
1965 International Conference on Computational Linguistics

SOME MATHEMATICAL ASPECTS ON SYNTACTIC DISCRIPTION

Itiroo Sakai

Project on Linguistic Analysis

Ohio State University

216 North Oval Drive

Columbus, Ohio 43210

U. S. A.

Sakai 1

Abstract. The purpose of this paper is to help linguists contruct a consistent,

sufficient and less redundant syntax of language.

An acceptable string corresponds to an expression or an utterance: it may

be a natural text, a string of morphemes, a tree structure or any kind of

representation. A sharp distinction is made between the syntactic function

which is an attrib trin s and the distribution class which is a set of

strings. Syntactic function of a continuous or discontinuous string is defined

as the set of all the acceptable contexts of the string, and is called a com-

plete neighborhood. Two contexts are equivalent if they accept or reject any

given string at the same time. An elementary neighborhood is the set of all

contexts equivalent to one context.

Four simple distribution classes are proposed and their properties are discussed.

Concatenation rules of a language can be described in terms of concatenated

complete neighborhoods or concatenated distribution classes. Some possible

representations and their consequences are discussed.

Transformational rules are also described in a similar way. However,

there is another problem of correspondence of original strings to their trans-

forms. It is useful to establish subsets of elementary neighborhoods and this

subclassification may contribute to a simplification of the clumsy represent-

ation of derivational history.

Finally, some trivial but practically useful conventions are described.

1. Introduction.

~he grammar of a language should be consistent throughout its whole

system. No features should be left unformulated in order that the grammar be

a complete one. At the same time, it is desirable to prepare the grammar as

compact as possible. These are important requirements especially when the

grammar is a machine-oriented one. The knowledge on the formal properties of

syntax will help us construct an objective system of grammar. Every term used

in a description should be rigorously defined and no ambiguous expressions are

allowed. If the consequence of grammar rules deviates from the proper usage

of the language~ we will be able to trace back the definitions and locate the

source of trouble.

When the grammar rules are given in terms of concatenated symbols, we

must know the formal definition of the symbols before writing a program by

which the rules are applied to the text. If a grammar rule describes the

nature of a P-marker, the label given to each node in the P-marker must have

an unambiguous definition which relates the meaning of the symbol to the strings

supplied as texts.

Sahai 2

We need, at least, an objective criterion by which we can specify a

language. This criterion will be a dichotomous decision whether or not a

given symbol string belongs to the language in question. We leave the decision

to native speakers and consider the acceptable strings undefined. A substring

of an acceptable string is said to have a syntactic function or a part of

speech. The syntactic function of a s~boi string is considered as the set

of all acceptable utterances in which the string occurs. We eliminate the

string in question and define its syntactic function as the set of all accept-

able contexts of the string. The set of all acceptable contexts of a string

is called a complete neighborhood.

A distribution class can be defined as a set of strings whose complete

neighborhoods are related to a given set of contexts in a specified way. We

propose four simple definitions of distribution classes.

With these fundamental concepts of parts of speech and distribution classes,

we can proceed to a more formal system of syntactic description. However, a

few questions may be immediately raised. Is it really possible to construct

a grammar in such an elementary way? How can we list the elements of a set

picking them up out of a practically infinite nmmber of strings even though

each string is assumed to be of finite length? Is it not useless to establish

such sets for a natural language, most of which are likely to have only one

element? Etc. Etc.

We should be better off if we were to create a new languaze by preparing

a grammar and a lexicon. Unfortunately the situation is quite contrary when

we are to handle a natural language. The language exists. We want to find

out a grammar that accounts for all and only the acceptable strings of the

language. We regard a language L as a set of strings generated by a machine M,

whose internal structure is not known to us. We can observe only a part of

the set of generated strings in a limited length of time. We want to construct

a hypothetical machanism M' that generates all and only the strings in L. The

internal structure of M and ~'~ may not be the same. ~%e output of M' is

checked if it is an element of L, and strings are supplied to M' to see if M'

accepts a string if and only if it is an element of L. To do this, we must

have the set L, or a mechanism which tells us whether or not the given string

belongs to L. We call this mechanism a normative device. It is a native

speaker if a natural language is to be discussed. We simplify the situation

by assuming a few separate strata in the mechanism. A string generated is

supposed to have been transferred from a stratum to another before it becomes

a string of natural language. An utterance has a few different forms corres-

Sakai 3

ponding to the strata. Each form has its own grammar. The normative device

will be a linguist in this case.

Since the number of strings is practically infinite, a linguist trying

to constuct a grammar will find it advantageous to establish rules that hold

for a set of strings or for a set of relevant facts. A linguistic phenomenon

may be analyzed from various points of view which will help him avoid listing

a tremendous number of phenomena and rules. He will attach certain markers

to the stringm according to the way he considers consistent with his usage of

language. He will then write down the rules in terms of the markers. He may

also establish his rules in terms of sets of strings which share some common

features in their mai~ers. The procedure of using these rules consists of two

parts. ~%e one is a routine that compares a rule with the text and decides

whether or not the rule is to be applied. The other is a transfer routine by

which the relevant infon~ation is read out of the applicable rules and trans-

ferred to the text. In these procedures, both comparison and transfer are

carried out with the coded markers. It is important that the meaning of the

codes is unambiguously defined so that the code obtained in the text is exactly

what the linguist wants to mean.

Some of his rules may account for a certain n~mber of texts he has examined

but may fail to account for some others or to rule out similar but inconsistent

facts. He will test his rules by applying them to a natural text or by generat-

ing strings. The normative device will tell him whether or not a string sup-

plied to it is acceptable but not tell him why. It is obvious that these pro-

cedures can not be carried out practically on every string that may be supplied

to a machine in the future, and that nobody will be able to predict what can

occur when an arbitrary string is supplied to the machine. Nevertheless, it

is required that a grammar may deal with most of the texts supplied in the

future.

His ~rammar is inevitably affected by the nature of the normative device.

If the normative device is so strict as to reject every string which fails to

meet such requirements as that its style must be just an ordinary one, the

statement must be logically correct, the lexical usage must conform with the

regular way of the language, etc., etc., then the linguist must prepare a

separate rule for almost every string. He can break down the decision pro-

cedure into a few separate steps. The first device will accept a string if it

finds the internal relationship of the string is acceptable, regardless of the

reality the string designates. If the grammar is to be applied to input texts

Sakai 4

whose structure is always grammatically correct and unambiguous, a grammar

which satisfies the requirement of this device ~ wl~ be enough. However, it

will give many unusual strings if it is used in random generation and many

ambiguous alternatives if it is used for analysis, ~h¢ second device may

reject tl%ose strings whose structure shows an unallowable combination of lexical

elements, thus eliminating some of the ambiguous alternatives in analysis and

suppressing the output with improper usage of lexical elements in synthesis.

The third device may reject as unacceptable those strings which are not logic-

ally consistent. If one wants to have more rigorous grammar that may be used

for random generation of only non-surprising sentences, he may add more devices

to the preceding ones, so that the grammar may be tested from such points of

view. He will prepare his grammar keeping the characteristics of his normative

device in mind. A number of digits will be assigned to the coded form of

markers corresponding to each step of decision. ~ne procedure will be pro-

grammed so as to handle these digits independently, thus allowing a number of

rules to be applied to the same string, if certain digits are related to each

other, and a particular combination ,of codes is to obey a particular rule, the

rule will be prepared independently and the general procedure will be prohibit-

ed. ~nis is done by a simple technique in coding and programming.

As we see on the following pages, a number of similar but different

representaions are possible. If we are not ready to understand the exact

meaning of codes and rules and to prepare the right program for the represent-

ation chosen, the rules established on the basis of ad hoc definitions will

result in a chaos. The formal property is not confined to a certain language,

but it is common to many, probably to all, languages. A grammar will not

deviate greatly from its proper constuction if its formal property is carefully

examined.

~. Symbo!~ String; Language.

2.__~I. Symbol is an undefined term. Morphs, morphemes, lexes, lexemes, or some

other units may be regarded as symbols. Any unit consisting of a number of

symbols is called a string. All the strings are possible strings. If a string

is considered " ~ ~ meanln~u±, then it is an acceptable string. Each acceptable

string is an undefined term.

These definitions are quite fon~al. If we confine ourselves to the

problems in morphotactics, the symbols are morphs and the acceptable strings

are what are called expressions or utterances. A symbol may be a morpheme and

a linear arrangement of morphemes is an acceptable string if it is reco~jnized

as a mori:,hemio =,j ::'osentaticn of an u-ctu:'-.,<=e'. A string need not always be a

linear a,~ra~gemen% of "~ ~-- " a l~mo. We may rega~t.~ labeled tree called a P-marker

as a string~ and a labeled node as a re-0resu~rlon of the subsZrin~{ dominated

by the node~ al~ouZ~.. ~e term strin~ seems inadequate in this oa~e A node

represents a P-marRer consistin/ of all +~.he terminal and non-terminal nodes

it dominates. We can regard a P-marker as a L='ee-l/ice strin Z of P-markers

dominated by the former. "'- ~'~ " ~ ,"~ :~o~e. x~nc of es may be added to the syn-

tactic tree in order Zo indicate the re!ationshi3 a~=on 1%he constituents. We

call this renresentation a net~ provisionally. We l:~a y reoard a net as a

string co~."sisting ~: "~ -~ " e. of labeled nouns, w;:ose arrangement is shovm by

two kinds of branches.

We define a langua='e as a see of accei=table ihc ~" ,. -'- _ s ~r~_njs. acce.n=a3~e string

of a natural - ' a , " - : , ' < ~ is considered =o have as ~ "ly versions as the nusoer of

strata established "bLr linouist. Ear=. v,~-.>;ion of at. accen, table s~cz~ing is an

element of the language defined on the st,.~atm= i.n ou=,=~:;.,on. A transfer from

one version to another is essentially a translation.

2.p. Su~o'.~ose we have a Linear sz, r:Ln:j. !,',e ~,n°cer'r'a~oD the sLrzng by delet.n~

some of the s~.:ools therein and ..~. ~ ~...n o" -" a s:p~bol of absence "to each point of

deletion, if a symbol,, o- absence is foiio',Jed by another .,.,,,e&lauu.y, ~ "" ~"~' -~ne,y are

contracted to one. A ~< e~z strin~ is continuous if it is not interrupted

,%- ~
~±~ the nodes in a syntactic tree are palatially ordered. A node includes

a~ot~ ~ if the linear str~_ng covered 0y zne latter ms a part of the linear

s~l~,a covered by the for='~er. A t:cee-iike strmn[~] is continuous~ if and only

if (i] all the nodes of the sLrin~ are included in one node D, and (2) there

are no o d:er nodes which are not included ir~ D°

• ~.~ • .~ ~*~ ~ • I

A ;%et strln< is continuous, 4~ and only m~ ~.~e s~jntactmo tree is continu-

ous and no branches of ~ne second ' 4 " -"~' ~'" ,~.nQ are broW<ell o.~.

