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ABSTRACT 

This paper is concerned with the design of a processor capable of 

formalizing English language descriptions of problems in the sententlal 

calculus. The emphasis is on the design of a system with natural language 

processing capabilities, but the formal languages specified are oriented 

to the problem context. 

A series of automata are specified to carry out the necessary 

functions. The automata identifythe premises in the problem strings~ 

specify the appropriate logical connectives among the premises and deter- 

mine which premises are meaning-equivalent. The syntax of each automaton is 

defined and examples are used to illustrate their functioning. 

The automata accept statements in the language L1, the set of 

English statements of problems in the sententlal calculus. The individual 

premises p @ L1 are recognized by the syntax~, where ~ is chosen so that 

the language L2 recognized by it is a subset of L1. Furthermore, the 

strings in L2 are restricted to the declarative sentences. Once the premises 

and their logical connectives have been identified, those that are meaning- 

equivalent are located in two additional steps. First the L2 description 

of the string is mapped into a string in L3. The L3 language consists 

of a limited set of canonical forms that ease the problem of establishing 

meaning equivalence of premises. Finally, the automaton applies 

heuristically a sequence of problem-orlented and meaning-preserving 

transformations in order to establish meaning-equivalence. Two premises 

are taken to be meaning-equivalent if one can be deduced from the other. 

Otherwise~ they are taken to be not meaning-equlvalent. 
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A HEURISTIC APPROACH TO NATURAL 

LANGUAGE PROCESSING 1 

Introduction 

The recent evolution of programming languages has tended to 

improve communication between man and computer. The use of mnemonics~ 

automatic storage allocation~ English-like operators (such as in COBOL) 

and problem-oriented languages has greatly facilitated the task of the 

programmer. Thus, the solution algorithm for a large class of computa- 

tional problems can be defined with relative ease in languages such as 

FORTRAN and ALGOL, specifically designed for these classes of problems. 

This paper describes an attempt to further simplify the communica- 

tion between programmer and computer by defining a system which can produce 

a formal description from its natural (verbal) input. 2 

In order to study this approach a specific problem area was 

chosen, the propositional or statement calculus. It will be evident that 

the problem area chosen has influenced the design of the system; nonetheless 

it should be clear that the linguistic capabilities of the system are 

general rather than specific to the problem context. 

In designing this processor, two major abilities are required. 

First, the processor must be able to identify each elementary premise and 

all logical connectives. It must also determine which premises are to be 

taken as equivalent. 

i This research was supported by Grant G-17951 of the National Science 
Foundation. A majority of the system has been programmed in the list 
processing language IPL-V (Newell, 1961). 

2 For a more complete description and some program listings see Manelski, 

196~. 
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The processor is composed of t h r e e  series coupled automata 

(see Fig. 1). The first automaton, A1, accepts as its inputs the language 

L1, where L1 is the set of all English language statements of problems in 

the propositional calculus. This automaton is concerned with the identi- 

fication of the premises and logical connectives of a problem. This is 

achieved by using a syntax ~ capable of recognizing strings in L2. where 

L2 is a subset of L1. The syntax ~ consists of a hierarchy of syntaxes; 

a phrase structure syntax ~idesigned to recognize a subset of English 

composed of simple declarative sentences and the set of' transformations 

specified by~ T.I 

The equivalent premises are identified by the automata A2 and 

A3. The automaton A2 maps a premise, identified by AI~ into a canonical 

form specified by the syntax C that defines the language L3. This step 

is designed to facilitate the distinction of equivalent premises. Finally 

A3 applies a sequence of meaning preserving transformations from the set 

TO = ~TI,T2,... ~ Tm~ on the string (~r,~'s ~ L3 such that if: 

TiTj'''T% (~r) :~s 
with T k C TO 

the two strings are considered meaning equivalent. Should the system 

be unable to find a deduction satisfying these conditions or under certain 

other heuristically chosen criteria the strin6~s are asslnned to represent 

different premises. 

In order to test the system described in this paper, problems 

were drawn from Stoll (1961). Some will be used later to illustrate the 

capabilities and inadequacies of the present system. 

1 Chomsky's discussion of transformations and the inadequacies of various 
models for natural languages can be found in the monograph "Syntactic 
Structure s". 
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Each of the automata will be discussed in two ways, first in 

terms of its syntax. Finally the information flow for its implementation 

as a computer program will be outlined. 

Characteristics of the Natural Language Processor (AI) 

The automaton A1, as mentioned in the previous section, consists 

of two completely different syntactic mechanisms. The system includes a 

phrase structure syntax designed to recognize an extremely restricted 

subset of the English language, simple declarative sentences. The syntax 

of the processor also includes a limited set of transformations chosen 

to enhance the power of the language generated, but also specifically 

chosen for the problem context. 

If we consider the syntax of A1, ~ , as consisting of~l and 

T we have defined a hierarchy of languages: 

L1 ~ L2 ~ I~l 

Here L1 consists of all the legal problem statements; L2 consists of the 

set of strings recognized by~ ; and L~l consists of all the strings 

recognized by the syutax ~. Thus, the syntax ~ of the automaton A1 

is really composed of two disjoint sets of rewriting rules,~l and ~T. 

The syntax ~l is a phrase structure crammar designed to generate or 

recognize a subset of English Composed of simple declarative sentences. 

The syntax ~T contains a set of transformations designed for the purposes 

of isolating premises and specifying logical connectives. This hierarchy 

can be visualized in Figure 2. 
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Initially~ we shall describe the class of sentences recognized 

by 91~ and then characterize the strings recognized by P. From the 

following discussion it will be made clear that we are building a 

recognizer rather than a generator. The automaton A1 will not perform 

syntactic analysis below the level of the alphabet (i.e., words) of the 

language. Thus~ the processor w°uld recognize: 

The bridge was high 

The bridges was high 

as the same sentence since the differences are at a level below that 

specified by its syntax. 

