[[

have a certain feature.

Sakai 35

(2) The segment r(i) of the original string and the segment s(j) of the trans-
form must or must not have the same feature specified by the rule.

(3) Some segments in the transform must satisfy the condition similar to (1).

(4) Absence and/or presence of particular segments must be checied.

(5) Positions of certain segments in the String must be found.

(6) A check of the derivational history sometimes decides the recursive
application of the rule. |

(7) The tree structure must or must not be changed by the final procecure of

a transformation.

14.5. No rule describes a transformation of an individual string r into an
individual string s. The rule says, if the string r has the feature

u = w(L)ul2)---uli)---ulm),
then it is transformed to another string s which has the feature

v = v(L)v(2)===v(j)=-~v(n).

What are these features? They muct be defined on the basis of the
answers of our normative device. The program must be consistent with the
features defined. Once a program is written and decided to be used, the
program is the definition. If the program is modified, the rules and the
lexicon are to be modified. |

Since the transformations are applied to P-markers, a string is considered
to be a tree-like string. If it is a linear string of terminal nodes, the
other non-terminal nodes and the brénches are to be determined by virtue of
the concatenation rules. We consider the labels u(i) and v(j) are complete
nelghborhoods, if the concatenation rules are written in terms of complete
neignborhoods. If the concatenation rules are written in terms of distribution
classes, u(i)'s and v(j)'s are considered to be distribution classes.

14.6. The complete neighborhoods are defined on the basis of concatenated
strings and we have to associate them with the labels given to the nodes of
our transformational rules in order that the kernel strings can be transformed.
Iet us see what happens when the nodes are assumed to be complete neighbor-
hoods.

let

p=(p',p")
be a pair of acceptable strings p' and p", and let
r = r(l)===r(i)~==-r(m)

be a segment of p. The pair p is transformed by T into

Sakai 36

q = T(p),
and the segment appears in q as

s = s5(1)=---s(3)==-s(n). |
Some strings may have been added and some others may have been deleted.
Put

x(i) = ¢(r(1)),

x = C(r),
y(3) = ¢c(s(3)),
y = C(s).
By definition,
x = x(1)===x(i)===x(m),

y = y(1)===y(j)===y(n).
-Any string belongs to oﬁe and only one distribution class J. Therefore,
instead of
| N(r(1)---r(1)==-r(n)) = s(1)---s(j)-~-s(n),
we write
T(I(x (1)) m=md (x(1)) ===J(x(m)))
= J(y(1))--=-3(y(§))~-=I(y(nl)).
Since all the elements in a J has the same complete neighborhood, we rewrite
the above as
T(x(1)m==x(1)===x(m)) = y(1)===y(j)===y(n).
This is rewritten again by breaking down in the form
x(1)=m=x(i)===x(m),
T(x)
y(1)=m=y(j)===y(n).

X

1

y

If we have a complete set of rules which gives the concatenation of any
complete neighborhoods of the language, then we can find the complete neigh-
borhood x. The transformation takes place when x is changed to y. The string
¥y is to be generated in virtue of the information brought forward from x and
the structural requirement of y itself. A transformation is then interpreted
aé:

The complete neighborhood x of the node dominating the string
%x(1)==~x(i)-=-x(m)

of complete neighborhoods is transformed to another complete neighborhood y of

the node dominating the string

y(1) ===y (§)===y(n).

Sakai 37

This interpretation, however, suggests a few problems.
14.7. We know that
J(x(1))mm=d(x (1))mm=T(x(m)) & J(x),
J(y(1))===3(y(§))=--3(y(n)) € I(y).

The statement "x is transformed to y" is a generalization of the original

fact, and this generalization is not always true. The text should be checked

before a transformational rule is applied to it. Some separate steps for this

purpose will save the machine time.

(1) A text to be parsed must consist of segments specified by the rule. The
correct segmentation can be done by finding the tree structure of the
text. Therefore, the concatenation rules must be prepared sc as to

. account for the structure of any acceptable string.

(2) Not all the.trees of the specified form undergo the inverse transformation
so that the derivational history may be traced back. The nodes are
labeled. A tree of a form can correspond to a number of trees whose nodes
have different labels.

(3) When a string is being synthesized, the text is given as a pair of P-
markers. A rule can be applied only if the P-markers meet the condition
specified by the rule.

