16

1965 International Conference on Computational Linguistics

SETS OF GRAMMARS BETWEEN CONTEXT-FREE

AND CONTEXT-SENSITIVE

Peter Kugel

Technical Operations Research

South Avenue

Burlington, Mass.
U.S. A,

ABSTRACT

We discuss some sets of grammars whose generative power lies
between that of the set of context-free grammars and that of the set of context-
sensitive grammars. These sets are developed by subjecting generators
of context-sensitive grammars to abstract versions of a "hardware" restriction
to which the users of natural languages, unlike the describers of natural langu~
ages, might be subject.

Kugel 1

The notion of a formal grammar was first introduced to provide formal
models of techniques used by the describers of natural languages (linguists)
(1). Later, formal grammars have been used as models of the capabilities
of users of natural languages (See (2) for a review). Language users differ
from language describers in being subject to restrictions on the amount of
"hardware™ that they have available to them and the amount of time that they
have to perform their operations. Where the linguist has available (at least
theoretically) an unlimited amount of material with which (pencil) and on which
(paper) to store his intermediate results, it is probable that the internal organi-
zation of the natural language user may not permit him the use of such unlimited

resources.

Therefore, when one uses a formal grammar as a model of the language
user, one may consider the effects of subjecting such grammars to abstract
versions of certain types of hardware limitations. One model in this vein is

t hat of Yngve (3) which considers the natural language user to be like a device
capable of dealing with context-free languages and then subjects it to further
limitations. However, there are reasons for thinking that natural language
users may have available to them powers beyond those of the context-free
grammars. According to current views, these additional powers are those that
are required to construct transformational grammars. Among these one might
include the ability to permute the order of elements in a string and the ability
to erase elements (4).

The ability to effect the permutation of elements is a property of context-
sensitive grammars. However, context-sensitive grammars have additional
drawbacks as models for the capabilities of the users of natural languages (1).
Permitting erasure as an element the generation of a phrase marker has the
difficulty that it is not always clear whether the resulting rewriting systems

%*
generate only recursive sets of strings. These considerations suggest that one

%

Thus, any semi-Thue system (For a definition see (5), p.84) can be looked
at as a context-free grammar which permits the shortening of strings (erasure).
But semi-Thue systems are capable of generating non-recursive sets of strings
((5), Theorem 2.6, p. 93).

Kugel 2

might want some context-sensitivity and some erasure but not enough to pro-
duce the undesirable features of context-sensitive grammar or of semi-Thue
systems.

One way of getting at such grammars might be to consider a device for
generating context-sensitive languages and subjecting it to abstract versions of
t he types of hardware limitations to which the users of natural language users
might be sjubect.

Assume that users of natural languages are information processing systems
organized in the manner of the present-day digital computer. They have a
storage unit (memory),a processing unit, and some input/output equipment. One
way of suggesting the roles of these parts is to say that they correspond roughly
to those parts of the handling of a natural language that are described by the
semantic, syntactic and phonetic components of a language description respect-
ively. Since our concern in this paper is largely with the syntactic component,

we will consider limitations on the effects of limitations on the processing unit.

Suppose that the processing unit has the machinery for applying the rewriting
rules of context-sensitive grammar, but that this application has to be done by
changing the state of something like a register in the arithmetic unit of a present-
day computer, Such a register can be looked at as a sequence of pigeon holes into
which symbols can be placed. A rule then is applied to change the contents of the
pigeonholes and the results are returned to the memory or output. To say that
the registers have a given size is to say that there is only a fixed number of such
pigeon-holes*. Such an assumption finds a formal analogue in the notion of a
formal grammar as a restriction on the length of the strings that can appear on
either side of the arrow in a rewriting rule. To say that a register has only n
pigeon-holes is to say that the strings on either side of the arrow can contain at

*k
most n symbols. However, such a restriction does not accomplish much that

%
We are also assuming that there is no way of doing anything like multiple
precision arithmetic.

*ok
Or, equivalently, that the string on the right hand side of the arrow can
contain at most n symbols.

Kugel 3

) .
is of interest, for it is easy to prove that:

Theorem 1: The set of all grammars that contain strings of no more than
two symbols on either side of their rewriting rules has the generative power of
the set of context-sensitive grammars. The set of all grammars that contain
no more than three symbols in any rewriting rule has the generative power of

*
the set of context-free grammars.

It is clear from an examination of the proof of the first part of this theorem
that the restriction on the length of the strings used in stating rules of the
grammar is overcome by introducing new letters. Such an introduction of
additional letters is common in proofs of theorems about formal grammars and
it is reasonable so long as one is considering these grammars as models of the
procedures used by language describers who have available to them a medium
(pencil marks on paper) which is unlimited not only in amount, but which permits
an unlimited variety of symbols within a given space (at least in theory).