The processor consists of an alphabet A, where: 

A = N u D u PN u ADJ u VEQu VTRu VINu VFAC U VAUX 

o PREPu ADVu THANu ADJC 

with the sets representing: 

N: noun 

D: determiner 

PN: pronoun 

ADJ: adjective 

VEQ: verb equational 

VTR: verb transitive 

VIN: verb intransitive 

VFAC : verb factitive 

VAUX: verb auxiliary 

PREP: prepos it ion 

ADV: adverb 

ADJC: comparative adjective 

THAN: Than 
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Although the task of the assignment of word classes is that of 

the linguist, in general, if X i and Xj are sets comprising A we expect 

xi x j for i J 

where ~ represents the empty set. The occurrence of an element of the 

alphabet in more than one word class is known as homography and is 

common to the natural languages. 

For purposes of derivation, we distinguish between the elements 

of the alphabet, to be known as the "terminal" elements, and the symbols 

the nonterminals. 

from the syntax such as S, NP, ADJ, etc., which will be referred to as 

The word assignments might be as shown in Table 1. 

N .. 

D = 
PN = 
ADJ = 
VMEQ = 
V~R = 
VMINTR = 
VMFAC - 
VAUX 
PRP = 
ADV = 
AI~C = 

man, boy, house,... 
a, the,... 
he, they,... 
blue, large,... 
is, are,... 
hit, hits,... 
rained, went,... 
appoint, call,... 
will, should, ... 
in, to, ... 
quickly, slowly,... 
larger, better,... 

Table 1 

Although the processor is limited in the size of the available dictionary , 

for purposes of discussion no limitations will be assumed. 

In addition it is necessary to specify the syntax of the 

recognizer, which uses the rewriting rules of the axiomatic ~system ~l in 

Table 2. Examining the syntax ~l, we see that it meets all the requirements 

of a phrase structure grammar. Also, ~l generates several classes of strings 

characterized by the verb type. Since this classification will be funda- 

mental to the design of A2, we shall give some examples in L2 and later 

show the mapping of A2. 



Manelski &Kru.lee 

9 

Syntax ~i for Processor A1 

i) S-~NP + VP 
2) NP-,D+ N 

N 
PN 

3) NP-~NP + PRP 
4) PRP-~ PREP + NP 
5) N-~ADJ + N 
6) AOJ-~AOJ + ADJ 
7) PADJC-~ ADJC + than + 

8) NP~ NP+ NP 
9) VP-~ VEQ + PREDEQ 

VTR + PREDTR 
VITR + PADV 
VFAC + PREDFAC 

10) VEQ -~ VMEQ 
ll) VMEQ -~VAUX + VMEQ 
12) PREDEQ~ NP 

ADJ 
PRP 
PADJC 

13) VITR-~ VMITR 
14) VMITR -~ VAUX + VMITR 
15) PADV~ 

ADV 
N 
PRP 

16) PADV~ PADV + PADV 
17) VTR-~ VMrR 
18) VM~R -~ VAUX + VM~R 
19) PREDTR ~ NP 

NP + PADV 
NP+ PRP 
NP+NP 

20) VFAC ~- VMFAC 
21) VMFAC-~ VAUX + VMFAC 
22) PREDFAC -~ NP 

NP+NP 
NP+ PADV 

NP 

sentence, noun phrase, verb phrase 
determiner, noun 

pronoun 
prepositional phrase 
preposition 
adjective 

comparative adjectival phrase, compara- 
tive adjective 

verb equational, equational predicate 
verb transitive, transitive predicate 
verb intransitive, adverbial phrase 
verb factitive, factitive predicate 
main verb, equational 
verb auxiliary 

main verb, intransitive 

empty 

main verb, transitive 

main verb~ factitive 

Table 2 
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The syntax~l identifies four verb types, equational verbs, 

intransitive verbs, transitive verbs, and factitive verbs with their 

corresponding predicates. The following examples show some of the 

possible sentences: 

Equational verb: 

(i) John is home. 

(ii) John is tall. 

(iii) John is by the house. 

(iv) John is taller than Peter. 

A derivation of (ii) in the syntax~l is 

(S(NP(N John)) (VP(VEQ(VMEQ is)) (PREDEQ(ADJ tall) )) ) 

Intransitive verb: 

(i) The Dodgers win. 

(ii) The Dodgers win seldom. 

(iii) The Dodgers win money. 

(iv) The Dodgers win at home. 

The derivation of (i) is 

(S(NP(D The)(N Dodgers))(VP(VITR win)(PADV¢))) 

Transitive verb: 

(i) John loves Mary. 

(ii) John loves the winnings from the track. 

The derivation for (it is 

John) loves) MaryS) 555 

Fact it ire verb: 

(i) John called home. 

(il) John called his friend a fool. 
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The derivation of (i) is 

(S(~P(N John) ) (VP(VFAC(V~FAC called) ) (PREDFAC(~P(N Mary) ) ) ) ) 

Several types of sentences will not be recognized by~l. Some of these 

could be included by additional productions. Some additional types of 

sentences will be recognized when ~T is added to the syntax. Other 

sentence forms are not considered necessary within the original problem 

conte}~. Let us list some of the sentences in LI that are outside of 

the capabilities of recognition with ~i. 

Imperative sentences: 

Go home. 

Interrogative sentences: 

Is John coming home? 

Passive sentences: 

Home is where John should be. 

Conditional sentences: 

If John should come home... 

Compound sentences: 

John will go home and Mary will stay. 

Complex sentences: 

John, should he so desire, will go home. 

