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ABSTRACT. It is shown that theassumption that 
language is non-finite involves the use of a 
constructive logic which lea#s to some restrictions 
on language theory an~ to the fact that the only 
possible definition of language is that propose~ 
by ~enerative grammars. Generative grammars can 
be formulate~ a~ normal /~ar~ov/ algorithms an~ 
thu~ their study can be reduce~ to the stu#7 of 
such algorithms of a special type. A new type 
of ~enerative grammar is ~efine~, called matrix 
grammar. It is shown that a language generated 
by a context-restricted grammar can be also 
generate~ by a matrix grammar. Some properties 
of matrix grammars are shown to be ~eci~able. 
The problem of the explicative power of generative 
grammars is ~iscusse~. 

I. language metatheory, as indeed any metatheorT, 

must exactly specify the o~erations allowed in 

building up the theory /of language/. This may be 

~one by choosing the lo~ic of the tbeorT.If language 

is consi~ere~ a non-finite set,a constructive logic 

/Kolmogorov/ must be choosen. This entails some 

restrictions on the notions an~ methods to be used 

in language theory. ~amely, we can not speak of 

actually infinite sets, au~ we can not use t~e 

quantifiers "the~ exists" an~ "all". Thus we 

can not include in language theory the notion 

Of 'language' itself in the usual way, as the set 

of al~ /grammatically or 

sentences. Similarly, we 

"distributional analysis" 

restrictinus./ , as it generally has 

semantically/ correct 

can not makeuse of 

/at least without any 

the form: 
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/the sentence/ s I has the property %~I~ ' if 

there exists /a sentence/ s 2 with the property 

R 2 /not necessarily R 1 ~ R 2 /. 

It follows that the single way of ~efining 

language is that proposed by generative grammars. 

These grammars are in fact devices that produce 

/generate/ the sentences of a language /an~ only 

those/, one after the other. So, at every moment 

we have generated a finite set of sentences, 

and a% the same, if the grammar is properly 

constructed, at evry moment we can generate a 

sentence not yet generated before. So, in fact 

the language /the set of all the sentences of 

the language/ is a potentially infinite set 

and the abovemeutione~ ~ifflculties do not arise. 

The restrictions to be respected within generative 

grammars as to the /logically correct/ notions 

an~ operations are precisely formu~ate~ /it may 

be interesting to note that Chomsky ~oes not 

respect all of them/. 

2. Most of the properties /an~ possibly even t?e 

most important ones/ of generative grammars are 

obtaineg by constructing automata, equivalent to 
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different 

using the 

shown that 

study generative grammars 

generative grammars, and in this way 

results of automata theory. It is 

a more natural /an~ easy/ way to 

is to formulate them 

as normal /k, 'arkov/ a l g o r i t h m s  [ 7 ] , [ 1 ] .  So, i f  

given a Phrase Structure Grammar G it can be 

given a finite set of normal algorithms G = I~LI 

so that by applying the algorithms to the initial 

strings ~.:e obtain the language generated by G. 

The algorithms ~ have the properties: 

(i) each rule /of the algorithm/ rewrites at once 

only one symbol; 

(ii) by applying a rule to a 

of the strin~ is not ~iminished. 

string the length 

For constructing G we must be able to compose the 

normal algorithms so that these properties should 

be ?reserved. The composition rule given by Markov 

does not fulfil this condition. So the following 

composition rule is proved ane used: 

If ~Lvp ' ~Vp are two normal algorithms with 

the properties (i) an~ (ii) then for every O g ~ 

/the set of initial strings/ we have 
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where ~ is a normal algorithm with the scheme 

• ,,here {,~ek/p i [,~ are symbols put in 

one-to-one correspondence to the symbols from V V 

/an~ different from them and between them/; ~ is 

the list of the rules of the al@orithm ~ with 

every ~ changed to ~ . Evidently Z has the 

properties (i] and "(ilJ • 

It is shown that to a set of algorithms G = {C%~} 

a single algorithm ,~ corresponds if J~. /the set 

of the initial strings/ is FroFerly enlarged, .so 

that L(G) = ~%(Z) , Thus the study of 2SG is 

reducible to t}~e study of normal algorithms of 

the type of for /the rewriting rules of which are, 

in fact, context-restrlcted rules/. The sufficient 

anc~ necessary conditions 

generating a non-f~ ~.it e 

~encrative grammars/. 

are estahlishe~ ~ for 

la:~gua[e /by different 
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It is shown that each singular 

/Choms~y/ can be formulate~ as 

of type Ot . 

transformation 

an algorithm 

The most studied generative grammars are the 

context-free grammars /CFG/ and the context-restricted 

grammars /CRG/. Some properties of these grammars 

are considered to be uneeciaable. In this respect 

they are also ~ifferent. The differences are formu- 

lated in Table I [6]: 

Property 

I. is the language 

generate~ by a 

~zrammar empty ? 