Any o. ~ ~ ~. -~ ~,I s 3~ a sLrin Z is called a se&~nent, it may be either continu-

ous or U~CO~uoZnUOGo. ~ discoP.tiZlUOUS sec',',~enL consists of a few nar~s se.na-

rated from each otl.er. Each o~,z~t of se<':::e:<% ::s Ca~__~,~ a fra-~,,lent which is

necessarily con'~inuous (~-az-l<er-i.~-.odes~ itdl).

~. boll ~el{ ~ : (,~_ ,,.,,, ~,.

5 . £ = - C o n t e x t i : 2 . c c e ' - ' - , < : 3 _ e C o n b e : , : = .

Let r be a strin~ an& ~eL s be a seonenu of r. ~:,e s~.~,~ r may be con-

tinuous or discontinuous. ;lhe other :taru~ c of z" _~s called the co~-'~c.~.~ of s

. ~.~.~u ~.~ Lf.eZ:i We ;.sa~, r c ~.s &i% ~c,..,.z.,~,_~u.~,~ OOl%Le]<L O-" S~ or c

is -~ - acc~i~u~m~ to s.

• . , f

,~ > .q ~ i. O

• f the discussion is confined to a co~.~-:.ee cr.rase scruczurc _an:Cu~je,

it seems more convenient to modify the concepts acceptable string and context;

any immediate constituent of an acceptable szring is also acceptable, and a

context is acceptable to a string if the string, its context and the whole

string are all acceptable, if the constituents are continuous, the situation

becomes simpler. ~ne context c = r()t is acceptable to s, if r, s, t, aud rst

are all acceptable. Either r or t may be absent.

3.2. Neighborhood.

A context is an interrupted string which becomes a continuous string if

an appropriate segment is supplied to its points of interruption. Let

y = set(cl,c2,---,c n)

be a set of contexts and let s be a string. If all the contexts in y become

acceptable strings when s is supplied to them, then the set y defines a pro-

perty of s. We call the set y an acceptable neighborhood of s. If y is an

acceptable neighborhood of strings Sl, s 2, s 3, for instance, then we say y is

an acceptable neighborhood of

S = set(sl,s2,s3),

and we consider the set y represents a syntactic property common to all the

strings in S. ~ote that our neighborhood is not the same as the okrjestnostj

(Kulagina, 1958). A set of acceptable strings with a string s is called a

paradigm of s (Parker-Rhodes, 1961); our neighborhood is a paradigm in which

the string s is lacking.

4. Eouivalence of Contexts.

Let c and c be two contexts. Suppose a string s is acceptable to both
z 3

c and c., and another "~ ~ • ~ing t is not acceptable to c. or c.. In this case,
! j i ,]

we can not tell the difference between c. and c as far as the acceptance of
l 3

the strings s and t are concerned. We say these contexts are equivalent to

each other and write

c i eqv c j,

if the condition "c is acce~tabie to ~ ~ring s, if and only if c is accept-

able to s" is satisfied for every possible string s of the language. ?he

relation of equivalence is symmetric, reflexive, and transitive:

(i) c. ecv c.;

(2) if c i eqv cj, then c~ eqv ci;

Sakai 7

(3) if c i eqv c. and c eqv Ck, then c. eQv c k- j .i "

~. Complete Neighborhood.

~u~. Let y be an arbitrary set of contexts, it may include contexts which

are not equivalent to each other and may not include all the contexts which

are equivalent to some context in it. ~he comolete, n-'ei ''~..~o~nooa'~ " N(y) of y is

the set of all contexts equivalent to some context c' in y:

N(y) = set(c: c eqv c' ~ "~ C' in ~o~ s o m e y;.

A set of contexts is complete or is a complete neighborhood if and only if it

is the complete neighborhood of itself. Take a string s and let C(s) be the

set of all the contexts acceptable to it. We show ~u ~ C(s) is ~ . a ~ complete.

(l)

(2)

If

af

then

then

then

then

therefore

c 6 C(s), then c £ W(C(s)); that is C(s) c

c A N(c(s)),

c eqv c' for some c' in C(s),

c eqv c' and c' is acceptable to s,

c is acceptable to s,

o g c(s),

N(c(s)) C(s).
From (i) and (2), we have

: c(s).

Therefore, C(s) is complete. We call C(s) the complete neighborhood of the

string s.

We may pick up an arbitrary segment of an acceptable string, call the

other part the context of the segment and establish a complete neighborhood of

the segment. This kind of complete neighborhood contributes nothing to a

grammar but some redundant rules. These practically nonsensical complete

neighborhoods give rise to no trouble, because they never appear in any rule

of the language.

?he complete neighborhood C(s) of a string s is considered to correspond

to the syntactic function or the Dart of speech of the string s. The elements

of C(s) shire a common property that every one of them can be an acceptable

context of s, while no other context~ which do not belong to C(s) are acceptable

to s. ?his property of C(s) leads us to the application of complete neighbor-

hood to a given set of contexts supplied as text.

Let S be an arbitrary set of contexts. Some elements of S may be accepted

by s and some others may not. The elements accepted by s must, at the same

time, belong ~o C(s), that is, Co C(s)~ S. If

Sakai 8

C(s) ~ s = 0,

then the string s can not occur under the contextual condition defined by S,

and vice versa. If

C(s) D S = C(t) ~ S,

then we have no means to distinguish the syntactic function of s and t with

respect to the given S. If S is the set of all the possible contexts of the

language, then

c (s) N s = c (s)

for any string s. If

c(s) = c(t),

then we have no means to d~stlngmlsn zne s~tactic function of s and t so far

as only the acceptability is concerned.

5.2. It occurs very often that a string r behaves like a string s under a

certain condition, and like t under another condition. This phenomenon will

be restated as follows:

for some set S' of contexts,

C(r) N s' = c(s) O s,,
and for another set S" of contexts,

C(r) n s,, = c(t) N s,,.

We put x = C(r),

y = C(s),

z = c(t).

~,~en, x N ~ ' N s , , = y q s , N s,,

and x N s ' N s " = ~O s ' , q s".

Taking the union of these two, we have

x(' l s, .q s,, = (y d ~) N s ' l q s,,.

This means that r acce~ots every context in ~' ~ S" ~ if it is acceptable to s or

t. Now, we will see the behavior of r with respect to the context set

S = S' ~ S".

xN s = x ~ (s ' d s")

= (x q s ') 1 9 (x O s ")

= (yNS')U(z~s")

~_(y.qS) U (zNS)
t

= (y U 7) O s.

This result su~'>e~+~oo _~ that the behavior of r may be interpreted in terms of y

and z, and that y and z may account for something lacking in x with respect to

S.

(yd z) ,q s = (y d z) ~ (s , d s,,)

C ̧ ~ _ "

= (yns')d (YO, s")W (z,~s') O(z Gs")

: C< Ds') 0 (y ,~s,,) d (z f~s,) d (x ~O s,,)

-= (x 0 (s' U ~')) O (y D s") U (z ~ s')

, ' r = H ~< q'.~ ,.., y,% - ~. ~] . , . < i g : : ' . t a ~ F ' • .

o._. We zlave seen above Bhat a co:;:piete ;;eishborhood

x : c(:~)

is ir.~erpreted in te:m;~s of

y : c(s)

and z : ~< u).

: ' , ' e ca'~ ex~pect ~s) and " " ~e a ~kL; : r a y re-~-~ese=zazmon O7 a s',mp.er aria more

specific syntactic func-cion, if

C(r) : c(s) O c (t) ,

c(~) / c (t) ,

c(~) I o,

c(~) I o,

then, for some c in C(s) and some c in C(t), we have

c. noz ecv c~.
]- o

6.2. k se~ o£ all ~- ,.ut~z~j equivalent contexts, called an elementary neighbor-

hood, leads us to a concept of the ultimate unit of syntactic function. Given

the elementary neighborhood e(i) with c. as an element is defined
!

a context ci,

as

e(i) = set(c: c eqv c.).
l

Since the equivalence is symmetric, reflexive and transitive, any two distinct

ele::;e-=~ary neizhborhoods have no elements in common.

6.__~. Let x be a co,mi~iete neid_borhood and e(i) an elementary neighborhood.

~ an element c in x ~s a ::,emoer of e(i)~ then

e(i) r- ::,

b~cause x is co'.rSie~e '" ~- . in " • ~a.~ an element c x; then there ms an e(i) such
]_

that

• (). C ~ e i

x : Ue(i)

for all ek~)'s ~=ving at leas~ one element in x. Every elementary

Sakai i0

neighborhood is complete. An intersection of complete neighborhoods is complete.

Every union of elementary neighborhoods is a complete neighborhood.

2" Distribution Class.

We have thus far discussed the syntactic function of symbol strings in

terms of their acceptable contexts. A context is an environmental condition

in which a string occurs. Given a context, we can classify the strings into

two distinct categories: the one is a class of strings that can occur in the

given environment and the other is the class of strings that can not occur

therein.

If there exists at least one context c in which both s and t can occur,

then c ~C(s) and c ~C(t),

that is c ~ C(s)N C(t) # O.

We define the set of all strings t, that can replace s in some contexts, as

G(C(s)) = set(t: C(t) N C(s) # 0).

We introduce a convention

A(=)B

which means that the intersection of the two sets A and B is not empty:

G(C(s)) = set(t: C(t) (=) C(s)).

Suppose a string t can occur wherever s can occur, but s can not always

occur in the contexts accepted by t. In this case,

c(t) o C(s).

We define

H(C(s)) = set(t: C(t) O C(s)).

The distribution class I(C(s)) is a set of all the strings t that can be

always replaced by s:

I(C(s)) = set(t: C(t) c C(s)).

That the two strings s and t are mutually replaceable means that s can

occur wherever t can occur and conversely t can occur wherever s can occur.

In other words, any context c is accepted by t, if and only if it is accepted

by s:

c g C(t) if and only if c ~C(s),

or C(t) = C(s).

We indicate the set of such strings t by

J(C(s)) = set(t: C(t) = C(s)).

Other distribution classes are defined as sets of strings whose complete

neighborhoods are related to a certain complete neighborhood in a specified

way. Let x be an arbitrary complete neighborhood. The simple types of

Sakai ll

distribution classes mentioned above are written as

G(x) = set(t: C(t) (=) x),

H(x) = set(t: C(t) 2 x),

I(x) = set(t: C(t) ~x),

J(x) = set(t: C(t) = x).

A distribution class is said to be real if it is not empty, and imaginary

if it is empty.

able strings

and only these.

and their contexts

Suppose, for instance, that a language consists of the accept-

they are (flying/red/making) planes,

a (flying/red) saucer is an object,

(flying/making) planes is an industry,

We observe the strings

s I = flying,

s 2 = red,

s 3 = making

c I = they are () planes,

c 2 = a () saucer is an object,

c 3 = () planes is an industry.

The complete neighborhoods of the strings are

C(s l) = C(flying) = set(cl,c2~c3),

C(s 2) = C(red) = set(cl, c2),

C(s 3) = C(making) = set(cl,c3).