In order to make the processor A1 useful in the problem 

context, it is necessary to increase the class of strings in L2. In 

contrast to the syntax ~i, which uses the rewriting rules on the non- 

terminals in the deduction string, the transformation set rT is designed 

to operate on the derivations in ~i. Generally, transformations have 
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been discussed in terms of generators. Attention has been focused on 

increasing the class of strings that a formal language can generate (39). 

However, our problem is to use ~T in order to simplify the class of 

strings that ~l will have to recognize. Thus, our transformation set rT 

should decompose the string 

John will go home and Mary will stay. 

into the following simpler strings: 

(1) John will go home. 

(il) will stay. 

Since we are interested in formalizing the natural language 

inputs as statements in the sententlal calculus, the transformations 

will also give us information as to the appropriate logical connectives 

for the premise. Thus, in the previous example our processor could be 

expected to define a statement of the form: 

P;kg 

In order to explore the powerful linguistic possibilities of 

transformations, a limited number were chosen. We shall now define the 

transformations and show how the linguistic capabilities of A1 have been 

increased. 

The transformation set~T presently contains as its axioms: 

T = ~TNOT, TCOM, TCOND~ 

In order to specify a transformation, we must not only define 

the structural changes it produces but also the class of strings to 

which it is applicable. The transformations~ as defined in~T were 

adapted for A1. Since we are not interested in generating grammatically 
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correct English sentences, but rather mapping the input strings into a 

form recognizable to ~l, it is possible to omit the transformations 

for tenses because they operate at a level lower than that of the 

terminals. By implication~ 1 will process strings that are not 

grammatically correct. Thus, if A1 were presented with the sentence: 

If it were cold tomorrow~ .... 

the transformation TCOND will give as its output: 

It were cold tomorrow. 

This premise would still be processed althouch it is grammatically 

incorrect. 

Another difference between the transformations as specified 

by Chomsky~ and those used by A1 is in the direction of the mapping. 

The ~T transformations have L2 as their domain and the kernel strings 

generated by ~l as their range. This is the inverse of the mappings 

considered by Chomsky (1957). 

TNOT: is defined on strings of the form 

( i)..+ NP+ VAUX+ not+VMTR+... 

( ii)..+NP+VAUX+never+VM~R+... 

(iii) . .+ NP+V~EQ+not+... 

(iv) . .+ NP+VMEQ~ never+... 

(v)..+NP+VAUX+not+VMEQ+... 

( vi)..+ NP+ VAUX+ never+ VMEQ*... 

(vii)..+NP+VAUX+not+VITR+... 

( vi ii)..+ NP+ VAUX+ never*VITR+. •. 

( ix)..+NP+ never+VITR+ ... 
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( x)..+NP+VAUX+ never+VTR+... 

( xi)..+ NP+VAUX+never+VTR... 

( x± i )..+ NP+ never+VTR+... 

( xill)..+ NP+VAUX+ not+VFAC+... 

(xiv) .. + NP+VAUX+ never+ VFAC+... 

( xv)..+ NP+ never+VFAC+... 

Should a string~ 1 correspond to one of the above patterns TNOT(0-1) 

becomes: 

( i)..+NP+VAUX+VMrR+... 

. ( ii)..+ NP+ VAUX+ ~ ... 

(iii)..+~+nmQ+... 

(iv)..+~+VME~... 

(v)..+~P+VAUX+VME~... 

(vi)..+ NP+VAUX+VMEQ+... 

( vii)..+ NP+VAUX+VITB+... 

( viii)..+ NP+VAUX+VITR+... 

( ix)..+ ~P+vI~+... 

(x)..+NP+VAUX+VTR+... 

(xi)..+ NP+VAUX+VTR+... 

( xll)..+~+VTR+... 

(xiii)..+NP+VAUX+VFAC+... 

(xiv)..+NP+VAUX+VFAC+ ... 

(xv)..+NP+VFAC+... 

Examples of some of the cases follow: 
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~'l: John will never hit Mary. 

TNOT(~): John will hit Mary. 

(~2: Today is not cold. 

TNOT~--2) : Today is cold. 

~3: Tomorrow will not be cold. 

TNOT~3): Tomorrow will be cold. 

~-4: John never suffers. 

TNOT(q-4) : John suffers. 

TCOM: operates on strings in the following domain only: 

(i) • .+Sl+and+S2+ • • • 

( ii)..+Sl+ ,+ s2+... 

( i i i ) . . + S I + o r e S 2 + . . .  

( iv)..+Sl+then+S2+... 

( v i )  Either +Sl+Or+S2+... 

(vi i)  Therefore+,+Either+Sl+or+S2+ •. ; 

The range of the function is any string with the following format: 

S I 

S 2 

Here the information between "SI" and "$2" is used by the processor only 

to establish the Boolean connectives for the statements. Some examples 

will show the effect of TCOM On strings ~'in the domain of the 

t rans format ion. 

~'i: Either Sally and Bob are the same age or Sally is older than Bob. 

TCOM~I): Sally and Bob are the same age. 

Sally is older than Bob. 
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~2: The races are fixed or the gambling houses are crooked• 

TCOM(~): The races are fixed. 

The gambling houses are crooked. 

TCOND: is defined over strings wlth the following configuration: 

( i)..+ If+ Sl+...+, then+ $2+ .... 

( li)..+If+Sl+...+ ,+$2+ .... 

and has as its range the following forms: 

• .+Sl+ ... 

• .+S2+... 

As in the other transformations its application defines the logical 

connectives for A1. 

We can see the effect of TCOND on the following strings: 

~i: If the Dodgers win~ then Los Angeles will celebrate• 

TCOND(~I) : The Dodgers win. 

Los Angeles will celebrate• 

The definitions of the syntactic elements used in establishing 

the domain of~T are given by the phrase-structure grammar ~i. Another 

convention used in the discussion is to allow a series of dots ( .... ) 

to refer to any syntactic structure. It is also implied that the 

transformations may be concatenated as necessary. 