The fact that language users might have to represent their grammatical
catagories in a discrete rather than continuous medium suggests that one might
limit the number of available (distinct) symbols that can appear in a rule of
grammar, However, this restriction also is of no great interest since we can
prove the following:

ok
Theorem 2: There is a sense in which the generative power of grammars whose
rules can be expressed using only two distinct symbols in its vocabulary is equiv-

alent to the set of all context-sensitive grammars.

Suppose, therefore, that one attempts to limit both of these simultaneously.
Thus, let us define a "grammar of size (m, p)" as a grammar whose rules are
constructed of strings (on either side of the rewriting rule's arrows) such that
no string contains more than m occurrences of letters and such that the non-

%
Definitions and proofs of theorems can be found in the appendix.

%k
Explicated in the appendix.

Kugel 4

terminal vocabulary of the grammars contains no more than p distinct letters,
Let us first consider such grammars as augmented simply by dictionaries.
These grammars turn out to be curious hybrids. For one thing, given a size,
there is only a finite number of grammars of that size (if one equates straight-
forward reletterings of the same grammars), Furthermore:

Theorem 3: The set of grammars of size (m, p) with dictionaries, for
sufficiently large m and p, cannot generate all context-free languages and can
generate some languages which are not context free.

Nevertheless, it is obvious that the union of the grammars of size
(m, p) for all values of m and p has the generative power of the set of all
context-sensitive grammars (since any context-sensitive grammar has some
finite size).

These grammars are not particularly interesting because we have put
limits on the amount of recursion that can appear in them. This can be over-
come by permitting some recursion either in a pre- or post-processor, limiting
recursion to context-free rules only. Thus, we are led to consider systems
consisting of three parts in tandem. The first part is a context-free grammar,
the second pé.rt is a grammar of size (m, p), and the third is a dictionary.
Although such systems appear to be rather ad hoc, one can give some arguments
for considering them. The arguments for the two grammars in tandem are
roughly those for a context-free grammar followed by a transformational
component, If we allow erasure in the final processing we can permit our inter-
mediate string generated by the context-free grammar to be the phrase marker
in somethihg approximating Polish notation. Thus, the phrase marker:

/N
A

Kugel 5

could be represented by the string SACxDyBz. The context~sensitive grammar
of restricted size could operate on these markers in the manner of a trans-
formational component. The dictionary would contain rules of the form X—, A—,
etc., to erase the non-terminal symbols. This argument suggests that if one
wants such a system as a model for a natural language user one might consider
different primitive operations in the part of the system that was to represent the
transformational component. Thus, using the suggestion of (4) one might permit
not only what we have been calling grammar rules but also rules which permute
the order of strings directly such as rules of the form: XYZ—+ZYX. By making
these primitive one makes them cost less of the "size" of the underlying grammar.
The argument for allowing something like a dictionary is that something of this
sort appears to be required for the phonetic component of a language description
anyway.

Let us call such systems "grammar systems of size (m, p). " Those systems
which have primitive permutation rules we might call "permutation systems. "
We can prove:

Theorem 4: Grammar systems define infinite hierarchies of languages
LO. .. Li' .. such that (a) L0 is the set of context-free languages; (2) Li§ LJ.
for j sufficiently greater than i and (3) the sum of the Li for all i is the set of

context-sensitive languages.

We have suggested that if a natural language user is organized like a present-
day digital computer he might find that the size of the registers in what corresponds
to his "processing unit" might have an effect on the kinds of languages with which
he could deal. We have given a rather preliminary sketch of how this might
occur. Such effects appear however, to be critically dependent on the "machine
code" of such a system, and in view of the current lack of knowledge as to what
this code might be, it is not clear whether the kinds of notions that we have
discussed have any applications in computational linguistics, even if the under-
lying notion of some sort of a "register" limitation applies to the competence
of natural language users.

Kugel 6

APPENDIX

This appendix contains definitions of some of the terms used in the body
of the paper and proofs of the theorems. We begin by defining some basic
notions. A rewriting rule is a rule of the form PhQ—PHQ where P,Q, h, and
H are (possibly empty*) strings. If h is a single letter and H is a non-empty

string of letters a rewriting rule is called a grammar rule. A grammar (or a

context-sensitive grammar) G is a single letter S together with a finite set of

grammar rules. The alphabet of G is the set of all letters in rewriting rules
of G. The non-terminal vocabulary of G is the set of all letters appearing onthe

left hand side of some grammar rule in G. The terminal vocabulary of G is the

alphabet of G minus the non-terminal vocabulary of G. We will agsume that S
is always in the non-terminal vocabulary of G.