The distribution classes are determined by these neighborhoods.

types above are given in the table below.

i: s I C(s.) G(C(s.)) I(c(s.))
l l l !

i: flying (Cl,C2,C 3) (Sl,S2,S 3) (s l) (Sl,S2,S3)

2: red (Cl,C 2) (Sl,S2,S3) (Sl,S 2) (s 2)

3: making (ci,c3) (Sl,S2,S3) (Sl,S3) (s 3)

The simple

J(C(s.))
l

(s a)

(s 3)

Sakai 12

The elementary neighborhoods

e(i) = set(c: c eqv ci), i = i, 2, 3

are found by consulting the table below, where "+" on the i-th row and J-th

column means "cj is acceptable to si".

: c I c 2 .c~
Sl: + ÷ +

s2: + + -

s3: + - +

e(1) = set(c: c eqv c I) = set(cl),

e(2) = set(c2),

e(3) = set(c3).

Therefore,

C(s l) = e(1) ~e(2) ~ e(3),

C(s 2) = e(1) U e(2),

C(s~) = e(1) U e(3).

,i.

(i) J(x) = H(x),q Z(x);

(2) H(x) U z(x) ~_ G(x),
Proof.

(1) t ~ J(x),

if and only if C(t) = x,

" C(t) ~ x and

" t 6 H(x) and

" t ~ H(x) N i(x).

(2) t 6_ H(x) U Z(x),
if and only if t ~ H(x) or

" C(t) ~ x

x#O.

C(t) c x,

t 6 I(x),

t d i(x),

or C(t):'x,

for x / O, then C(t) (=) x

if and only if t ~ G(x).

7.2. Ale equality C(t) = C(s) of two sets is symmetric, reflexive and

transitive. ~erefore,

J(x) = J(y)

if and only if J(x) (=) J(y).

This means that any two different sets have no elements in common and, con-

sequently, that every element belongs to one and only one set of the form J(x).

7e3o

If X is an elementary neighborhood, then

G(x) = set(t: C(t) (=) x)

= set(t: C(t) ~ x)
m

= :~(x)

if x/ O;

I(x) = set(t: C(t) C x)

= set(t: C(t) = x)

: J(x),

so that C(t) is also elementary.

7.3.2.

then

if

Sakai 13

If x is any complete neighborhood and if C(t) is elementary for all t,

G(x) = set(t: C(t) (=) x)

= set(t: C(t) ~ x)
m

= I(x);

H(x) = set(t: C(t) D x)
m

= set(t: C(t) = x)

: J(x)

x / O,

so that x is also elementary.

7._~_~. If C(t) is elementary for all t and x is also elementary and non-

empty, then

7-4. If

(1)

(2)

(3)

Proof.

(1)

if and only if

I!

I!

I!

(2)

if and only if

I!

G(x) = ~(x) = I(x) = J(x).

X = y U z, then

G(x) = G(y) U G(z),

H(x) = a(y) ~ ~(z) ,

I(x) ~ i (y) O I (z) .

t ~ G(x) = G(y ~ z),

C(t) (=) x = y ~ z,

c(t) (:) y or c(t) (:) z,

t ~ G(y) or t ~ G(z),

t 6 G(y) U G(z).

t £ H(x),

C(t) ox = yUz,

C(t) 2Y and C(t)_Oz,

t6H(y) and t~(z),

I t

(3)
if and only if

then

if and only if

~.~A.
(l)

(2)

Proof.

(l)

if and only if

l!

then

if and only if

(2)

if and only if

T!

11

I!

8.

8.1.

t ~H(y) ~H(z).

t~I(y) U I(z),

c(t) ~ y or

c(t) ~ y ~ z : x,

t £ Z(x).

If x : yN z, then

G(x) ~ G(y) ~ G(z),

Z(x) = Z(y) N Z(z).

C(t) ~ z,

t £ G(x),

C(t) ~ x # O,

c(t) ~ y ~ z / o,

C(t) ~{ y # 0 and

t ~G(y) ~ d (z) .

t ~ I(x),

c(t)C_x = y A z ,

C(t) ~y and , C(t)~ z,

t ~ I(y) and t ~ I (z) ,

t E l (y) ~ Z(z).

-----~ r n

Sakai 14

Concatenation.

Cqncatenation of Strings.

Let p be a string and let r I, r 2,

c~t) ~ z # 0,

be segments of p which do not

mutually overlap. A segment t consisting of r l, r 2, ---, rn is the concaten-

ation of these segments. It is a segment of p, consisting of fragments of

--- arranged in their relative order in the original string p. It r l, r 2, ,r n

is convenient to assign a definite notational order to a concatenation in order

to specify the arrangement of fragments.

8.2. Concatenation of Contexts.

Let

r l, r 2, ---, r n

be segments of p with no fragments in common.

c (r) of r in p,
p l l

i = i, 2, ---, n

correspond uniquely to the segments ri,

'l~e contexts

respectively, and so does c (t) to
P

the concatenation

Sakai 15

We write

t = rlr2---r n.

Cp(ri)Cp(r2)---Cp(r n) = Cp(t)

if and only if t = rlr2---rn in

8.3. Concatenation of Sets.

Let a, b, c, --- be elements of sets.

p.

We call an ordered string of these

elements a concatenation. Let A, B, C, --- be sets. We define the concate-

nation,of sets as

AB---D = set(ab---d: a~ A, b ~B, ---, d ~ D).

In our present discussion, the elements are either all strings or all contexts.

8.3.1. We confine ourselves to binary concatenations for simplicity. The fol-

lawing discussions can be easily generalized to longer concatenations. An un-

ambiguous concatenation, ABCD for instance, is considered as one of the three

binary concatenations

A(BCD), (AB)(CD), (ABC)D

when the discussion is strictly binary. In a morphographemic description,

however, this is not very important. One may assume one of these three accept-

able and discard the other two as unacceptable. In a morphotactic description,

some one of these three will be chosen so as to make the whole description of

the language simpler. If any one of the sets which constitute a concatenation

is empty, then the concatenation is also empty.

We assume that the binary concatenations required by the grammar are

(AB)(CD), A(BC), (BC)D

and only these. The possible binary tree structures of ABCD are covered by

ABCD = A(BCD) U (AB)(CD) U (ABC)D.

Since we are to handle binary concatenations only, we consider two concatenations

of elements are different if their structures are not the same:

Then, the condition

yields

(i)

(2)

(3)

By assumDtion ,

(AB)(CD) N A(BCD) = O,

(AB)(CD) ~ (ABC)D = O.

ABCD : (AB)(CD)

(AB)(CO) I O,

~erefore,

(4)

45)
because

Similarly,

(6)

(7)
From (2),

By (7) and (6),

or,

(8)

From (3),

By (4) and (5),

(9)

Sakai 16

A(~C) J O,

(A~)C : O,

A(BC) N (,~)C : O.

BCD = B(CD)[_) (BC)D = (BC)D,

(BC)D ~ O,

B(CD) : O.

A(BCD) : A(B(CD) h) (Be)D) : O.

A(BCD) : 0 0 A((BC)D) : o,

A # O, (~C)O # O, A((BC)O) : O.

(ABC)D : (A(BC) O (AB)C)D : O.

(ABC)D = (A(BC) ~ O)O : (A(BC))D = O,

A(BC) # O, D # O, (A(BC))D = 0.

Now, we can describe the syntax of these strings in terms of binary concate-

nations only, if we establish the rules numbered from (1) to (9).

8.3.2. The following formulas are frequently used.

(1) AB = CD, if and only if A = C and B = D,

because, for any ab in AB,

AB = CD

if and only if Cab ~ AB if and only if ab~ CD)

" ((a ~ A, b@ B) if and only if (a ~ C, b~ D))

I!

(a)

because

i f and o n l y i f

I ,

II

r!

(3) Similarly,

(4)

b e c a u s e

if and only if

V!

11

(a~ A if and only if a ~ C,

bE B if and only if b ~ D)

A = C and B = D.

A(BU C) = ABU AC,

ab ~ A(B U C)

a 6A an~ b6BUC

(a ~ A and b ~B) or

ab 6 AB or ab 6 AC

ab ~ AB ~ AC.

(AOB)C: ACUBC.

ABDCD= (Af]C)(BDD),

ab ~ AB tO CO

ab ~ AB and ab ~ CD

a ~ A and b ~ B and

a~ A~C and

(a ~ A and b 6 C)

a&C

b~B~D

and b ~ D

strings r and s, such that

C(r) : x

and C(s) = y.

By definition,

Sakai 17

" ab ~ (A N C)(B lq D).

Concatenation of Complete Neighborhoods..

If the distribution classes J(x) and J(y) are real, then there exist

p(r i) = ---r.---l

with the segment r. in it is acceptable if and only if

p(r) r---

is acceptable, and the string

p(s.) 2°---
3 3

.is acceptable if and only if

p(s) s---

is acceptable. Suppose

P(ris j) = ---ri---sj---

is a string with both r. and s. in it. Any such string ix acceptable if and
l j

only if the string

p(r.s) : ---r.---s---
l l

is acceptable, and P(ris) is acceptable if and only if

p(rs) r---s---

is acceptable. ~nerefore, P(ris j) is acceptable if and only if p(rs) is

acceptable. That is

C(ris j) = C(rs).

We define the concatenation C(r)C(s) of complete neighborhoods as the complete
I % neighborhood C(rs) of the concatenated strings. Generally, we put

xy : c(rs), r ~ J(x), s 6 J(y)

for any com~plete neighborhoods x and y, where J(x) and J(y) may be real or

imaginary. Note, however, that

if x : C(r), y : c(s),

C(r i) = x for all rl in J(x)

and C(sj) = y for all s3 in J(y).

Any string

Sakai 18

then xy = C(rs),

while xy = C(rs)

does not always result in

x : C(r) or y = C(s).

We have generalized and transferred the concatenation of strings to

concatenated sets of strings and then to concatenated complete neighborhoods.

The complete neighborhood representation provides us with a less complicated

approach, especially when the strings are syntactically ambiguous. The dis-

tribution class J(x) means the narrowest classification of strings and no

further subclassification is possible, while its complete neighborhood x can

be subclassified if x is not an elementary neighborhood. If

rg J(x) and x = y Uz,

then we can talk about imaginary strings r' and r", such that

C(r') = y and C(r") = z.

These imaginary strings, always referred to implicitly in terms of distribution

classes, can be discussed explicitly in terms of complete neighborhoods.

9.2. We make distinction between the concatenation

xy : c(r)c(s)

of complete neighborhoods and the complete neighborhood

z : C(rs).

~%e former means a set consisting of concatenated contexts. The properties of

the language is introduced when it is written in the form

xy= z

or C(r)C(s) : C(rs),

where the property x of r and the property y of s result in another property

z of rs. Thus, z can be an empty set even if neither x nor y is empty, and

ambiguous even if neither x nor y is ambiguous.