To illustrate their use, we utilize the following examples: 

~i: If the then Los Angeles will celebrate, and Dodgers wln~ 

if the White Box win, Chicago will celebrate. 

TCOND(~I): The Dodgers win. 

Los Angeles will celebrate and if the White Sox win, 

Chicago wlll celebrate. 
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TCOM(TCOND~ 1)) : The Dodgers will win. 

Los Angeles will celebrate. 

If the White Sox win, Chicago will celebrate. 

Dodgers will win. 

Los Angeles will celebrate. 

The }~nite Sox win. 

Chicago will celebrate. 

~'2: If I miss my appointment and start to feel downcast, then 

I should not go home. 

TCOND(~2): I miss my appointment and start to feel downcast. 

I should not go home. 

TCOM(TCOND(~): I miss my appointment. 

Start to feel downcast. 

I should not go home. 

TNOT(TCOM(TCOND(~2)): I miss my appointment. 

Start to feel downcast. 

I should go home. 

In this example the resultant strings are not recognizable by 

~i. Thus~ "start to feel do~ncast" has its subject implied by the 

preceding string, and could be thought of as "I start to feel downcast". 

Some of the difficulties caused by the transformations can be overcome 

by AI. 
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Description of the Natural Language Processor (Al~ 

In order to design a processor of the type described in the 

previous section it is necessary to specify therelationship between 

the recognition rules ~l of the phrase structure grammar and the rewriting 

rules ~T of the set of transformations. Clearly ~l and~T are inter- 

dependent since the input cannot always be analyzed in terms of the 

syntax~ ]. and because the rewriting rules of~T are defined in terms of 

1. Perhaps an example illustrates this point more effectively. Consider 

the inp~ string: 

If John went to the store then Mary went home. 

This is clearly a case in which we sho~d apply TCOND~ T in order to 

obtain: 

S1 - John went to the store. 

$2 - Mary went home. 

However, the processor cannot find S1 and S2 because they are defined in 

terms of ~ 1 which cannot determine S1 and $2 since it cannot analyze 

strings such as "If John went to the store...". This vicious circle has 

been resolved by determining heuristically when the transformations 

should be applied. If the strings resulting from the application of 

the transformations cannot be analyzed by ~i~ the system attempts to 

apply the transformations again. 

The general hierarchy of the programs can be found in Figure ]~- . 

The program DO embodies the essential features of the automaton AI. A 

brief description of the various sub-routines involved will serve to 

illustrate the workings of the processor and the difficulties that it 

might encounter. 
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The automaton A1 can be considered as having two quite distinct 

functions. Initially, certain key words are marked in the problem input 

(giving rise to the hypothesized input string) and later the set of 

transformations are used in conjunction with the marked words to generate 

possible premises (to be called "input strings"). 

The necessary information can be more fully explained by 

considering a program DO designed to implement A1 (see Figure 3). The 

program DO initially calls the sub-routine D15 which performs a left-to- 

right scan on the problem string. All elements of the set MTO (where 

MTO = ~if, then, and~ or, not, never, either, therefore. 

then, ~} 

the last two elements are the symbols ", then" and ",") are marked. 

After marking, the problem string becomes both the input string (i.s.) 

and the hypothesized input string (h.i.s.). The syntactic analysis of 

an h.i.s, is attempted by EO. Failing to find a satisfactory parsing~ 

control is transferred by D2 to DI; otherwise control goes to DI3. The 

sub-routine D13 searches for an additional h.i.s.; on finding one, it 

deletes the successfully parsed string from the i.s. and the list of 

h.i.s. Should no other h.i.s, be found, the executive calls D14 which 

halts the program. After performing the necessary output functions, D1 

scans the h.i.s, currently being processed. If any marked words are 

found, control is passed to D3; otherwise the transfer is to Dll. Dll 

erases the previous h.i.s, and replaces them (i.e., all of them) with 

the i.s. Should D1 find that some of the words are marked, the processor 
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attempts to apply the transformations TNOT, TCOND, or TCOM by using the 

test routines D3, D4 or D5 in transferring control to D6, D7 or DS~ 

respectively. D3 transfers control to D6 when "no__~t" or "never" (the 

underlining is used in this section to indicate the symbols as marked.) 

are in the h.i.s.; D6 deletes the marked symbol from the h.i.s. The 

sub-routine D5 is only applied when the h.i.s, begins with "if"" it in 

turn transfers control to D7 which deletes the first of the marked 

" " .... then" that it finds in the h.i.s. symbols "then", "therefore , ± or ~_ 

While removing the marking from the corresponding symbol in the i.s. 

two new h.i.s, are created by dividing the list at the location of the 

marked symbol. D5 and D8 are similar to D4 and D7; however, division of 

the h.i.s, is done on "and", "or" or with the symbol "either" being 

erased from the beginning of the h.i.s, if it is present. The routines 

D6, D7 and D8 transfer control to D9 which is called to test whether the 

h.i.s., being processed, begins with a verb: if this condition exists HO 

attempts to precede it with the first noun or pronoun of the previous 

h.i.s. Should it not be possible for the processor to carry out this 

operation, the program prints out the syntactic analysis it has 

accomplished and halts. Both DIO and D9 transfer to EO. 

Some examples will clarify the logic of DO. Let the input 

string~ 1 be: 

(~'l: John and went home. Mary 
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The branching of the problem would be 

DO: 

D15: 

EO: 

DI3: 

DI4: 

transfers control to DI5. 

marks the word 'and"; the h.i.s, is "John and Mary went 

home (the underlining indicates the marked word). 

parses "John and Mary" went home. 

there are no additional h.i.s. 

stop. 