2. is the lanEua~e 

generated by a 

grammar infinite ? 

3. for any strings 

i~ ~ can some 

[string inclu~in~ 
f 
!be ~erive~ from 

in a ~rammar ? 

CFG 

D 

I 
u I 

D U 

D U 
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where D inaicates that the property in question 

is aeci~able, U that it is un~eci~able. 

The CF grammars have not the necessary generative 

power to mo~el natural languages. The CR grammars 

may have this power /altough this ~roblem has not 

been clearea up/ but the un~ecibality of the pro- 

perties I - 3 /especially, 3/ makes highly @oubt- 

ful their fitness for modeling natural languages. 

A new type of generative grammars is proposed 

under the name of matrix grammars /MG/ [2]. 

A matrix grammar is a quintuple 

G : (v, , F, 

where 

is a context-free frammar an@~ F* is a finite' set 

of matrices /called matrix rules/ @eflne@~ as follows: 

(1) f*. is a matrix rule if it has the 'form 

~ F (~z_i~_~) an~ not necessarily {~ ~{j ; 
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(2) f~  

where {* 

is a matrix rule if it has the form 

. ! 
i 

o 

a~e matrix rule~ or belon~ to F. 

To apply a matrix rule f* to a strin G x means to 

apply to x all t}~e context-free rules which form 

it, in the given order /to a??ly a CF rule to a 

strin~ means to replace the first occureuce of 

its left-side with its right-slde/. If at least 

one of these context-free rules can not be applied 

to x , we say that f can not. be applied to x. 

It is shown that for any context-restricted 

grammar G it is po.~sible to construct a /stroncly/ 

equivalent matrix grammar. 

For instauce, t!:e /not context-free/ language 

I = { an bn cn } 

is geuerate~ by the matrix grammar 

o =  ( v , v ~ ,  ~ , F )  

with 

V = [S,X,Y,Z,a,b,c] ; %= ; Z={SJ 
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F:[ S -~ abc] 

IS--~ aXbYcZ] 

X-~ a~ 

Y-,bY 

Z --~ cZ x a] 
g - - * b  

7~ - - - .  c 

It is shown that the properties 1,2,3 are ~eci~able 

for matrix g~ammars. So the statement that they 

are un~eci~able for the CE grammars is erroneous 

/the erroneousness of the ~roof of the un~eci~ability 

of property 3 given in ~5] can be easily shown/. 

So the fitness of these grammars for modelin~ natu- 

ral lan~iages is most likely. 

As we have mentione~, for each singular transfor- 

mation a normal algorithm can be constructe@ which 

contains an]y context-restricted rules, r.ep, arting 

from this, it can be shown that for a transfor- 

mational grammar /containing only singular trans- 

formations, see [4] / a weakly equivalent matrix 

~rammar can be constructed. 
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The matrix grammars can be formu2at~d 

algorithm, too. 

as a norma~ 

Since any normal /Mar~ov/ algorithm can he 

reversed, it is possible to devise a method for 

the construction of a recognition grammar 

corresponding to any given generative grammar. 

As the matrix grammar corresponding to a transfor- 

mational grammar Is, in general, only weakly 

equivalent to the latter, and in automatic 

/natural/ language processing /and especially in 

machine translation/ the adequate analysis is 

a crucial requirement, the to strong requirement 

of Choms~y to derive the structure of a generated 

sentence from the ~r~y it is generated, is drorred, 

and t!~e matrix ~rammar is completed with a 

definitional apparatus /rA/ that makes it possible 

to assign to a generated sentence the same struc- 

ture /analysis/ as is assigmed by a transformatio- 

nal grammar /details see in ~3] /. By constructing 

the recognition grammar corresponding 

generative grammar, the DA of the 

crammar is taken over. 

to a given 

generative 
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3. Some examples are shown how the above considera- 

tions can he applie£ to automatic proces~'ing of na- 

tural lanfuages. 
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