9.3. We find it advantageous to have a system which represents every complete

neighborhood in a unified way. We saw that a complete neighborhood x can be

represented by a union of elementary neighborhoods e(i):

x = Oe(i) with x ~ e(i) ~ O.

Let us introduce coefficients x(i), such that

x(i) : o if

= i if

and no other cases possibly occur.

x(i)e(i) = e(i)

=0

e(i),Ox =o,

e(i) -- x;

We put

if x¢i) : l,

if x(i) : o.

Sakai 19

In virtue of these coefficients, we can write

(1) If

then

If

then

~]erefore, for

we have

(2) If

then

x = Dx(i)e(i),

y = ~y(j)e(j),

z = Uz(k)e(k).

z=xOy,

x U Y = (U x(i)e(i)) U (Oy(j)e(j))

= U(x(k) + y(k))e(k)

= U z(k)e(k).

e(k) c_ x or e(k) ~ y,

e(k) ~_ z.

x(k) + y(k) = z(k),

0~-0=0,

l+O =0 +l= 1 +l= 1.

z = xy,

z = (Ux(i)e(i))(~y(j)e(j))

= DU x(i)y(j)e(i)e(j)

= UU z(i,j)e(i)e(j).

By the definition of concatenation,

e(i)e(j) ~ xy

if and only if

That is,

if and only if

Therefore, for

we have

e(i) C x and

z(i, j) = 1

x(i) = y(j) = 1.

x(i)y(j) = z(i,j),

1Xl=l,

0 XO =0 Xl= IXO = O.

e(j) c y.

Writing

we have

if and only if e(i)e(j) ~ z

Therefore, for the expression

z(i,j)a(i,j,k) = z(k),

we have 1 X 1 = l,

e(i)e(j) = Ua(i,j,k)e(k)"

Z = xy

= U~ z(i,j)e(i)e(j)

: UUU z(i,j)a(i,j,k)e(k)

= Uz(k)e(k),

e(k) ~ z

and e(k) ~ e(i)e(j).

(3) A concatenation of two elementary neighborhoods is a complete neighbor-

hood, and it is also a union of elementary neighborhoods:

Sakai 20

10.

i0. i.

be cause

i f and o n l y i f

11

I!

t h e n

, i f and o n l y i f

l0.2.

because

i f and o n l y i f

II

It

II

I!

then

i f and o n l y i f

lo._.._5.5.
because

i f and o n l y i f

II

It

II

I1

then

i f and o n l y i f

10.4.

b e c a u s e

if and only if

11

!I

t h e n

if and only if

0 XO =OXI= 1XO =0.

Concatenation of Distribution Classes.

G(u)G(v) ~G(uv),

r~ £ G(u)~(v)

r £ G(u) and s £ G(v)

C(r) N U / 0 and C(s) ~ V / 0

(C(r) ~ u)(C(s) ~ v) = C(r)C(s) N uv / o

C(rs) ~uvJ0

rs £G(uv).

H(u)H(v) c ~(uv),

rs E ~(u)~(v)

r ~ H(u) and s g H(v)

C(r) D u and C(s) ~ v

C(r) ~ u =u and ~C(s) ~ v = v

(C(r) ~ u)(C(s) N v) = C(r)C(s) N uv : uv

C(r)C(s) ~ uv

C(rs) 2 uv

rs ~ H(uv).

I(u)I(v) ~ I(uv),

rs £ I(u)I(v)

r ~ I(u) and s ~ I(v)

C(r) c u and C(s) ~ v

C(r) ~ u = C(r) and C(s) ~ v = C(s)

(C(r) ~ u)(C(s) D v) : C(r)C(s) D uv : C(r)C(s)

C(r)C(s) c uv
m

C(rs) c uv
N

rs 6 I(uv).

J(u)J(v) C J(uv),

rs ~ J(u)J(v)

r ~ J(u) and

C(r) = u and

C(r)C(s) = uv

C(rs) : uv

rs £ J(uv).

s 6 J(v)

C(s) = v

Sakai 21

i!. Rules for Recognition and Generation.

Each rule of a grammar indicates the arrangement of a few items to be

concatenated, accompanied by some other necessary informations. We assume the

items arranged in a rule are either complete neighborhoods or distribution

classes. Let us see what happens during the generation and recognition of a

string of symbols.

In case a grammar is given in terms of complete neighborhoods, the input

text is converted to a string of complete neighborhoods before the syntactic

analysis begins. At the very end of generation, a terminal node accompanied

by a complete neighborhood x is replaced by a string s whose complete neigh-

borhood C(s) shares at least one elementary neighborhood with x.

~nen the syntactic rules are expressed in terms of sets of strings, the

input text to be analyzed is replaced by a string of distribution classes.

If a symbol string belongs to more than two sets of strings, their meet

replaces the symbol string. At the end of a generation, the synthesized out-

put string is obtained by replacing the set of strings on @ach terminal node

by a string which is a member of the' set.

ll.1. An acceptable string can be generated and analyzed making use of a tree

with its nodes marked by complete neighborhoods. The expansion of a node z

to a concatenation xy of nodes x and y implies z ~ xy, because otherwise

further expansion of x and y may yield a structure which can not be accepted

by z. Transformational rules can be a}?plied more freely because a trans-

formation does not imply such a restriction. However, attention ahould be

paid not to add any other contexts to the complete neighborhoods attached to

the nodes already generated. Finally, each terminal node is replaced by a

lexical element. ~%e string obtained after applying all the obligatory

rules must be an acceptable string.

~ne analysis is carried out by testing all the possible transformations

and trying all the possible contractions. At any rate, both generation and

analysis can be carried out if we have a set of rules which gives concatenation

z = x---y for any x, ---,y of the language, and the transform y(1)y(2)---y(n)

of any string x(1)x(2)---X(m) of complete neighborhoods.

ll.2. Acceptable strings are also generated by starting from the node P(O)

which is the set of all acceptable strings. It is replaced by its subset

P(1)P(2)---P(i)---P(m) ~ P(O)

which is a concatenation of nodes P(i)'s. Each node P(i) also represents a

set of strings, and it may or may not be replaced again by

P(il)---P(ij)---P(in) ~ P(i).

Sakai 22

On each step of expansion, a choice is made by taking a subset of strings.

~e possible choice becomes narrower and narrower. It is expected that the

string obtained by applying obligatory rules and by replacing each terminal

node by a lexical element is an acceptable string.

~is is not always true if the replacement of a node is independent of

the other nodes already generated. %his difficulty is overcome by executing

a syntactic analysis after every step of expansion. If the analysis does not

prove the possibility of obtaining an acceotable string, another subset should

be chosen as a candidate. ~ne check by analysis should be tried after a

transformation if it is a local or a generalized one. All the nodes, terminal

and non-terminal, are sets of symbol strings. A generated string of nodes is

analyzed by tracing back the path of generation. If the analysis goes back to

P(O) which covers the whole string, the generation is acceptable, and not

acceptable if otherwise.

Any given string can be analyzed by applying rules to the string, in

this case, however, the tree structure is not known. Rules should be tested

on every possible combination of terminal and non-terminal nodes, so that the

whole string may be covered by a single node and the possible derivational

history may be accounted for by the concatenationai and transformational rules.

11.3. ~ihe Rules for generation and those for recognition are essentially the

same. They may be prepared in terms of complete neighborhoods or distribution

classes. ~le rules will be prepared without any formal ambiguity if their

definitions are carefully observed. Some formal systems are given in the

following pages as examples of sin:pie types of grammar.

. . . . Re,,resen~.~<~on ~ Concatenation Rklles !2. Conu~lete Neighborhood ~ ~-~ c ~ ,.

We say a set of concatenation rules is con~plete if it gives the concate-

nation

Z = xy

of any complete neighborhoods x and y of the language. It is not necessary,

however, to list all the ioossible x's and y's. Much less number of rules

can cover all ~he ~ossible com!iete nei~3hborhoods if their use is y rcper!y

pro gramme d.

We consider a rule f(uv;w) represents a relation between the concatenated

complete neighborhoods uv and another complete neighborhood w. Each rule

Sakai 23

u v (=) w ,

UV :D W,

UV ~ W,

will give information to xy if x (=) u and y (=) v:

(xN u)(yNv) : xy uv;

which is a part of xy = z.

In order to obtain th~ given concatenation xy, we determine a set R(xy)

of rules applicable to xy. Each rule is decided whether or not it is applic-

able to xy by the condition g, so that

f(uv;w) 6 R(xy)
if and only if g(x;u) and g(y;v).

~%e term w is read out of the rules in R(xy) so that z = xy may be

determined, it is obvious that there exist certain restrictions in choosing

the type f of rules, the condition g for determining R(xy), and the procedure

of finding z. We have to specify these three for the grammar to be written.

When the complete neighborhood z is given and its expansion xy is to be

found, the set E(z) of applicable rules is determined by the condition h(z;w):

R(z) = set(f(uv;w): h(z;w)).

The situation is a little complicated in this case. We can possibly expect a

case where both

z = xlY 1 and z = x2Y 2

are true under the condition

x I ~ x 2 = 0 and/or Yl ~ Y2 = O.

Note that this is not the case of formal concatenation of sets

N CO = (A N C)(BN O).

The concatenations xiY I and x2Y 2 happened to be z by the syntactic reason of

the language being studied. A storage space is assigned to each xiY i as soon

as any rule in R(z) proves a possibility, and xiY i is modified every time a

rule is applied to it. However, if

x. ~ x. and Yi ~Yj' i - ~

then either xiY i or xjyj is just trivial. The choice depends upon the type of

rules and the program which applies the rules to the text. Finally, we have

a set of x i~ accompanied by the subset R(z;i) of R(z). Possible types of

rules for this purpose will not be discussed here, because the principle is

similar to the case of finding z from x and y.

In order to see some properties of rules, we assume simple forms of f(uv;w):

Sakai 24

(i)

if and only if

T!

(a)

if and only if

I!

I'I

(3) similarly,

if and only if

UV = W.

The condition g will be assumed simply as

(=), o_, c_, or =.

The condition of constituents can be replaced by a condition imposed on

the whole concatenation:

xy (=) uv

xyNuv = (x~ u)(yDv) /0

x (=) u and y (=) v;

xy E uv

xyZ uv = (x~ u)(y Nv) = uv

(4)

if and only if

u=xNu

xDu

xy ~_ uv

X~ U

xy = UV

X = U

and v = y ~ v

and y~ v;

and y ~ v;

and y = v.

12.1. Suppose we have the rules of the form

uv (=) w,

applicable to xy if

x (=) u and y (=) v.

Then, for such a rule, we have

xy (=) uv (=) w.

We can also assume the rules are applicable if

xy ~ uv,

xy ~_ uv,

xy = UV.

We can not decide which part of w belongs to uv, unless some other information

is available.

12.2.

then

12.2.1.

UV ~ W

be applicable to xy if and only if

x ~ u and y ~_ v.

~en xy ~ uv~w.

This is true for any rule in

R(xy) = set(uv ~ w: xy~uv).