(•: 
DO: 

DI5: 

EO: 

D2: 

DI: 

D3: 

D4: 

D5: 

D8: 

D9: 

John went home and Mary went to the store. 

transfers to DI5. 

the i.s. and h.i.s, become John went home and Mary went 

to the store. 

fails to parse the sentence. 

transfers to D1. 

transfers control to D3. 

control parses to D4. 

transfers control to D5. 

transfers control to D8. 

the i.s. becomes 

John went home and Mary went to the store. 

while the h.i.s, become 

John went home. 

Mary went to the store. 

after testing the h.i.s, at the top of the pushdown list 

(John went home) transfers control to EO. 



Manelski & Krulee 

23 

EO: 

D2: 

DI3: 

EO: 

I)2" 

DI3: 

DI4: 

3 
DO: 

DI5: 

EO: 

D2: 

DI: 

D3: 

D4: 

D7: 

09: 

successfully parses the current h.l.s. 

transfers control to DI3. 

locates the next h.i.s. 

successfully parses the h.i.s, at the top of the 

pushdown list (Mary went to the store). 

transfers the processor to D13. 

cannot locate any additional h.i.s. 

prints the results of the parsing. 

If John, Peter and Paul were at the game,... 

calls D15. 

marhs the problem string as "If John~ Peter an__~d Paul 

were at the gs~ne~, .... ' which is copied as the h.i.s. 

fails to find a deduction for the h.i.s. 

transfers control to DI. 

transfers control to D3. 

transfers control to D4. 

transfers control to D7. 

the marked words have the structure required for TCOND 

and changes the i.s. to 

"l_~f John, Peter an__~d Paul were at the game~ .... " 

and the h.i.s, become 

"John" 

"Peter and Paul were at the game...." 

the h.i.s, does not begin with a verb. 
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EO: 

D2: 

DI: 

DII: 

EO: 

D2: 

DB: 

D4: 

D7: 

D9: 

EO: 

D2: 

DI: 

DII: 

EO: 

D2: 

D3: 

D4: 

fails to find a parsing. 

transfers control to D1. 

the h.i.s. "John" has no marked words. 

the "previous i.s. becomes the h.l.s. 

"If John, Peter an__~d Paul were at the game,..." 

fails to find a parsing. 

transfers control to D3. 

calls sub-routine D4. 

Ir 

finds the marked "If" and "± calling for TCOND. 

the h.l.s, become 

"John, Peter" 

"Paul were at the gam2A..." 

and the i.s. is marked as 

"If John, Peter and Paul were at the game&..." 

the h.l.s, does not begin with a verb. 

a satisfactory parsing cannot be found. 

transfers the processor to D1. 

there are no marked words in the h.i.s. 

the h.i.s, becomes 

"If John, Peter and Paul were at the gamez..." 

fails to flnd a parsing. 

transfers control to D3. 

calls D4. 

finds the "If" and "2" for TCOND. 
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D7: the new h.i.s, is formed 

"John, Peter and Paul were at the game" (the remainder 

of the sentence is a separate h.i.s.). 

the i.s. is changed to 

"If John, Peter and Paul were at the game,..." 

D9: transfers the processor to EO. 

E0: analyzes the first h.i.s. The program would then 

analyze the remainder of the sentence. 

As indicated in the above examples the parsing of the i.s. is 

attempted by sub-routine E0, using the syntax specified in Table 2. The 

presently implemented version of EO uses a bottom-to-top search in the 

sense that the parsing tree always begins by analyzing the input string 

1 
rather than the set of productions. In addition, the sub-routine is 

"predictive" in utilizing the productions to and establishing the next 

syntactic element. 

Syntax of the Predicate Forms (A2) 

The automaton A2 has as its domain the strings of L2. However, 

its syntax is based on Reichenbach's methods of linguistic analysis. In 

this section we will define a convenient formalism~ the predicate form, 

and discuss its syntax. Later we will discuss how the processor discovers 

the L3 (predicate function) mapping of an L2 string. In defining the 

syntax C of A2, it will be shown that U1 was designed in order to simplify 

i 
For a review of current parsing algorithms see Bobrow. 
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the mapping into a predicate form. As in~l, the patterns that can be 

specified by a predicate form depend on the verb. Thus, the forms fall 

into four basic categories; equational, intransitive, transitive and 

factitive forms. 

Equational Forms - 

PRED(ARG) Examples: 

PRED (~)) 
PRED(ARG, ARG) 

Intransitive Forms 

PRED(ARG) 

John is home. John is tall. 

There is a man. 

John is taller than Peter. 

The Dodgers win. 

The Dodgers win seldom. 

Transitive Fornm - 

PRED(ARG, ARG ) Tall John loves Mary. 

PRED(ARG, ARG, ARG) John saw Peter at the track. 

Factitive Forms - 

PRED(ARG, ARG, ARG) John elected Peter the chairman. 

With one exception the verb types used in the above classifica- 

tion follow conventional definitions. However, following Sledd, factitive 

verbs are also included. Factitive verbs are transitive verbs that take 

an object complement. 

The following predicate functions show the L3 mappings of the 

examples. In order to avoid using Church's Lambda notation to bind the 

variables, the convention of using upper case letters for the nonterminal 

elements and following them by the variables in lower case letters, is 

utilized to fully define the predicate function. 
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(i) 

....... (ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(i~) 

PRED is home (ARG John) 

PRED is tall (ARG John) 

FRED is a man (ARG~ 

PRED is taller than (ARG John, ARG Peter) 

PRED win (ARG The Dodgers) 

PRED win seldom (ARG The Dodgers) 

PRED loves (ARG Tall Johns ARG Mary) 

PRED saw at the track (ARG John, ARG Peter) 

PRED elected (ARG John, ARG Peter, ~LRG the chairman) 

One special characteristic of the mapping should be noted. It is not 

necessary that elements be contiguous for them to be bound to the same 

variable. Thus, the verb "saw" and the preposition "at the track" are 

not contiguous in the string yet appear so in the function. This 

characteristic of the syntax has influenced the design of the processor, 

as will be made explicit in a later section. 