A set of rewriting rules which contains no non-terminal letters on the right-
hand side of a rewriting rule is called a dictionary. If P and Q in all the grammar
rules of G are empty,then G is a context-free grammar. A derivation of a string
1 Sn such that S1
that Si +1 is the result of replacing some sequence of letters L in Si by a sequence

Sn in a grammar G is a sequence of strings S is S and such

of letters L' such that L—L' is one of the grammar rules of G. The language
generated by a grammar G is the set of all strings M such that there exists a

derivation of M in G, and such that M consists of only letters in the terminal
vocabulary of G. Two sets of grammars that generate the same sets of languages
are said to have the same generative power.

Theorem 1: (a) The set of grammars , none of whose rules contain more
than four letters, has the same generative power as the set of context-sensitive
grammars. (b) The set of grammars none of whose rules contain more than
three letters has the generative power of the set of all context free grammars.

*
PhQ, however, is not empty (i.e., not all of P, h, and Q can be empty).

Kugel 7

Proof: (a) In order to prove this part of the theorem we need only present
an effective procedure for replacing each of the rules of an arbitrary context-
sensitive grammar G with a set of rules containing no more than two letters on
either side of the arrow, and such that the generative power of the resulting
grammar G' remains the same. Consider an arbitrary rule of the form L—R,
where L = CORERL T aj and R = ... ai-lbl' . 'bkai+1‘ .. aj. Replace this by
the following new rules in which the Cn and dm are new letters not in the alphabet
of G:

Rules Effect of Added Rules

3189840

0233—’0203

(a a.)

ca. .o al...ai(ai+1...aj)—>alcz...ci i+1 3
nn+l nn+l

c, .a~—c., .C.
i-171 Ti-17i

a, ,a—~d. .a.
=175 7j-17j

. o4 _—d, .
3 _2% 179294 |
s d —dd (8,5 -0)C8; - .aj—-(cl.). .dj -1%
nnt+l nn+i

* In schematizing the effects of a sequence of rules we have assumed an
order in their application. However, where the order of application is arbitrary
parts of the strings might be different if the order of application were different.
These parts are indicated by surrounding them with parentheses.

Kugel 8

Rules Effect of Added Rules

— 1
d=byd g

U S VR E s NOP I POS LI O

d b

k1P

. alcz...ci_l(...)--al...ai_l(...)

The equivalence in the other direction (i.e., the fact that all four letter
grammars are at most context sensitive) is obvious.

(b) Because of the definition of a "grammar rule" rules containing three
letters can only be of the form a—bc (and not ab—c) so clearly all three letter
rules are context-free. To produce a three letter equivalent of a longer context-

free rule, say a—a... -2 one replaces it by the rules a—a_a! ,al--a.a!

1 17270 ii+1r

a;;—-an where the aJ! are new letters.

Theorem 2: The set of grammars containing only two letter together witha
dictionary has the generative power of the set of all context sensitive grammars.

Proof: Let the two letters be 0 and 1. Again, it is only necessary to provide
an effective procedure for replacing any rule in a given context-sensitive grammar

with a new set of rules containing only two letter, plus some dictionary rules.

Kugel 9

Suppose that G contains m rules and that the alphabet of G contains n letters.
Let each rule be of the form LR (for the i-th rule). We construct G' as
follows:
To replace each rule Li—>Ri we add new rules as follows:
Rewrite each letter aj in Li by the string:
jth position

011...1100011...0...110 = a!)
—— ——]
m times n times

ith position

The first replacing rule takes the revised Li into 0111..0...11000... . The
effect of this is to tag the string as being subjected to rule number i. The second
replacing rule takes the 0 in the n-tuple of ones of the letter being replaced, and
it turns it into a 1. If the only effect of the rule is to simply replace this letter
by another letter, the rest of the new rules place the 0 in the n-tuple appropriately
and then erase the tag in the left-most m-—tuple to signal the end of the applica-
tion of the rule. If the replaced letter is expanded then the replacements are
added one letter at a time and the process is finished off by "untagging" the left-

most m~tuple in the replacement for L

The dictionary has the job of translating back into the vocabulary of G. It
lacks any procedures for dealing with letters whose m-tuple is not all one's so
that no intermediate product of a rule can be terminal. The dictionary is simply
the set of rules ai——-aj for each aj in the terminal vocahulary of G. It is clear that
G' generates exactly the same language as G.