14.8. We may regard the structure mentioned above as a representation of

derivational history. The history can be recorded by listing all the deriv-

ational steps the string has experienced. This representation, however, will
be redundant and inefficient, because it is likely to occur that an identical
series of transformations is applied to strings of different history. On the
other hand, it is also possible that the strings p and q of different histories
result in an identicalvstring s by a transformation and the string s is am-
biguous in that the s from p can undergo a sequence of transformations and the

s from g another; thus the structure itself can not be an absolutely reliable

marker.

We think it more practical to associate the rules with the features in
the P-marker to which the rules are applied. These features should correspond
to the series of transformutions aprlicable to the P-marker in case of syn-
thesis and the series of inverse transformations in case of analysis. We have -
some rules with notes on the type of transformations to which the resultant
strings may be exposed (Hasimoto, 1964). ‘

15. Complete Neighborhoods and Transformational Rules.
let us assume u(i)'s and v(j)'s are complete neighborhoods.

Sakai 38

15.1. Two strings r and s may replace the same non-terminal node to yield a
longer acceptable string. However, when a transformation T is to be applied,
they must have the specified structure; thus the astring p with r as a segment .
in it may be transformed by T, while the string q which differs from p only in
that it has the segment s in the place of f may not. The lack of g by T meaxns

C(r) # C(s).
15.2. Because of this complexity involved in natural languages, we encounter
a difficulty when we try to prepare a set of syatactic data for practical
purpcses. We refine the definition of complete neighborhood in such a way that
C(r) of a string r is the set of all contexts of r which appear in the strings
to which no transformations have ever been applied during their derivation.
The difference between r and s is found in their internal structure, if the
machine is given only the input string to be parsed. In order to indicate tais
difference, we put

¢(r) U D(r) = E(r),
where C(r) is defined over the set of kermel strings,

D(r) is defined over the set of transforus,

E(r) is defined over the set of kernel strings and

transforms.
Iet ¢(1) be an elementary neighborhood defined over the set of kernel

strings, and let r be a real or imaginary string such that

C(r) = c(i).
Let d(i;J) be the elementary neighborhood defined over the set of all the
possible transforms of which r is a segment, where J corresponds to the
possible sequence of transformations. Putting

c() U ali;3) = eli33),
we have the elementary neighborhood e(i;j) defined over the set of kernel
strings and transforms. These e(i;j)'s are no longer necessarily disjoint:

e(i;3) Neli;3") o c(d).
15.3. The separation of kermel strings and tronsforms still involves a con-
siderable complexity. Let g be a transform. It is a transform generated by
a transformation in a sequence of transformations and it can be an original
string to be transformed by the following transformation.

A transformation is accompanied by the set P of original strings and the

set @ of transforms:

P = set(p: T is applicable to p),

Sakai 39

Q = set(q: q = T(p), p in P).
We simplify the situation by defining the complete neighborhoods over P and
~over Q. The feature of T is shown more explicitlynin this way. Iet A be a
node and imagine a derivation by the context sensitive rules

A —> BC

B—~—>F/ ---C

C —>G / B--~
where the symbols are assumed to be complete neighborhoods. Let B be replaced
by F first to yield FC, and the third rule can no longer be applied because of
the lack of its necessary environment B---. When these rules are to be used
in analysis, none of the contexts ---C or B--- is relevant in the given string
‘FG of complete neighborhoods. We can get rid of this difficulty by defining
B and C over a set of strings and F and G over another, and by considering a
transformation from BC to FG, prohibiting the operations on the strings FC and
Ba.

Let .
p = p(l)===p(i)=---p(m)

be a string in P, and let

q{1)===q(j)===q(n)
T(p)

be the transform of p by T. We define the complete neighborhood of (i) over

q

P and that of q(j) over §. By modifying the meaning of the notation, we put
C(p(i)) over P,
D(g(3)) over Q.

The requirement that p(i) should appear as q(Jj) in Q gives

il

x(i)

il

y(3)

p(i) = q(j)1
C{p(i)) # O,
D(g(3)) # 0;

if p(i) does not occur in q, then

x(i) = C(p(i)) over P
= E(p(i)) over P |J Qj
if q(j) does not occur in P, then
y(3) = D(q(3)) over Q

= E(q(3)) over P {J Q.

The relational conditions imposed on the segments p(i) of the original string

Sakai 40

and q(j) of the transform are indicated in terms of E(p(i)) and E(q(j)), or |
by a relation between C(p(i)) and D(q(j)).