Using the syntax C shown in Table 3, and the same conventions for 

Syntax C for Predicate Forms 

I) PRED-~ PRED (PREDMOD) 

2) PREDMOD-~ PREDMOD, PREDMOD 

3) ARG --~ ARG (ARGMOD) 

4) ARGMOD-~ ARGMOD, ARGMOD 

Table 3 

binding the variables, results in the following predicate functions for 

the previous examples: 
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(i)-(iv) identical 

(v) PRED win (ARG Dodgers (ARGMOD the) 

(vi) FRED win (PREDMOD seldom) (ARG Dodgers (ARGMOD The) 

(vii) FRED loves (ARe John (ARGMOD Tall), Mary) 

(viii) FRED saw (PREDMOD at the track)(ARG John, ARG Peter) 

(ix) PRED elected (ARG John, ARG Peter, ARG chairman 

(ARaMOD t e)) 

The mapping from L2 to L3 has not been formalized by the syntax C. 

However, this syntax is implicit in the processor and will be described 

in the same section. 

Description of the Canonical Form Processor (A?) 

The predicate forms have been designed to mechanize efficiently 

the problems of pattern recognition and of equivalence of strings by 

providing a limited number of canonical forms or patterns to describe a 

large number of natural language strings. The syntax implicit in the 

processor for canonical reduction is quite simple as is shown in Table 4. 

It should be noted that the mapping presupposes a description in L2. 

Another implication is the necessity to order the arguments. The ordering 

of arguments is not made explicit by the rewriting rules given; however, 

the ordering is implicit in the processor. The rule followed in ordering 

arguments is simply defining each one as it is found in a left to right 

scan of the L2 description. 
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1) PR O(¢) 
PRED(ARG) 
PRED(AR% ARG) 
PRED(ARG, ARG, ARG) 

2) NP--~ ARO 

3) VMEQ -~ PRED 

4) VMITR -~PRED 

5) VHrR-~ PRED 

6) VMEQ + ADJC ~ PRED 

7) VFAC -~ PRED 

8) ADJ -~ ARGMOD 

9) THAN (deleted) 

10) PREDEQ-~ ARG 

ii) PADV--~ PREDMOD 

12) PRP --@ PREDMOD 

Table 4 

The flow diagram of FO, designed to behave like the automaton 

~, is described in Figure 4. Although the syntax does not give a complete 

description of how the L2 to L3 mapping should be carried out, it will 

become clear in the descriptions of the subroutines. F1 is essentially 

a hypothesis generator. It examines the L2 input and decides on an 

appropriate canonical form. Should it find the string L2 to have 

an equational verb, the possible canonical forms are: 

PRED(~) 

PRED(ARG) 

PRED(ARG, ARG) • 
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Intransitive verbs restrict us to the form: 

'~hen the string has a transitive verb, we choose between the canonical 

forms: 

PRED(ARG, ARG) 

PRED(ARG, ARG, ARG). 

Finally problem strings with factitive verbs must follow the form: 

PRED(ARG, ARG, ARG) 

Sub-routine F1 searches the string and locates the main verb. 

The verb class is noted in order to establish the appropriate forms. 

When no verb is located, control is transferred to FlO, which notifies 

the programmer of the difficulty and stops. Once a verb has been 

located Fll generates a predicate form. F12 copies the form as the 

current prediction. The next sub-routine is F2; it binds the words of 

the problem string to the form. Thus, the words of each NP are bound to 

an ARG in accordance with a left-to-right scan of the problem string. 

~.2nen a one-to-one correspondence is established between the NPs and the 

ARGs the processor transfers to F14. F14 leaves all the names of the 

ARGs on a pushdown list. The next sub-routine is F13 which tests whether 

the pushdown list string named by the ARG is empty. Should the llst be 

empty F6 is the next sub-routine; otherwise it is F~. F4 tests whether 

there are any variables beside an N or PN in the ARG named on the push- 

down list. If there are not the processor returns to F13. When 

additional words are found F5 rewrites the predicate form as 

~a ~ ~G(A~MOD) 



F13: 

F6: 

FT: 

F8: 

FO: • Star~ 

F1: locate 
main verb 

8 ~ w  m 

e 

. 3 1 .  

~ ~ -'--->F~o. ~ r ~  ~Ow" 
Yll: generate a prediction ~ . . 

YI2: copy prediction as - ~  
current predicate form ~ no 

I 
. ~ ~ F2: Bind the ARGs. Does the number of 

FI4: place names of variables for 

a 

locate verb and bind ¥5: modify form and b:Lu~/ 

are there variables for , > Yg: modii~ canonical form 
a PRE~0D? Yes and bind variable 

nO ~ 
P r l n ~  a n d  s t o p  

YlG. 4 " 
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and erases the additional variables from the ARG and binds them to the 

ARGMOD. Following the execution of F5 the processor returns to F13. 

F6 locates the verb. For transitive, intransitive, and factitive verbs 

all the words in VTR, VITR and VFAC are bound to the PRED of the form. 

For equational verbs, the processor searches to see if it is followed by 

an ADJC or a PRP; if it is, the ADJC or a PRP becomes part of the PRED. 

F7 searches for a PADV or a PRP on the tree of a PREDTR. The words 

named by the PADV or PRP are bound to the PREDMOD. Sub-routine F8 then 

prints the L3 mapping of the problem string and halts the processor. 

The following example illustrates the flow of the program: 

InputS" l~ L2 = (S(NP(ADJ Big)(N John)) (VP(VEQ(VMEQ is) )(PREDEQ 

(PADJC(ADJC smarter) (THAN thanl(NP(N Paul)))))) 

Fl: locates the main verb "is". The available predicate 

forms are: 

PRED(~) 

PRED(ARG) 

PRED(ARG, ARG) 

FII: The form PRED(~) is generated. 