This proof suggests a problem that might be of some interest. In devising
a procedure for reducing the number of letters in what is, in some sense, a
program, one is required to add new rules. These rules introduce intermediate
products (strings), and the basic problem in the proof was that of devising a way
in which these intermediate products can be prevented from being caught up by
rules other than those that are intended to apply to them. We have used an
extremely straightforward technique for doing this but this technique is costly
in the size of the required strings.

Kugel 10

One might ask what more efficient general procedures there are for such
reduction. A reason for asking this question (other than a theoretic interest) is
that the world as seen by a biological organism can be looked at as consisting
of an arbitrary alphabet, the units (or letters) of which are the basic percepts
of that organism. However, the organism's brain might have a fixed alphabet
into which the processing of this (probably larger) alphabet has to be encoded.
Such encoding would probably have to be done by an algorithm that avoided this
crossing of intermediate products.

We define a grammar of size (m, p) as a set of grammar rules which has

a non~terminal vocabulary of no more than m letters and such that no rule
contains a string of more than p occurrences of letters on the right hand
side of the arrow.

Theorem 3: The set of grammars of size (m, p) plus an arbitrary number of
dictionary rules for sufficiently large m and p, cannot generate all context-free
languages and can generate some languages that are not context-free.

Proof: Consider the language that consists of the strings
bj repeated an arbitrary number of times
o, N
ab....b.a,
_ ii i (=
for some ranger of i, 1 <i<r), If r> f im then this language cannot be
- i=1
generated by a grammar of size (m, p) since all the recursion must be in the
i=p
context-sensitive part. But there are only z im distinct left hand sides of
i=1
such rules so that the grammar must generate some string of the form
aibj' . 'bjai for i # j. Since any context sensitive grammar is a grammar of

size (m, p) and since Chomsky has proved that not all context-sensitive languages
are context free (6), it is obvious that there are languages generated by grammars
of size (m, p) for sufficiently large (m, p) that are not context-free. We define a
grammar system of size (m, p) as three rewriting systems, the first of which is

a context-free grammar, the second of which is a grammar of size (m, p) and the
third of which is a dictionary. The language generated by such a system is defined
in the obvious way.

Kugel 11

Theorem 4: The sets of languages generated by grammar systems of size
(mxp),where mxp = y, define a hierarchy of languages Ly such that (a) L 0 is the
set of context-free languages, (b) Li‘i Lj for j sufficiently greater than i, and
(c) such that the sum of the Ly is the set of context-sensitive languages.

Proof: The set of languages whose strings are of the form PhP, where h
is a fixed string and P are arbitrary strings on a given alphabet A, are context-
sensitive and not context-free (6). Therefore, in a grammar system which
generates such a language ,the part that generates such strings must be in the
context-sensitive part. Although the dictionary can introduce arbitrary new
letters it cannot insure that if the substitution for some given letter a; is to be
aj at one time and . at another, that the substitutions in a given string will be
uniform (i.e., always aj and never ak) for the entire length of an arbitrarily long
string. Therefore, the rules of the context-sensitive part of the grammar
system generating PhP must have different letters (or distinct strings representing
different letters) in the left~hand side of its rules. But in the grammar generating
the copy of a given string P there must be at least one rule to produce the effect
of copying each letter of A. If we let the alphabet of A be larger than mxp, then

this cannot occur in a grammar of size (m, p).

Therefore, for every grammar of size (m, p) there is a context-sensitive
language that cannot be generated by a grammar system limited to a grammar of
that size. But clearly this language can be generated by a system having a
grammar of some finite size. This proves part (b). Part (a) of the theorem is
proved by observing that the set of context free languages are generated by a
grammar system with a grammar of size (0, 0). This is so because the content-
sensitive part is empty and the amount of erasure that can be produced by any
dictionary is always finite and therefore its effect can be incorporated into a
context-free grammar. Part (c) of the theorem is obvious.

Kugel 12

REFERENCES

Chomsky, N., Syntactic Structures, Mouton, 1957.

Miller, G.A. and Chomsky, N., "Finitary Models of Language Users"
in Handbook of Mathematical Psychology, (Luce, Bush and
Galanter eds.) Volume 2, John Wiley, 1963.

Yngve, V.H., "A Model and an Hypothesis for Language Structure",
Proceedings of the American Philosophical Society, Volume 104,
pp. 444-466, 1960.

Fraser, J.B., "Some Remarks on Elementary Transformations", in
Quarterly Progress Report of the Research Laboratory of
Electronics (M.I.T.), No. 71.

Davis, M., Computability and Unsolvability, McGraw-~ Hill, 1958.

Chomsky, N., "On Certain Formal Properties of Grammars", Infor-
mation and Control, Volume 2, pp. 137-167, 1959,