If each rule represents the relation

uv~ w
u

(x~ u)(y~v) = xy~ uv~xyn w.

Let the rules of the form

If the set R(x~ has sufficient rules to give

xy : Uw,

we can find xy by simply taking the union of all the w's in R(xy).

12~2,2. If the rule~ are applicable to xy when

Sakai 25

x ~_ u and y c_ v,

xy c uv = w.

We le%ow that a concatenation xy of any two neighborhoods is broken

then

doom to the concatenations of elementary neighborhoods e(i)e(j) and that each

e(i)e(j) is represented as a union of elementary neighborhoeds.

If x = e(1),

y = e(2) 0 e(3) ~ e(4),

for instance, and if we have the rules

e(1)e(2) ~ e(5) 0 e(6),

e(1)e(3) ~ e(5)

and e(1)e(4) ~ e(6),

then xy ~ e(5) U e(6).

These rules will be broken down as

e(1)e(2) ~ e(5)

e(1)e(2) ~ e(6)

e(1)e(3) ~ e(5)

e(i)e(4) ~ e(6),

and then contracted as

e(l)(e(2) (+) e(3)) D e(5)

e(1)(e(2) (t) e(4)) ~ e(6),

where the symbol (+) means an alternative choice.

~e number of elementary neighborhoods increases rapidly as the linguistic

analysis becomes more precise, and hence a grammar prepared in terms of

e~ementary neighborhoods comprises a great number of entries. However, this

type of rules is preferred when a particular technique is available on machine

(Opler et al., 1963).

12_~.. Let us consider a set of rules of the form

uv ~ W.

We assume a rule is applicable to xy if

x (:) u and y (:) v.

We have, then,

u)(y v) :xyOuv xy w.

Sakai 26

12.3.1. Suppose the rules of the form

uv _~w

are applicable to xy if and only if

x ~ u and y ~ v.

For all the rules in the set R(xy) of applicable rules, we have

xy ~_ uv c w.

12.3.2. Let the set R(xy) of applicable rules be

R(xy) = set(uv~ w: x ~ u, y~ v).

Then, for each rule in R(xy), we have

xy ~ uv ~ w.

Taking all the rules in R(xy), we can expect

xy = Dw,

and, if the set of rules is prepared so as to meet this condition, we can find

xy by taking the intersection of w's in R(xy).

12.4. Let the rules be given in the form

UV = W~

and let R(xy) be the set of rules such that

x (=) u and y (=) v.

12.4.1. If R(xy) is the set of all the rules satisfying the condition

x o u and y ~_ v,

then we have

xy ~ uv = w

for all the rules in R(xy). Then,

xy ~_ Uuv = U w,

where the union is to cover all the rules in R(xy); if the rules are prepared

so that

xy = U uv,

then we can find the concatenation simD1y by taking the union of w's of the

rules in R(xy).

12.4.2. if the rules are pre~fared so that they may be applied to xy when

x ~_ u and y C v,

then xy ~_ uv = w.

If xy = ~ uv

is true for all the rules in R(xy), then we can find the desired concatenation

by

xy = Nw.

12.4.3. T= ~ the rules are represented in terms of elementary neighborhoods in

Sakai 27

the form

e(i)e(j) = w(i,j),

then, in virtue of the coefficients x(i) and y(j), we have

x ~ U = X ~ e(i) = x(i)e(i),

y ~ v y S e(j) ')e(j) = = ykj ,

(X D u)(y~ V) = x(i)y(j)e(i)e(j).

Therefore, a rule is applicable to ~y if

x(i) = y(j) = i.

The result z = xy is obtained as the union of all the w(i,j)'s of the

applicable rules:

z = Uw = ~x(i)y(j)w(i4j).

12.5. The rules are prepared and used more freely according to the given

condition and requirement. In the following scheme (S'akai, 1961), a com-

plete neighborhood is represented by a code consisting of a number of digits

and each digit is checked, modifiedand transferred independently.

Suppose x and y are given and their concatenation z = xy is required.

Both x and y can be syntactically ambiguous and their ambiguity is to be

reduced in the course of finding z. Initially, z is assumed to be the set

of all the possible contexts, x, y and z are transferred to a temporary

storage space (xl,Yl,Zl). A rule is applicable if

x (=) u, y (=) v and z (=) w,

and the set (xl,Yl,Z l) is modified everytime a rule is applied. If a rule

proves

x I (=) u, Yl (=) v, z I0 w = O,

then the rule is not applied to this set, and another set (x2,Y2,Z2) is

stored in another storage space as another possible result. All the applic-

able rules are applied one after another to all the possible sets of

(xi,Yi,Zi). Similar procedure is repeated over again on two languages

simultaneously, so that the syntactic structure can be transferred from the

tree structure in one language to that of another language. ~he form of the

tree is preserved but their nodes are marked by the labels specific to each

language, input, intermediate or output language.

13. Distribution Class Representation of Concatenation Rules.

Possible concatenation of a language can be formulated as concatenated

sets of strings. Let

R = set(r: h(r))

Sakai 28

and S = set(s: h(s))

be sets of strings satisfying the conditions h(r) and h(s), respectively, and

let their concatenation have the property k(rs), so that

rs E T = set(t: k(t)).

We consider the concatenation rules of the form

RS ~ T,

which reads :

if

• then

r 6 R and s £ S,

rs K T.

The point of this representation is that,

and s 6 S h~ S i~--- OS k,

then as many rules are applicable to rs and they give

rs E N --- S% :

The intersection T' has less number of elements and, if the rules are precise,

the character of the strings in it is determined as precisely as required. Of

course, these procedures are not to be done by listing up all the members of

the sets. Each set in the rules is represented by a code. Every entry of the

lexicon has a code and it can be determined whether or not the string belongs

to any given set. These codes are to be generated and attached to rs to

indicate that it belongs to the set T'.

Practically, it is convenient to classify the strings in terms of their

complete neighborhoods:

R = set(r: h(C(r);u)) = R(u),

S = set(s: h(C(s);v)) = S(v),

T = set(t: k(C(t);w)) = T(w).

A grammar of concatenation will be given as a set of rules of the form

R(u)S(v) c

with a relation

f(uv;w),

and the rules can be described in a number of different ways according to the

choice of R(u)S(v), T(w) and f(uv;w). In order to see the principle, we

simplify the situation by making use of the distribution classes G, H, I and

J, and by assuming the relation f(uv;w) as

uv(=)w,

UV~ W~

Sakai 29

EV ~ w,

or uv = w.

lhe type of T(w) is chosen so that the grammar may describe the language

adequately.

13.___~1. G Renresentation.

If

then

then

If

then

then

If

then

If

then

Pu t

~(u) = G(u),

r E G(u), s E G(v),

r s E G(u)G(v) ~ G(uv) ,

C(rs) (=) uv (=) w.

r ~ G(u) , s ~ G(v) , uv ~ w,

rs E G(u)G(v) c G(uv) ,

C(rs) (:) uv ~ w.

r E G(u) , s ~ ~ (v) , uv ~ w,

r s 6 S (u) G (v) C G(uv) c G(w).

r E G(u) , s g G(v) , uv = w,

rs ~G(u)G(v) ~ G(UV) = G(w).

s(v) = G(v).

uv (=) w,

necessarily elementary.

13.2. H Re-oresentation.

Put

~(u) = :~(u), S(v) = ~(v).

Even if a few rules are applicable to rs in these cases, that is,

rs E G(w~) ~ G(w i) ~ --- ~ G(wx),

we have no simple way to find C(rs) from w's. We can not specify a set of

less members which adequately indic'ates the property of rs, unless more spe-

cific information is available.

13.1.1. Suppose, however, u and v are elementary.

If C(r) (=) u and C(s) (=) v,

then C(r) ~ u, C(s)~v.

That is, r ~ G(u) = H(u), s ~G(v) = H(v).

For further discussion, see "H Representation", where u or v is not necessa-

rily elementary.

13.1.2. Assume C(r) and C(s) are elementary.

If C(r) (=) u and C(s) (=) v,

then C(r) ~ u and C(s) ~ v.

That is, r ~ l(u) and s E I(v).

For further discussion, see " I Representation", where no neighborhoods are

if

then

.z,3.2..l.
then

then

then

then

We put

If

r ~ H(u), s 6H(v),

rs 6 H(u)~(v) _~ H(uv).

uv (=) w,

rs ~ H(u)H(v) ~ H(uv),

C(r~) o_ uv (=) w,

C(rs) (=) w,

rs 6 G(w).

S~<ai 30

~(w) = Q(w).

However, there is no simple procedure of finding the intersection of G(w)'s.

We can not specify the features of the strings by finding more rules applicable

to rs, unless more specific informa{ion is available.

13.2.2. If uv ~ w,

then rs ~ H(u)H(v) ~ H(uv) ~ H(w),

because H(uv) = H(w U wi) = H(w) ~ H(w') ~ H(w).

We put T(w) = H(w)

to have the rules of the form

If a number of rules are applicable and

rs £ H(uh)~(v h) c_ X(w,n)

rs 6 H(ui)H(v i) ~-H(w i)

rs ~ X(uk)~:(v k) c_ ~(wk),

then rs £ H(w h) ~ H(w i) ~ - - - OH(w k)

= :~(wh C wi U - - - Owk) '

then C(rs) O_ w h U w iU --- Ow k"

The rules of this type are essentially the same as the rules of

complete neighborhoods

xy ~ uv ~ w,

although they are encoded as the sets of strings;

13.2. 7 . If uv ~_ w,

then C(rs) ~_ uv~_ w,

then rs 6 G(w).

13.2.4. Put

UV = W.

Then rs ~ H(u)H(v) ~ H(uv) = H(w).

Sakai 31

The situation is the same as the case above, where uv ~ w.

13.3. ,I, Re, presentation.,

Put

R(u) = i(u), S(v) = l(v).

If r £ i(u), s 6 i(v),

then rs ~ I(u)I(v) ~ l(uv).

!3.3.1. If uv (=) w,

then C(rs) c uv (=) w.

No relationship is relevant between C(rs) and w.

13.3.2. If urn_w,

then C(rs) c uv ~ w.
m

No definite T(w) is available, such that I(u)l(v) ~_ T(w).

13._~3.. We consider the rules of tie type

i(u)I(v)

with uv ~ w.

If r£ i(u), s£1<v),

then rs { I(uv) = i(w).

If a nmmber of rules are applicable to rs,

then rs £ I(w h) N I(wi)~ --- O I(wk)

= I(w h ~ w i~ --- ~Wk).

%herefore, the rules of this type are equivalent to those of the type

xy C uv C w.

13.3.4. Put

• Then

U V = W ,

rs ~ I(u)i(v) ~ I(uv) = I(w).

This is the same to the case mentioned above.

13.4. J Reoresentation.

Put

~(u) = J(u), S(v) = J(v).

This type of grammar is not practical because every real distribution class

J of the language must be listed in the rules, k~:is condition corresponds

to the com}~lete neighborhood representation of rules f(uv;w) applicable to

xy only if

x = u and y = v.