FI2: PRED(~) is the current form. 

F2: Since NP "Big John" is localized this predicate form is 

not appropriate. The executive returns to FII. 

FII: The form PRED(ARG) is generated. 

FI2: PRED(ARG) is the current form. 

F2: Since the NPs ~'Big John" and "Paul" are localized this 

form is inappropriate. Control returns to FII. 
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FII: 

FI2: 

F2: 

FI4: 

FI3: 

F4: 

FI5: 

FI3: 

F4: 

F15: 

FI3: 

F6: 

The form PRED(AR%ARG) is generated. 

PRED(AR%ARG) is the current form. 

The NPs are in one-to-one correspondence with the ARGs. 

The variables are bound as 

PRED (ARG Big John, ARG Paul) 

and the executive transfers to F14. 

The names of the ARGs are placed in a pushdown list. 

Since the pushdown list is not empty control passes to F4. 

The first ARG in the pushdown list names 'Maul". There 

is no ARGMOD so control passes to F15. 

Pops up the ARG naming "Paul". 

There is still an ARG name on the pushdown list. 

The ARG names "Big John"; so the output becomes 

PRED(~C Big John (ARG Mod)), ~ a  Paul) 

and then  the  v a r i a b l e s  are  rear ranged  as 

PRED(ARG John (tLRGMOD Big) ),  ARG Pau l ) .  

Pops up the last ARG name. 

Since the pushdown list is empty the executive program 

calls F6. 

Since L2 has a VEQ the PRED is bound as 

PRED is (ARG John (ARGMOD Big), ARG Paul) 

and then a further search is made for an ADJC or PRP. 

The f~)JC naming "larger" is found so the predicate 

function becomes PRED is larger (ARG John (ARGMOD Big), 

ARG Pau l ) .  
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FT: Since a PADV cannot be located and the verb is not 

transitive (so there can be no PREDTR) the processor 

calls sub-routlne F8. 

F8: The predicate function is printed and the processor 

halts. 

Recognition of Equivalent Strings (A3) 

Meaning equivalence is determined by A3 which attempts to 

apply a set of heuristically determined transformations in order to 

eliminate the differences between the strings ~-i and ~'j. The set of 

transformations TO was chosen on the basis that it is found useful in a 

large class of problems taken from Stoll. The set TO does not correctly 

solve all premise equivalence problems. Some examples will be given 

where it is inadequate. 

The recognition of meaning equivalence is postponed until the 

mapping to L3 is complete. L3 was chosen to determine the pattern 

classes because the language not only orders the structure of L2~ but 

also shows the dependencies between the elements of the language, and 

permits us to manipulate easily the L3 representations ofG" i andO"j. 

The actual recognition of equivalence is determined by the 

set of transformations TO. 

Definition: The strings ~'l and~-2~ ~ L 3 are said to be 

"meaning equivalent" when we can find: 

(Ti(Tj'" "(Tm~l) 1) =6"2 

where the Ti~ Tj~...T m belong to the set TO. Where: 

TO =~ TPRN, TIMP, TTIME, TSYN~ 
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The domain and the range of TPRN are the ARGs of the predicate forms. 

The transformation replaces the current ARG with the corresponding one 

of the preceding premise. A necessary condition for the application of 

TPRN is that the first ARG be a pronoun in its L2 representation. For 

example, let: 

i: John loves music. 

~'2: He dressed quickly. 

Their representation is 

PRED loves (ARG John, ARG music) 

PRED dressed (PREMOD quickly)(ARG He) 

The transformation TPRN~'-2) results in 

PRED dressed (PREDMOD quicl~ly)(ARG John) 

The implied transformation, TIMP, has a domain of the predicate 

functions with a null argument. The transformation replaces the missing 

argument with that of the preceding premise. For: 

~l: Dodgers won pennant. The the 

: lost the series 

with a representation of 

PRED won (ARG Dodgers (ARGMOD the), ARG Pennant(ARGMOD the)) 

PRED lost (ARGO, ARG series (ARGMOD the)). 

TIMP (~-2) results in "the predicate function 

PRED lost (ARG Dodgers, ARG series (ARGMOD the)). 

The time transformation, TTIME~ has as its domain the predicates. 

The range is also the predicates. This transformation eliminates auxiliary 

verbs and replaces the main verb with its root. The main verb is deter- 

mined by the L2 representation of the string. An example would be: 
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~-l: John should go home. 

with ~,n L3 representation 

PRED should go (ARG John, ARG home) 

Thus TTIME ~l)becomes 

PRED go (ARG John, ARG home) 

The synonym transformation, TSYN, has a domain of the words 

Wi~ L2. Its range is also the words Wi~ L2. The transformation is 

defined by replacing any W i by its synonym as defined in the dictionary 

of the processor. The effect of TSY~ can be seen on~-le L1. 

~--l: John is happy. 

which has an L3 representation 

PRED is happy (ARG John) 

after TSYN(~'I) the predicate function might appear as 

PRED is glad (ARG John) 

This approach can certainly lead to difficulties. 

Some problems in semantics have been avoided. A word can take 

on various meanings depending on the context, as in: 

The bug crawled along the leaf. 

~ne b_~ in the program was found. 

He likes to bug me. 

The word bug takes on a different meaning in each sentence. The mistakes 

that transformations can lead to should be evident. In some contexts the 

TSYN might be appropriate while in others it is not. 

Another type of difficulty that has not been considered in 

the derivation of meaning equivalent strings is the following: One 
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possible transformation contracts a number of arguments in the L3 

representation of a string. Thus~l, 0" 2 ~ L2. 

~l: John hits the ball with the bat. 