The set Q can include a part of the set P' of original strings to which
- another transformation T' can be applied. Thus, wé can classify the strings
with respect to possible transformations. We have no positive grounds to

assune any natural language has a stratified system of layers arranged one over

another.
15.4. Let

(u',u”)

u(l)-=-u{i)==~ulm)

=
]

I

be a pair of concatenations

wt o= ! (D) emmn ' (3 e (m)
- and ' = ut(L)em=ut (L) = =—u (")
of complete neighborhoods u'(i')'s and u''(i")'s defined over P. If the string
is linéar, the non-terminal nodes are to be determined by concatenation

rules. We assume the rules of the form

£(2(w);v)
mean, over Q, a relation between T(u) and v. We assume further a rule is
applicable to the given pair of concatenated complete neighborhoods
(x'yx")
x(1)=--x(1)-~--x(m)

if the condition g(xj;u) holds. That is,

X

if - glxsu) over P,
then f(T(u);v) over Q.
We expect to find the transform T(x) in terms of v of the rules in the set
R(x) = set(£f(T(u);v): glxju))
of the applicable rules.
Given the rules of the same form and a string represented by a concate-
nation
y = y(L)===y(j)===y(n)
of complete neighborhoods, an inverse transformation is to be carried out by
finding the set
R(y) = set(f(T(u);v): hiy;v))
of applicable rules.
With all the linguistic difference between the concatenation rules and

transformational rules, they exhibit formal similarities when the labels are

Sakai 41

assumed to be the sets of contexts. We will not repeat a similar discussion’
on the choice of £(T(u);v), glxju), nly;v) or the algorithm for finding x or
y.

16. Distribution Classes and Transformational Rules.

Let p be a string and T(p) its transform by the transformation T. Let P
be a set of strings p to which T is applicable. We defined the transform T(P)
of P as the set of all T(p)'s:
CT(P) = set{T(p): p in P).
A rule will be written in the form
| £(T(P);Q)
to indicate a relation between the sets T(P) and Q.
In order to specify the sets a little closer to the form of rules usually
prepared by linguists, we put
p = p{L)p(2)===p(i)===p(m)
q = q(L)g(2)==-=g(j)=-=-q(n),
where p(i)'s and q(j)'s are segments in p and q, respectively. Then we put
| P = P(1)---P(i}=-=B(n)
Q = Q(1)~---Q(§)---q(n),
which are to be understood as concatenated sets of strings.

A rule of the form £(T(P);Q) is applicable to the string. p, if

p(i) € P(1i) for i =1, 2, ~=--, m,
giving T(p) € T(P),
so that £(T(P);Q)

provides us with the information governed by this rule. Each string in the
lexicon and each constituent in the string under analysis or synthesis is

given a marker which indicates whether or not it belongs to any set of strings,
provided that the sets are established systematically. Because of the ambiguous
property of real strings, the markers will be given in terms of compiete neigh-
borhoods defined over the set of (potentially) acceptable strings.

17. Zstablishment and Representation of Complete Neighborhoods.

A syntsctic function is called a complete neighborhood if it is defiﬁed
as a set of contexts. We use conventional terms and redefine them as symbols
assigned to complete neighborhoods..
17.1. In establishing a set of complete neighborhoods of a natural language,
we assume a few of them as undefined terms and derive the others by hypothetical

concatenation rules., Sometimes, there will be a choice among a few hypothetical

Sakai L2

rules. We take one'of them to define a complete neighgorhood and regard the
others as the property of the complete neighborhood defined by the former.
Thus, we distinguish two kinds of rules: definition rules and property rules.
Let

axb = ¢
and xd = f
be hypothetical rules. If one decides to regard the former as the definition
of %, the latter is a property of x. This method is applied not only to phrase
structure grammar but also to transformational grammar, because both trans-
formations and inverse transformations are applied to a (pair of) P-marker(s) to
yield another (pair of) P-marker(s).

Every time a definition rule is established as a hypothesis, it must be tested
as to whether or not it contradicts any other definition rules. No property
rules should contradict any other rules. Wihenever a contradiction is found,
the source of trouble must be found out by tracing back the definition rules,
and the hypothesis that has given rise to the trouble must be modified.

17.2. The complete neighborhoods of all the acceptable strings (as distin-
guished from the other ambiguous interpretations of the same string) are
identical to each other and consist of one element indicating that the strings
are acceptable. It seems adequate, for most of the natural languages, to
admit two complete neighborhoods,nominals and verbals, although there are no
rigid grounds. Many others are derived from hypothetical concatenations that

can occur in acceptable strings.