13.5. Practically, the rules can be written more freely and the program

can be more flexible and efficient, provided that a more sophisticated

Sakai 32

scheme is introduced to the G Representation and the condition f(uv;w). ~is

is realized by representing the sets of strings by codes, so that the union

and the intersection of any two sets are determined by the operation on the

codes.

14. Some Remarks on Transformation.

14.1. It is generally agreed that we generate acceptable strings by starting with

an axiom and expanding it repeatedly into a string of constituents. This pro-

cedure is taken care of by concatenation rules. After generating one or more

strings by this procedure, they are transformed to yield another string.

Let us imagine another function of our normative device. We give it a

pair

r = (r',r")

of acceptable strings

r' = r'(1)r'(2)---r'(i')---r'(m')

and r" = r"(1)r"(2)---r"(i")---r"(m").

The pair r will be referred to as a string

r = r(1)r(2)---r(i)---r(m)

with m = m' + m".

We put m" = 0

if the string r" is absent. We then give it another acceptable string

s = s(1)s(2)---s(j)---s(n),

and ask it whether or not the string s as an expression is true if both r'

and r" are true. If the device says "yes", we consider the string s is gene-

rated from r by a transformation. We call r the original string and s its

orano_o~.n. If it says ~'no", no such transformation exists. Conversely, we

ask it whether or not r' and r" are true if s is true. If the device says

T~Xr~f ~ , we consider an inverse transformation exists, such that s is expressed

by r' and r". We can find many cases in which the device would say "yes" for

transformation but "no" for inverse transformation. Some information is sup-

posed to have been lost in generating the string s, which can not be retrieved

unless appropriate, possibly non-linguistic, information is supplied. ~%is

situation is beyond the scope of Syntaetics.

A transformation or an inverse transformation is called singularly if r"

in r is absent, and it is a generalized one if both r' and r" are present. If

it is an embedding transformation, r' and r" are called matrix and constituent

strings, respectively.

If we understand the transformation in the sense mentioned above, the

transfer of syntactic structure from one language to another is also a trans-

Sakai 33

formation (Gross, 1962).

14.2. If it is known that r is transfor~ed to s, then ~n~o fact ms used to

generate a particular string. If r is known to be an inverse transform of s,

then this is used to recognize s, giving a possible derivational history.

if no other such transformations are found, r is the only nearest history.

Otherwise, the ambiguous history is to be accounted for by other rules.

If we find r and s such that r is true if and only if s is true, then we

say r and s are equivalent and write

r eqv s.

Obviously, this equivalence is symmetric, reflexive, and transitive. A

transformation that transforms a string into an equivalent string is called

an equivalence transformation, if we have a grammar consisting of equivalence

transformations only, it can be used for both synthesis and analysis.

Let us confine ourselves to the equivalence transformations in order to

simplify the discussion, and assume we have a set of rules or a normative

device. A generalized transformation transforms a oair r = (r' r") of strings

into one strin~ s. ~e inverse transformation by the same rule dissolves a

string s into a pair of strings (r',r"). ~en, r' or r" is regarded as an s,

and, if we find an appropriate rule, it is again dissolved into two acceptable

strings. By repeating the same, we have a number of equivalence relations

which can be arranged as a tree:

s eqv (r(1),r(2));

r(1) eqv (r(ll),r(12));

r(2) eqv (r(21),r(22));

r(ll) eqv (r(lll),r(ll2));

r(12) eqv (r(121),r(122));

If an acceptable string t can no longer be dissolved into two acceptable

strings, we call t a terminal or an atomic acceptable string. ~nroughout

this procedure, the strings are expected to become shorter and simpler, because

equivalent information is expressed by many separate strings. It will be

still possible to transform an atomic string to another atomic string by means

of a singulary transformation. We have different atomic strings which are

mutually equivalent. We may pick up one of them and call it a kernel string.

1~e sequence of inverse transformations is not always uniquely determined.

There can be other orders of dissolving a given string into atomic strings.

We can make the grammar less redundant by studying the possible sequences of

Sakai 34

inverse transformations. If the rules are all equivalence rules, there is no

theoretical problem of ambiguity• ~ne investigation of these problems requires

quite a different treatment, and will not be included in this paper.

14.3. Sometimes, it is considered more linguistically reasonable to assume

" S ~rln~ or that a string is not acceptable but its transform is an acceptable ~ " ~
~.

a constituent of an acceptable string, in some other cases, a s~ing may be

an acceptable string and its transform may not be an acceptable string or a

constituent thereof In other wo~as, a transformation is applied to an un-

acceptable string or a transformation results in an m%acceptable string. We

may prepare the rules in such a way that a sequence of obligatory transform-

ations is contracted to a single ~ale. This seems formally simpler and con-

sistent. However~ it will result in a more entangled system of grammar. We

admit some of such strings as potentially acceptable and indicate it by a

marker, This convention is somet~nes useful not merely as a technique but also

as a consistent and more plausible derivation of acceptable strings. It is

known that a string of a Chinese dialect marked potentially acceptable for the

derivation of apparently inconsistent strings is quite acceptable in another

dialect (Wang, 1964).

14.4. A generalized transformational rule consists of terms u and v, where

u = (u',u")

= u(1)u(2)---u(i)---u(m),
u ' = u,(1)u'(2)---u'(i ')---u'(m'),
u" = u,(1)u"(2)---u"(i")---u"(m"),
m = m r. ~ m ~r,

u becomes v~

v = v(!)v(2)---v(j)---v(n).

Most rules are accompanied by a number of restrictions imposed on the

original strings and their transforms as well as some manipulations of strings.

~ese are classified into a few types and subroutines are to be prepared for

them. Some of the operations are listed below, which have been picked up

sporadically from the rules for generating Chinese strings (Hasimoto, 1964).

(0) A routine supervising the subroutines takes care of the whole procedure

of applying the rules to a string, if the rules are prepared in a defin-

ite format, they are automatically checked and applied to the given string.

(I) Certain segments r(h) and r(i) in the original string must or must not

share a certain feature in common and/or a segment r(j) must or must not

have a certain feature.

Sakai 35

(2) The segment r(i) of the original string and the segment ~(o) of the trans-

form must or must not have the same feature specified by the rule.

(3) Some segments in the transform must satisfy the condition similar to (I).

(4) Absence and/or presence of particular segments must be ~ cne c~ed.

(5) Positions of certain segments in the string must be found.

(6) A check of the derivational history somet~les decides the recursive

application of the rule~

(7) The tree structure must or must not be changed by the final procedure of

a transformation.

~ . No rule describes a transformation of an individual string r into an

individual string s. The rule says, if the string r has the feature

u : u(1)u(2)---u(i)---u(m),

then it is transformed to another string s which has the feature

v : v(1)v(2)---v(j)---v(n).

What are these features? They must be defined on the basis of the

answers of our normative device. The program must be consistent with the

features defined. Once a program is written and decided to be used, the

program is the definition. If the program is modified, the rules and the

lexicon are to be modified.

Since the transformations are applied to P-markers, a string is considered

to be a tree-like string, if it is a linear string of terminal nodes, the

other non-terminal nodes and the branches are to be determined by virtue of

the concatenation rules. We consider the labels u(i) and v(j) are complete

neighborhoods, if the concatenation rules are written in terms of complete

neighborhoods. If the concatenation rules are written in terms of distribution

classes, u(i)'s and v(j)'s are considered to be distribution classes.

14.6. The complete neighborhoods are defined on the basis of concatenated

strings and we have to associate them with the labels given to the nodes of

our transformational rules in order that the kernel strings can be transformed.

Let us see what happens when the nodes are assumed to be complete neighbor-

hoods.

Let

p = (p',p")

be a pair of acceptable strings p' and p", and let

r = r(1)---r(i)---r(m)

be a segment of p. The pair p is transformed by T into

Sakai 36

q = T(p),

and the segment appears in q as

s = s(1)---s(j)---s(n).

Some strings may have been added and some others may have been deleted.

Put

x(i) : C(r(i)),

x : C(r)~

y(j) = C(s(j)),

y : C(s).

By definition,

x : x(1)---x(i)---x(m),

y = y(1)---y(j)---y(n).

Any string belongs to one and only one distribution class J.

instead of

Therefore,

T(r(1)---r(i)---r(n)) = s(1)---s(j)---s(n),

we write

T(J(x(1))---J(x(i))---J(x(m)))

= J(y(1))---J(y(j))---J(y(n)).

Since all the elements in a J has the same complete neighborhood, we rewrite

the above as

T(x(1)---x(i)---x(m)) = y(1)---y(j)---y(n).

This is rewritten again by breaking down in the form

X = x(1)---x(i)---x(m),

y : T(x)

= y(1)---y(j)---y(n).

If we have a complete set of rules which gives the concatenation of any

complete neighborhoods of the language, then we can find the complete neigh-

borhood x. The transformation takes place when x is changed to y. The string

y is to be generated in virtue of the information brought forward from x and

the structural requirement of y itself. A transformation is then interpreted

as:

~ne complete neighborhood x of the node dominating the string

x(!)---x(i)---x(m)

of complete neighborhoods is transformed to another complete neighborhood y of

the node dominating the string

y(1)---y(j)---y(n).

Sakai 37

This interpretation, however, suggests a few problems,

14_~. We know that

J(x(1))---J(x(i))---J(x(m)) (J(x),

J(y(1))---J(y(j))---J(y(n)) m J(Y)"

The statement "x is transformed to y" is a generalization of the original

fact, and this generalization is not always true. The text should be checked

before a transformational rule is applied to it. Some separate steps for this

purpose will save the machine time.

(1)

(2)

(3)

14.8.

A text to be parsed must consist of segments specified by the rule. The

correct segmentation can be done by finding the tree structure of the !

text. Therefore, the concatenation rules must be prepared so as to ~

account for the structure of any acceptable strinG.

Not all the trees of the specified form undergo the inverse transformation

so that the derivational history may be traced back. The nodes are

labeled. A tree of a form can correspond to a number of trees whose nodes

have different labels.

When a string is being synthesized, the text is given as a pair of P-

markers. A rule can be applied only if the P-markers meet the condition

specified by the rule.

We may regard the structure mentioned above as a representation of

derivational history. The history can be recorded by listing all the deriv-

ational steps the string has experienced. This representation, however, will

be redundant and inefficient, because it is likely to occur that an identical

series of transformations is applied to strings of different history. On the

other hand, it is also possible that the strings p and q of different histories

result in an identical string s by a transformation and the string s is am-

biguous in that the s from p can undergo a sequence of transformations and the

s from q another; thus the structure itself can not be an absolutely reliable

marker.

We think it more practical to associate the rules with the features in

the P-marker to which the rules are applied. '~lese features should correspond

to the series of transformations applicable to the P-marker in case of syn-

thesis and the series of inverse transformations in case of analysis. We have

some rules with notes on the type of transformations to which the resultant

strings may be exposed (Hasimoto, 1964).