~'2: John bats the ball. 

would have their respective representations as follows in L3: 

PRED hits (ARG John) ARG ball (ARGMOD the), ARG bat (ARGMOD the)) 

PREO bats (ARG John, ARG ball (ARGMOD the))l 

By changing the predicate, a 3 ARG function becomes a 2 ARG 

function with the same meaning. By working with the set TO, the great 

majority of problems in Stoll are amenable to solution. However, the 

processor is not capable of doing justice to the human abilities of 

linguistic resolution. One noticeable characteristic of utilizing TO 

as a recognition device is its tendency to err by not recognizing 

equivalent strings rather than by un~iustified recognition. 

Although this section defines the scope and effect of TO, it 

is also necessary to specify under what conditions the automaton attempts 

to apply one of the transformations, and under what conditions the 

processor will stop trying to match the strings. The criteria for 

applying a member of TO, and the decision to halt, will. be made explicit 

in the next section. 

i Example thanks to D. Kuck. 
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Structure of the Equivalence Recognizer (A3) 

The flow chart (seeFigure 5) of GO was intended to implement 

A3. Clearly, meaning equivalence, as defined by GO, can only be under- 

stood in light of the problem context. Thus, in the formalization of 

the sentential calculus, we shall consider 1 and 2 

i: John will go home. 

2: John went home. 

as meaning equivalent, because in this problem context meaning is time 

invariant. Obviously this is not true in conversational English. The 

program GO initially calls GI whose function is to test the number of 

~RGs in the problem strings. Failing to find the number of ARGs to be 

the same, control is passed to G3. G3 is one of a set of sub-routines, 

including G13, G17, GI4 and GI5, designed to notify the programmer that 

the strings were not found to be meaning equivalent and briefly indicate 

the reason. Should the problem strings have the same number of ARGs 

control is passed to G4 which tests for equality of PREDs. When this 

requirement is not met G5 is executed by dropping any VAUX and attempting 

to find the root of the main verb. If the existing differences are not 

eliminated by G5 the executive transfers control to G6. This sub-routine, 

like G22, G21 and G20, attempts to eliminate the differences between 

strings by using a dictionary search. Sub-routine G7 tests the PREDMODs 

for equality. Uhen any differences in the PRtVDMODs are reconciled the 

executive program calls G8. It also tests for identity in the sub-strings. 

In this case the matching is of the first ARG of each string, the second 

ARG of each string~ etc...until a 
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difference is found in the strings. A difference in the strings leads 

the processor to execute G20, GlO~ and G16. As previously mentioned~ 

G20 searches for synonyms. G10 attempts to reduce differences by 

finding permutations of the differing ARGMODs. Finally, G16 keeps 

track of the number of differences in the strings (based on the order 

and symbols on each ARGMOD list). ~ When all differences are eliminated 

control is passed to a print routine, G12. Should the number of differ- 

ences remain constant on successive executions of the G20, G10 and G16 

loop~ the processor calls sub-routine G15. If the number of differences 

is decreasing the loop is repeated. 

The following example illustrates the logic of the system: 

~J~ l: PRED is (ARG John(ARGMOD Big tall), ARG home) 

~'2: PRED is (ARG John (ARGMOD Tall large), ARG home) 

GO: Calls GI. 

GI: Initializes storage. 

G2: Both~" 1 andS- 2 have two ARGs so the executive calls G4. 

G4: Since both the ARGs have the PRED "is" control is 

transferred to GT. 

GT: There are no PREDMODs so the processor continues to G8. 

GS: ARGs are checked in order, firstQ- 1 andS- 2 are shown 

to have the same ARG "John"~ then the second ARGs are 

both identified as "home". Since no difference exists 

the processor calls G9. 

G9: In the first ARG~DD the difference count is 2 since "Big 

tall" and "Tall large" are both different symbols. No 

second ARC~MOD is located for either~ 1 or~" 2. The 

executive program calls G20. 
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G20: 

GIO: 

GI6: 

G20: 

GIG: 

G16: 

GI2: 

Attempts to locate "Tall' as a synonym for f'big" and 

"large" as a synonym for "tall", and fails in both cases. 

Notes that the difference count can be decreased by 

rearranging the ARGMODs as "Big tall" and "Large tall". 

Since the number of differences has decreased from 2 to 

i the executive returns to G20. 

This time the synonym "Large' is located for "Big" 

(assuming that the synonym is stored in the dictionary 

DO). 

Since no differences are located by GI0 it cannot perform 

any permutations. 

The differences between the ARGMODs of G- I and~ 2 have 

been eliminated so a transfer is made to GI2. 

The print out "PR~4S EQUIV" is followed by the fact that 

the transformation TGYN was necessary on "Big" and TPERM 

on "Tall large". 
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Summary 

This completes our description of a processing system for 

problems in the statement calculus. The system accepts problems as 

they are normally written in English and attempts to produce a 

formalized equivalent as its outpu t . It makes uses of a series of 

automata, the first of which attempts to identify the elementary 

premises and the logical connectives. Two additional automata are 

used in order to compare premises and to determine whether or not they 

should be identified as equivalent. As a first step, each premise is 

mapped into a canonical form which simplifies the identification of 

equivalent premises. In the second step~ pairs of premises are compared. 

This automata makes use of a number of meaning-preserving transformations. 

In a sense, two premises are equivalent if one can be derived from the 

other with the aid of these transformations. Otherwise, the premises are 

evaluated as not equivalent. Although this processor is limited to a 

particular class of problems~ it was designed with two purposes in mind: 

as an attempt to simplify the problems of communications between 

programmer and computer and to clarify those processes by means of which 

meaning is extracted from natural language. 
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GLOSSARY OF ABBREVIATIONS 

h.i.s. 

i.s. 

l.h.s. 

n.w.f.s. 

p.o.s. 

r.h.s. 

hypothesized input string 

input string 

left-hand side 

not a well formed string 

part of speech 

right-hand side 
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