-y

The prepositions in many furopean languages are subclassified by the case o
thenominals they govern, and the nominals by their case, gender and number.
A rule for yielding prepositional phrases will be stated as follows: a pre-~
position that governs nominals of case c, followed by a nominal of case c¢',
of any gender and of any number, results in a prepositional phrase, provided
the cases ¢ and c¢' are the same. As suggested in thils example, subclassific-
ation and desubclassification are useful to déscribe syntax. A aumber of
indices are made use of in subclassifying a broadly defined complete neighbor-
hood. The example above will be rewritten, by introducing the indices ¢ for
case, g for gender and n for nuaber, and a coefficient d(c,c'), in the form
preplc) nlc';g;n) = d(c,c') prep-n,

where d(c,c') =1 if ¢ =c¢',

=0 if ¢ #c'.

Sakai 43

The indices g and n are arbitrary if the preposition in gquestion takes nominals
of any gender and of any number.
Usually, a linguist will define complete nweighborhoods broadly so that

the majority of acceptable strings way be generated and recosnized corrcetly.

s his analysis proceeds further in detaill, he will take an examnle that is
not generated or recognized correctly by nis brcadly defined complete neigh-
borhoods: generation may give him some unacceptable strings or the syntactic
analysis may give him erroneous or unnecessarily ambiguous interpretations.
He will then trace back the definitions and find out some of his rules hold in
his example with respect to a subset of one of his complete neighborhoods;
Suppose he has a set R(xy) of rules to concatenate x and y. His new example
will indicate that the rules are nov always true. He may then establish the
subsets x', x", y', y", and a new set of rules which allows x'y' and x'y",
for instance, but not x'y" or x'y'.

17.3. let a broadly classified complete neighborhood be shown by a symbol,
say, v. If a subclassification thereof is desired, we introduce an index p,
such that

v = v(pl) J v(pz) U - UV(pn).

When the subclassification is not necessary, we put p = O:

v(0) = L)v(pi), i=1, 2, ===, n.
The union of a few subsets are written as
v(pl,pB,ps) = v(pl> L}v(pB) le(p5),
etc.
+If a complete neighborhood is to be subclassified from a few different points
of view, as many indices are introduced:
v(psa), vipsa;r), etc;
v(pyspsia) = vipyia) |J vipsiad,
V(piql,q2> = v(piay) U vipia,),
(L}v(p;qj))() (UV(pi;q)>

v(p;al,

v(p;0) (7 v{0;5q)

etc.
Hence, for the distribution classes

H(v(pl,pa;o)) = H(v(pl;q)) f]H(v(pa;q)),

L

I(v(pia)) = I(v(p;0)) (] 1(v(050)),

Sakai bk

etc.
Sometimes, an index depends upon other indices:
vip;alr;s;t)),
for examvle. The meanings of r, s and t depend upon the meaning of g.

The above scheme may be further generalized. Let a complete neighborhood

be represented by a number of indices

(ajbj;c;=-~=-3n),
where the broad c¢lass symbol is one of the indices and each index represents
a classification from a certain point of view.

It will be of interest to compare these indices with the concept of
"razbijenije", “okrjestnostj" (Kulagina, 1958) or 'sememe™ (Lamb, 1962). This
kind of representation, used by many research groups, enables us to descrive

~the syntax of a language systematically. Each digit can be regarded as an
indication of a certain feature common to some elementary neighborhoods, and
classifies them according to their specific features.

17.4. Suppose a concatenation rule f(uvjw) is to be applied to a text xy of
complete neighborhoods to determine z = xy, and the complete neighborhoods are

represented by the indices in the form

x = (a(x);b(x);=-—--;n(x)),
v = Caly);b(y);=---;nly)),
z = (a(z);b(z);---;n(2)),
u = (alu);blu);---3;nlu)),
v = (a(v);b(v);——=;nilv)),
w = (alw);b(w);=~=3nlw)).

If a rule indicates the relation between the pair (i(u),j(v)) of indices and

an index k(w), and if all the others are independent of these, we have

u = (0;---30;i(u);0;=-=-30),
v = (05---;03;3(v);05-~-3;0),
W = (o;---;O;k(w);O;--—;O).

If the pairs (i(x),i(w)), (3(y),3i(v)) and (k(z),k(w)) satisfy the condition
specified by the grammar system being used, the rule is applied to xy and
glves a z modified by this rule. The rule gives no information as for the
other indices. This information should not be lost if it is in x or y.

We have to indicate in the rule how to transfer the information to z from x
or y. A simple method was used in a translation program (Sakai, 1961).