15. Complete Neighborhppds and Transformational. Rules.

Let us assume u(i)'s and v(j)'s are complete neighborhoods.

Saka± 38

~ . Two strings r and s may replace th~ same non-terminal node to yield a

longer acceptable string. However, when a transformation T is to be applied,

they must hav~ the specified structure; thu~ the str!n~ p with r a~ a ~e~ment

in it may be transformed by T, while the string q which differs from p only in

that it has the segment s in the place of r may not. The lack of q by T means

C(r) / C(s).
1_~,2. Because o f t h i s c o m p l e x i t y i n v o l v e d i n n a t u r a l l a n g u a g e s , we e n c o u n t e r

a difficulty when we try to prepare a set of syntactic data for practical

purposes. We refine the definition of complete neighborhood in such a way that

C(r) of a string r is the set of all contexts of r which appear in the strings

to which no transformations have ever been applied during their derivation.

The difference between r and s is found in their internal structure, if the

machine is given only the input string to be parsed. In order to indicate this

difference, we put

c(r) U O(r) =

where C(r) is defined over ~.,e sez of kernel strings,

D(r) is defined over the set of transforms,

E(r) is defined over the set of kernel strings and

transforms.

Let c(i) be an elementary neighborhood defined over the set of kernel

strings, and let r be a real or imaginary string such that

C(r) = o(i).

Let d(i;j) be the elementary neighborhood defined over the set of all the

possible transforms of which r is a segment, where j corresponds to the

possible sequence of transformations. Putting

c(i)~ d(i;j) = e(i;j),

we have the elementary neighborhood e(i;j) defined over the set of kernel

strings and transforms. These e(i;j)'s are no longer necessarily disjoint:

e(i;j) ~e(i;j') ~ c(i).

l_l_l~. ~e separation of kernel strings and transforms still involves a con-

siderable complexity. Let q be a transform. It is a transform generated by

a transformation in a sequence of transformations and it can be an original

string to be transformed by the following transformation.

A transformation is accompanied by the set P of original strings and the

set Q of transforms:

P = set(p: T is applicable to p),

Sakai 39

Q = set(q: q = T(p), p in P).

We simplify the situation by defining the complete neighborhoods over P and

over Q. The feature of T is shown more explicitly in this way. Let A be a

node and imagine a derivation by the context sensitive rules

A ~> BC

B F / ---C

c--> G / B---

where the s~nbols are assumed to be complete neighborhoods. Let B be replaced

by F first to yield FC, and the third rule can no longer be applied because of

the lack of its necessary environment B---. When these rules are to be used

in analysis, none of the contexts ---C or B--- is relevant in the given string

FG of complete neighborhoods. We can get rid of this difficulty by defining

B and C over a set of strings and F and G over another, and by considering a

transformation from BC to FG, prohibiting the operations on the strings FCand

BG.

l~t

p = p(1)---p(i)---p(m)

be a string in P, and let

q = q(1)---q(j)---q(n)

= T(p)

be the transform of p by T. We define the complete neighborhood of ~(i) over

P and that of q(j) over Q. By modifying the meaning of the notation, we put

x(i) = C(p(i)) over P,

y(j) = D(q(j)) over Q.

The requirement that p(i) should appear as q(j) in Q gives

p(i) = q(j),

c(p(i)) # o,

O(q(j)) 0;

if p(i) does not occur in Q, then

x(i) = C(p(i)) over P

= E(p(i)) over P ~ Q;

if q(j) does not occur in P, then

y(j) = D(q(j)) over Q

= E(q(j)) over P ~ Q.

The relational conditions imposed on the segments p(i) of the original string

Sakai 40

and q(j) of the transform are indicated in terms of E(p(i)) and E(q(j)), or

by a relation between C(p(i)) and D(q(j)).

be set Q can include a part of the set P' of original strings to which

another transformation T' can be applied. ~hus, we can classify the strings

with respect to possible transformations. We have no positive grounds to

assume any natural language has a stratified system of layers arranged one over

another. • -~

15.4. Let

u = (u' u")

= u(i)---u(i)---u(z)

be a pair of concatenations

u' = u'(1)---u'(i')---u'(m')

. a n d u " = u " (1) - - - u " (i ") - - - u " (m ")

of complete neighborhoods u'(i')'s and u"(i")'s defined over P. If the string

is linear, the non-terminal nodes are to be determined by concatenation

rules. We assume the rules of the form

f(T(u);v)

mean, over Q, a relation between T(u) and v. We assume further a rule is

applicable to the given pair of concatenated complete neighborhoods

x = (x',x")

= x(1)---x(i)---x(m)

if the condition g(x;u) holds. That is,

if g(x;u) over P,

then f(T(u);v) over Q.

We expect to find the transform T(x) in terms of v of the rules in the set

R(x) = set(f(T(u);v): g(x;u))

of the applicable rules.

Given the rules of the same form and a string represented by a concate-

nation

y = y(1)---y(j)---y(n)

of complete neighborhoods, an inverse transformation is to be carried out by

finding the set

R(y) = set(f(T(u);v): h(y;v))

of applicable rules.

With all the linguistic difference between the concatenation rules and

transformational rules, they exhibit formal similarities when the labels are

Sakai 41

assumed to be the sets of contexts. We will not repeat a similar discussion

on the choice of f(T(u);v), g(x;u), h(y;v) or the algorithm for finding x or

y.

16. Distribution Classes and Transformational Rules.

Let p be a string and T(p) its transfo~n by the transformation T. Let P

be a set of strings p to which T is applicable. We defined the transform T(P)

of P as the set of all T(p)'s:

T(P) = set(T(p): p in P).

A rule will be written in the form

f(T(P);Q)

to indicate a relation between the sets T(P) and Q.

In order to specify the sets a little closer to the form of rules usually

prepared by linguists, we put

p = p(1)p(a)---p(i)---p(m)

q = q(1)q(2)---q(j)---q(n),

where p(i)'s and q(j)'s are segments in p and q, respectively. Then we put

P : P(1)---P(i)---P(m)

Q = Q(1)---Q(j)---Q(n),

which are to be understood as concatenated sets if strings.

A rule of the form f(T(P);Q) is applicable to the string p, if

p(i) ~ P(i) for i = i, 2, ---, m,

giving T(p) 6 T(P),

so that f(T(P);Q)

provides us with the information governed by this rule. Each string in the

lexicon and each constituent in the string under analysis or synthesis is

given a marker which indicates whether or not it belongs to any set of strings,

provided that the sets are established systematically. Because of the ambiguous

property of real strings, the markers will be given interms of complete neigh-

borhoods defined over the set of (potentially) acceptable strings.

17. Establish!~ent and Representation of Complete Neighborhoods.

A syntactic function is called a complete neighborhood if it is defined

as a set of contexts. We use conventional terms and redefine them as symbols

assigned to complete neighborhoods..

17.1. In establishing a set of complete neighborhoods of a natural language,

we assize a few of them as undefined terms and derive the others by hypothetical

concatenation rules. Sometimes, there will be a choice among a few hypothetical

Sakai 42

rules. We take one of them to define a complete neighgorhood and regard the

others as the property of the complete neighborhood defined by the former.

Thus, we distinguish two kinds of rules: definition rules and property rules.

Let

axb = c

and xd = f

be hypothetical rules. If one decides to regard the former as the definition

of x, the latter is a property of x. ~%is method is applied not only to phrase

structure grammar but also to transformational o~ammar, because both trans-

formations and inverse transformations are applied to a (pair of) P-marker(s) to

yield another (pair of) P-marker(s).

Every time a definition rule is established as a hypothesis, it must be tested

as to whether or not it contradicts any other definition rules. "~ ~,o property

rules should contradict any other rules. %~nenever a contradiction is found,

the source of trouble must be found out by tracing back the definition rules,

and the hypothesis that has given rise to the trouble must be modified.

17.___~2. The complete neighborhoods of all the acceptable strings (as distin-

guished from the other ambiguous interpretations of the same string) are

identical to each other and consist of one element indicating that the strings

are acceptable. It seems adequate, for most of the natural languages, to

admit two complete neighborhoods, nominals and verbals, although there are no

rigid grounds. Many others are derived from hypothetical concatenations that

can occur in acceptable strings.

The prepositions in many European languages are subclassified by the case of

thenominals they govern, and the nominals by their case, gender and number.

A rule for yielding prepositional phrases will be stated as follows: a pre-

position that governs nominals of case c, followed by a nominal of case c',

of any gender and of any number, results in a prepositional phrase, provided

the cases c and c' are the same. As suggested in this example, subclassific-

ation and desubclassification are useful to describe syntax. A number of

indices are made use of in subclassifying a broadly defined complete neighbor-

hood. The example above will be rewritten, by introducing the indices c for

case, g for gender and n for nu~nber, and a coefficient d(c,c'), in the form

prep(c) n(c';g;n) = d(c,c') prep-n,

where d(c,c') = 1 if c = c',

= 0 if c ~ c'.

Sakai 43

%he indices g and n are arbitrary if the preposition in question takes nominals

of any gender and of any number.

Usually, a linguist will define complete n,~g~noornoocs broadly so that

the majority of acceptable ~rmn~ may be generated and recognized correctly.

As his analysis proceeds further in c~eoa1~, he ~ill take an exa~mT~le that is

not generated or recognized correctly by his broadly defined complete neigh-

borhoods: generation may give him some unacceptable strings or the syntactic

analysis may give him erroneous or unnecessarily ambiguous interpretations.

He will then trace back the definitions and find out some of his rules hold in

his example with respect to a subset of one of his complete neighborhoods.

Suppose he has a set R(xy) of rules to concatenate x and y. His new example

will indicate that the rules are not always true. He may then establish the

subsets x', x", y', y", and a new set of rules which allows x'y' and x"y ~',

for instance, but not x'y" or x"y'.

17.3. Let a broadly classified complete neighborhood be shown by a symbol,

say, v. If a subclassification thereof is desired, we introduce an index p,

such that

v : v(p l) U v(p 2) U--- Uv(pn).

When the subclassification is not necessary, we put p = O;

v(o) : Uv(pi), i : l, e, ---, n.

The union of a few subsets are written as

v<Pl,P3,P 5) : v(P I) U v(P 3) U V(Ps),

etc.

If a complete neighborhood is to be subclassified from a few different points

of view, ~s many indices are introduced:

v(p;q), v(p;q;r), etc;

v(Pl,P2; q) = v(Pl; q) ~ v(P2;q),

v(p;ql,q a) : v(~;q l) U v(p;qa),

v(p;o) n v<o;q) : (Uv(p~qj)) ~ (Uv(pi~q))

= v(p;q),

etc.

Hence, for the distribution classes

~(V(Pl,pa;~)) : H(V(~l;q)) N X(v(Pa;q)),

I(v(p;q)) = !(v<p;o)) ~]i(v(o;q)),

Sakai 44

etc.

Sometimes, an index depends upon other indices:

v(p;q(r;~;t)),

for example. ~%e meanings of r, s and t depend upon the meaning of q.

The above scheme may be further generalized. Let a complete neighborhood

be represented by a number of indices

(a;b;c;---;n),

where the broad class symbol is one of the indices and each index represents

a classification from a certain point Of view.

It will be of interest to compare these indices with the concept of

"razbijenije", "okrjestnostj" (Kulagina, 1958) or "sememe" (lamb, 1962). ~nis

kind of representation, used by many research groups, enables us to describe

the syntax of a language systematically. Each digit can be regarded as an

indication of a certain feature common to some elementary neighborhoods, and

classifies them according to their specific features.

1_~.4. Suppose a concatenation rule f(uv;w) is to be applied to a text xyof

complete neighborhoods to determine z = xy, and the complete neighborhoods are

represented by the indices in the form

x = (a(x);b(x);---;n(x)),

y = (a(y);b(y);---;n(y)),

z = (a(z);b(z);---;n(z)),

u : (a(u);b(u);---;n(u)),

v = (a(v);b(v);---;n(v)),

w = (a(w);b(w);v--;n(w)).

If a rule indicates the relation between the pair (i(u),j(v)) of indices and

an index k(w), and if all the others are independent of these, we have

u = (o;---;o;i(u);O;---;o),

v : (o;---;O;j(v);O;---;O),

F
w = (O;---;O;k~w);O;---;O).

If the pairs (i(x),i(u)), (j(y),j(v)) and (k(z),k(w)) satisfy the condition

specified by the grammar system being used, the rule is applied to xy and

gives a z modified by this rule. ~ne rule gives no information as for the

other indices. This information should not be lost if it is in x or y.

We have to indicate in the rule how to transfer the information to z from x

or y. A simple method was used in a translation program (Sakai, 1961).

A transformational rule requires that certain features of the original

Sakai 45

string are carried forward to its transform. ~lis requirement is usually

indicated by the identity of features of certain segments in the original

string and its transform. The use of rules is to be programmed in such a way

that, if the rules are applicable to the string regardless of a certain index,

the value of the index in the original string is transferred to the corres-

ponding index of the transform, and vice versa in case of an inverse trans-

formation.

17_~.. An extremely simplified example is given. %~ne complete neighborhoods

are no longer treated as sets. The symbol ~'+" means "or". The symbol "="

does not necessarily mean an identity: it can be replaced by an arrow. The

segments of the string

~hey are red ~ianes

1 2 3 4

are rePresented in the form (h,k):

(i,i) = they,

(1,3) = they are red

(2,3) = are red,

etc.

Both (h,i)(j,k) and (h,i) * (j,k) mean the concatenation of the strings (h,i)

and (j,k). The following abbreviations are used.

adj: adjective

adj-pred: adjectival predicate

anim: animate

compl: complement

inanim: inanimate

m: masculine

n: nominal

n/n: modifier of nominal

nom: nominative

pl: plural

pn: pronoun

s: sentence

v: verbal

-k: ends with k

-t: ends with t

Sakai 46

Input Langua ~e

(l,4)(v;s) = (l,1)(pn;3rd "'~),~.- ~ (2,2)(v;be;pres;3rd;pl) * (3,4)(n;p!)

(3,4)(n;pl) : (~,3)(ac, j) ~ (4,~)(:~,;'?l)

Intermediate Renresentaion.

(l,4)(v) = (i,l)(pn;3rd',p-,;'nom) '~ (2,2)(conula;pres). * (3,&)(n;compl;p i)

(3,4)(n;comp!;pl) = (3~3)(n/n) * (4,4)(n;compi;pi)

Output Lan~ua{e (Russian)

(i,l)(pn;3rd;pl;nom) = on(Dl;nom) = oni

(2,2)(copula;pres) = ()

(3,3)(red)(n/n) = krasn(adj;hard)

(4,4) (plane)(n;comp!;}l) = (rubank(-k) ~ samoljet(-t))(n;m;pl;nom)

= (rubanki + samcijety)(n;m;pi;nom)

(3,4)(n;compl;pl) = (b,b)ta~:;na;~J ~ (4, ~)(n;m;pl;nom) = (3,3)-yje(4,4)

' ' " " I"UO~'.-~ -i- = , ') = ~ samoljety) (i,4)(v) (i,i)~,~,)<~ . onto k~'asnvje (.......

Output L ~ n , ' : u a : : e :- " "

(1,1)(pn;Srd;pl;nom) = (i~are(anim) ~ sore(inanim))(pn;pl;nom)

(2,2)(copula;pres) = ar(v;%;pres:final) = ar-u

(3,3) (red)(n/n) = aka(adj-pred~n/n)

(4,4) (plane) (n;compl;p!) = (keimen ¢ hikooki) (n;inanim;compl)

(3,4)(n;compl;pl) = ((3,.-5)-i(4,4))(n;inanim)-de

(l,4)(V) = (l,!)(anim,:inanim~pn;pi;nom) * (~,4)(n;inanim)-de *

(2,2) (v; %; lores ; ~inai)

= (l,i)tlnan~m;pn;ip;nomj * <p,4)(u;mz~onmm)-~e * (2,2)(v;4;pres;final)

= sorera (ga ~ wa) akai (heimen + hikooki) de aru

17.6. We observe in ~he above example ~hat the index of an animate or an

inanimate object affects the choice of a lexicai element in Japanese while it

is not relevant in ~zlzsn. if'his phenomenon may be considered syntactic in

one lauguage and semantic in another. Take two languages A and B, and suppose

A has a syntactic marker o '~ qender and '5 does not. The gender is considered

syntactic in A and sema:r~ic iu S. The syntactic genders are sometimes arbi-

trary and can not be al'.~-,?/~ nrcse::'vec i'a the ~ranszer process from one language

to another. We will ,:~v~ -~= t;o --'~*e.,~ar<.~~: - ~ two se;oarate_ procedures for handling

.~r;.~ armse ~.~.~ res::~ec~ to ozher indices gender. Si::;ilar ~-" - ~ :

~e choice of iexical elements de]cends greatly upon the habitual usage

~.~on is si;t;iiar when we observe some combinations of of language, k~ne =-' ~

longer constituents.. The ch,:,.ice of constituents is limited by logical,

semantic or habitual reasons as indicated by the branches of' the second kind

Sakai 47

in the net strings. Sometimes the choice is quite capricious. It seems more

practical to handle this kind of information separately (Matthews, 1965),

corresponding to the separate normative devices the lin&~ist has conjectured.

Acknowledgment.

The need of defining distribution classes was recognized when I was with

the Machine Translation Project, bniversity of California. The basic approach

was worked out at the First Research Center, Defense Agency of Japan, and was

refined and finished at the Project on Linguistic Anaiysis, Ohio State

University. I appreciate the encouragement of these organizations.

References.

Gross, M.: On the Equivalence of Models of Languages Used in the Fields of

Mechanical Translation and Information Retrieval, NATO Advanced Study

Institute on Automatic Translation of Languages, Venice, 1962.

Hasimoto, A. Y.: Revised Rules of Mandarin Grammar, Project on Linguistic

Analysis, Ohio State University, Columbus, Ohio, 1964.

Kulagina, O. S.: Ob Odnom Sposobje Oprjedjeljenija Grammaticeskix Ponjatij

na Bazje Tjeorii ~ho~estv, Probljemy Kibjernjetiki, Vypusk i, Moskva,

1958.

Lamb, S. M.: Outline of Stratificational Grammar, University of California,

Berkeley, California, 1962.

~tthews, P. H.: Problems of Selection in Transformational Grammar, private

circulation, indiana University, to appear in the Journal of Linguistics,

No. l, 1965.

Opler, A.; Silverstone, R.; Saleh, Y.; Hildebran, M.; Slutzky, I.: The Applic-

ation of Table Processing Concept to the Sakai Translation Technique,

Mechanical Translation, vol. 7, No.2, 1963.

Parker-Rhodes, A. F.: A New Model of Syntactic Description, 1961 International

Conference on Machine Translation of Languages and Applied Language

~alysis, Her Majesty's Stationary Office, London.

Sakai, I.: Syntax in Universal Translation, 1961 International Conference

(See above).

Wang, W. S.: Two Aspect Markers in Mandarin, Project on Linguistic Analysis

(See above), Report No. 8, 1964.

Sakai 48

Appendices.

A-I. Sets.

a ~ A; ~ in A: ~ is an element of the set A; ~ belongs to A; ~ is in A.

a~A; ~ not in A: a~A is not true.

A (=) B: there is at least one element which belongs to both A and B.

A~ B; B~ A: if a ~ A, then a~ B; A is a subset of B; B is a superset of A.

A = B: a ~ A if and only if a ~ B; A~B and A~B.

A # B: A = B is not true.

A = O: there is no element in the set A; the set A is empty.

A = set(a,b,c,d): A is a set whose elements are a,b,c and d.

A = set(ai: i = 1,2,---): A = set(al,a2,---).

A = set(a: f(a)): a~ A if and only if f(a) is true.

A = B ~ C: A = set(a: a ~ B or a ~ C); A is the union of B and C.

A = Us i , i = l , a , - - - : ~ : B I U B 2 U - - - •

A = U B for f(B): A is the union of all B's satisfying f(B).

A = B~ C: A = set(a: a ~ B and a ~ C); A is the intersection or meet of B and C.

A = D i' i = 1,2,---: , = n B 2 n --

A = ~B for f(B): A is the intersection of all B's satisjying f(B).

A-2. Boolean Coefficients.

We introduce coefficients which indicate presence or absence of sets.

The value of a coeffi-

ax = 0 = empty set, if a = O,

=x, if a =!.

The sum a ÷ b and the product ab = a X b are determined by

axU bx = (a + b)x = x, if a = I or b : l,

= O, if a = b = O,

and ax ~ by = ab(x D Y) = (a X b)(x ~ y) = x D Y, if a = b : i,

= O, if a = 0 or b = O.

Therefore, the coefficients are Boolean:

0 + 0 = O, 0 + i = i + 0 = i + i = i,

0 X 0 = 0 X I = i X 0 = O, I X i = i.

Consequently, for concatenation, we have

(ax)(by) = abxy.

Let a, b, etc. be the coefficients and x, y, etc. sets.

cient is either 0 or i:

Sakai 49

Table of Contents

1.

2.

3.

4.

5.

.

7.

8.

9.

lO.

ll.

12.

13.

14.

15.

16.

17.

Introduction.

Symbol; String; Language.

Context: Neighborhood.

Equivalence of Contexts.

Complete Neighborhood.

Elementary Neighborhood.

Distribution Class.

Concatenation.

Concatenation of Complete Neighborhoods.

Concatenation of Distribution Classes.

Rules for Recognition and Generation.

Complete Neighborhood Representaticn of Concatenation Rules.

Distribution Class Representation of Concatenation Rules.

Some Remarks on Transformation.

Complete Neighborhoods and Transformational Rules.

Distribution Classes and Transformational Rules.

Establishment and Representation of Complete Neighborhoods.

Acknowledgment.

References.

Appendices.

Table of Contents.