A transformatiocnal rule requires that certain features of the original

Sakai 45

string are carried forward to its transforzm., This requirement is usually
indicated by the identity of features of certain segments in the original
string and its transform. The use of rules is to be programmed in such a way
that, if the rules are applicable to the string regardless of a certain index,
the value of the index in the original string is transferred to the corres-
ponding index of the transform, and vice versa in case of an inverse trans-
formation.
17.5. An extremely simplified example is given. The complete neighborhoods
are no longer treated as sets. The symbol "+" means "or'". The symbol ="
does not necessarily mean an identity: it can be replaced by an arrow. The
segments of the string

they are red planes

1 2 3 4

are represented in the form (h,k):

(1,1) = they,

(1,3) = they are red
(2,3) = are red,
etc.

*®

Both (h,i)(j,k) and (h,i)

and (j,k). The following abbreviations are used.

(j,k) mean the concatenation of the strings (h,i)

a&dj: adjective

adj-pred: adjectival predicate
anim: animate

compl: complement
inanim: inanimate

m: masculine

n: nominal

n/n: modifier of nominal
nom: nominative

pl: plural

pn: pronoun

s: sentence

v: verbal

-k: ends with k

-t ends with t

Sakai U6

(1, 4)(v s) ')(wn;ird;pl) « (z,2)(v;be;pres;3rd;pl) * (3,4)(n3pl)
(3,4)(a;pl) = (3,3)(aa3) = (4,5)(aspl)

Intermediate Renresentszion.

(1,4)(v) = (1,1)(pn;3rd;pl;nom) * (2,2)(conula;pres) * (3,4) (n;compl;pl)

(3,4) (n;compl;pl) = (3,3)(n/n) * (4, 4){n;jcompl; pl)

Output Lansuage (Russian)

'(l,l)(pn;Brd;pl;nom) = on(rl;nom, = oni

(2,2) (copuiaspres) = ()

(3,3)(rea)(n/n) = krasn(adj;hard

(L, 4) (vlane) (n;compl;pl) = (rubani(-k) - samoljet{(~t))(n;m;pl;nom)

i

(rubanki + samcljety
(3,4)(a;complspl) = (3,3){adjishard) ~ G4 (nymyplinon) = (3,3)-yje(4, k)

(L, W) (v) = (1,000,008, !, = oni kecasnyje (rubarki + samoljety)

Output Lanuese {(da-

(1,1)(pn;3rd;pl;nom) = (kare(anim) + sorel{inanim)) (pn;pl;nom)

(2,2)(copula;pres)

/\
(
%
H
@
U}
H)
jai
4]
F 3
S~
i
V]
H
]
et

1

(3,3)(red)(n/n) = akaladj-pred; r)

(4,4) (plane) (njcompl;pl) = (neimen + hikooki)(n;inanim;compl)
(3,4) (njcompl;pl) = ({3,3)-1{4,4)) (n;inanin)~de

(L, 8)(v) = (1,1) (anim, inacim;pa;plsnom) * (3,4)(n;inanin)-de *

N L - cx o8 A vy
(2,2) vt presyiin

1)

a
(1,1){inanim;on;pijnony * (3,8)(ajins anim)-de * (2,2)(v;4;pres;final)

sorera (ga « wa) axai (heimen + nikooki) de aru

)

17.6. We observe in the above exaumple that the index of an animate or an

o~

inanimate object affects the choice of a lexical element in Japanese while it
is not relevant in English. Thie paenomenon may be considered syntactic in

one language and semantic in another. Take two languages A and B, and suppose
A has a syntactic marker of Cer and 3 does not. The gender is considered
syntactic in A and semantic in 3. Tie syntactic genders are sometimes arbi-

trary and can not be always npreserved in the *ransfer process from one language
o o

\)

to another. We will have to prevare two separate procedures for handling

gender. Sizilar prodlems arise with resnect to other indices.
The choice of lexical elements devends greatly upon the habitual usage

of language. Tne situation is siamilar wiien we observe some combinations of

longer ccnstituents. The cacice of constituents is limited by logical,

41y

semantic or habitual reasons as indicated by the branches of the second kind

Sakai 47

in the net strings. Sometimes the choice is quite capricious. It seems more
practical to handle this kind of information separately (Matthews, 1965),
corresponding to the separate normative devices the linguist has conjectured.

Acknowledgment.

The need of defining distribution classes was recognized when I was with
the Machine Translation Froject, uUniversity of California. The basic approach
was worked out at the First Research Center, Defense Agency of Japan, and was
refined and finished at the Froject on Linguistic Analysis, Ohio State
University. I appreciate the encouragement of these organizations.
References.

Gross, M.: On the Equivalence of Models of Languages Used in the Fields of
Mechanical Translation and Information Retrieval, NATO Advanced Stuay
Institute on Automatic Translation of Languages, Venice, 1962.

Hasimoto, A. Y.: Revised Rules of Mandarin Grammar, Project on Linguistic
Analysis, Ohic State University, Columbus, Ohio, 1964,

{ulagina, O. S.: Ob Odnom Sposobje Oprjedjeljeniia Grammaticeskix Ponjati]
na Bazje Tjeorii MnoZestv, Probljemy Kibjernjetiki, Vypusk 1, Moskva,
1958.

Lamb, 5. M.: Outline of Stratificational Grawmar, University of California,
Berkeley, California, 1962.

Matthews, P. H.: Problems of Selection in Transformational Grammar, private
circulation, Indiana University, to appear in the Journal of Linguistics,
No. 1, 1965.

Opler, A.; Silverstone, R.; Saleh, Y.; Hildebran, M.; Slutzky, I.: The Applic-
ation of Table Processing Concept to the Sakal Translation Technique,
Mechanical Translation, vol. 7, No.2, 1963.

Farker-Rhodes, A. F.: A New Model of Syntactic Description, 1961 International
Conference on Machine Translation of lLanguages and Applied lLanguage
Analysis, Her Majesty's Stationary Office, London.

Sakai, I.: Syntax in Universal Translation, 1961 International Conference
(See above).

Wang, W. S.: Two Aspect Markers in Mandarin, Project on Linguistic Analysis

(8ee above), Report No. 8, 1964,

Sakai 48

Apnendiceé.

A-1l. Sets.

a€ A; a in A: a is an element of the set A; a belongs to 4; a is in A.
a g A; a not in A: a £ A is rot true.

A (=) B: there is at least one element which belongs to both A and B.

AC B; B2 A: if a £ A, then a & B; A is a subset of B; B is a superset of A.

A=3B:a& Aif and only if a € B; AC B and ADB.
A # B: A =B is not true.
A= 0! there is no element in the set A; the set A is empty.
A = set{a,b,c,d): A is a set whose elements are a,b,c and d.
A = set(ai: i=1,2y===): A = set(al,aa,-——).
A = set(a: f(a)): a€ A if and only if £(a) is true.
=B{JC: A =set(a: a€ Bor a £ C); A is the union of B and C.
= Usi, i=1y2,-~-: 4=3U 32U —
= B for f(B): A is the union of all B's satisfying f(B).
=B(}C: A =set(a: a€ Band a £C); A is the intersection or meet of B and C.
= ﬂBi, i=1,2,-==: & = Blﬂ B, n---.
A=[)B for f£(B): A is the intersection of all B's satisjying £(B).

A~-2, Boolean Coefficients.

We introduce coefiicients which indicéte rresence or absence of sets.

Let a, b, etc. be the coefficients and x, y, etc.sets. The value of a coeffi-
cient is either O or 1:

ax = 0 = empty set, if a = O,

= X, if a = 1.
The sum a + b and the product ab = a X b are determined by
X if a=1 or b =1,

= 0, if a=>b =0,
Xo)(x()y) =xly, if a =b =1,
Oy if a = 0 or b = Q.

H

o
b
D
o2
2
N
o)
o
N
=
)
g
s
It
Fan
[

and

I

Therefore, the coefficients are Boolean:
0+0=0, O+1=1+0=1+1
0OX0=0X1=1X0-=0, 1X1

[

Consequently, for concatenation, we have

(ax)(by) = abxy.

Table of Contents

1. Introduction.

2. Symbol; String; language.

3., Context: Neighborhood.

L. ZEquivalence of Contexts.

5. Complete Neighborhood.

6. Elementary HNeighborhood.

7. Distribution Class.

8. Concatenation.

9. <Concatenation of Complete HNeighborhoods.

10. Concatenation of Distribution Classes.

11. Rules for Recognition and Generatiomn.

12. Complete Neighborhood Representaticn of Concatenation Rules.
1%3. Distribution Class Representation of Concatenation Rules.
14. Some Remarks on Transformation.

15. Complete Neighborhoods and Transformational Rules.

16. Distribution Classes and Transformational Rules.

17. Establishment and Representation of Complete Neighborhoods.
Acknowledgment.

References.

Appendices.

Table of Contents.

Sakai 49

