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Abstract

Goal-oriented spoken dialogue systems have been the most prominent component in todays vir-
tual personal assistants, which allow users to speak naturally in order to finish tasks more effi-
ciently. The advancement of deep learning technologies has recently risen the applications of
neural models to dialogue modeling. However, applying deep learning technologies for build-
ing robust and scalable dialogue systems is still a challenging task and an open research area
as it requires deeper understanding of the classic pipelines as well as detailed knowledge of the
prior work and the recent state-of-the-art work. Therefore, this tutorial is designed to focus on
an overview of dialogue system development while describing most recent research for building
dialogue systems, and summarizing the challenges, in order to allow researchers to study the po-
tential improvements of the state-of-the-art dialogue systems. The tutorial material is available
athttp://deepdialogue.miulab.tw.

1 Tutorial Overview

With the rising trend of artificial intelligence, more and more devices have incorporated goal-oriented
spoken dialogue systems. Among popular virtual personal assistants, Microsoft’s Cortana, Apple’s Siri,
Amazon Alexa, and Google Assistant have incorporated dialogue system modules in various devices,
which allow users to speak naturally in order to finish tasks more efficiently.

Traditional conversational systems have rather complex and/or modular pipelines. The advancement
of deep learning technologies has recently risen the applications of neural models to dialogue modeling.
Nevertheless, applying deep learning technologies for building robust and scalable dialogue systems
is still a challenging task and an open research area as it requires deeper understanding of the classic
pipelines as well as detailed knowledge on the benchmark of the models of the prior work and the recent
state-of-the-art work.

The goal of this tutorial is to provide the audience with the developing trend of dialogue systems, and a
roadmap to get them started with the related work. The first section motivates the work on conversation-
based intelligent agents, in which the core underlying system is task-oriented dialogue systems. The
following section describes different approaches using deep learning for each component in the dialogue
system and how it is evaluated. The last two sections focus on discussing the recent trends and current
challenges on dialogue system technology and summarize the challenges and conclusions. The detailed
content is described as follows.

2 Dialogue System Basics

This section will motivate the work on conversation-based intelligent agents, in which the core underly-
ing system is task-oriented spoken dialogue systems.

The section starts with an overview of the standard pipeline framework for dialogue system illustrated
in Figure 1 (Tur and De Mori, 2011). Basic components of a dialog system are automatic speech recogni-
tion (ASR), language understanding (LU), dialogue management (DM), and natural language generation
(NLG) (Rudnicky et al., 1999; Zue et al., 2000; Zue and Glass, 2000). This tutorial will mainly focus on
LU, DM, and NLG parts.
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Figure 1: Pipeline framework of spoken dialog system.

Language Understanding Traditionally, domain identification and intent prediction are framed as ut-
terance classification problems, where several classifiers such as support vector machines and maximum
entropy have been employed (Haffner et al., 2003; Chelba et al., 2003; Chen et al., 2014). Then slot
filling is framed as a word sequence tagging task, where the IOB (in-out-begin) format is applied for
representing slot tags, and hidden Markov models (HMM) or conditional random fields (CRF) have been
employed for slot tagging (Pieraccini et al., 1992; Wang et al., 2005; Raymond and Riccardi, 2007).

Dialogue Management A partially observable Markov decision process (POMDP) has been shown to
be beneficial by allowing the dialogue manager to be optimized to plan and act under the uncertainty cre-
ated by noisy speech recognition and semantic decoding (Williams and Young, 2007; Young et al., 2013).
The POMDP policy controlling the actions taken by the system is trained in an episodic reinforcement
learning (RL) framework whereby the agent receives a reinforcement signal after each dialogue (episode)
reflecting how well it performed (Sutton and Barto, 1998). In addition, the dialogue states should be
tracked in order to measure the belief of the current situation during the whole interaction (Young et al.,
2010; Sun et al., 2014).

Natural Language Generation There are two NLG approaches, one focuses on generating text using
templates or rules (linguistic) methods, the another uses corpus-based statistical techniques (Oh and
Rudnicky, 2002). Oh and Rudnicky showed that stochastic generation benefits from two factors: 1) it
takes advantage of the practical language of a domain expert instead of the developer and 2) it restates
the problem in terms of classification and labeling, where expertise is not required for developing a
rule-based generation system.

3 Deep Learning Based Dialogue System

With the power of deep learning, there is increasing research work focusing on applying deep learning
for each component.

Language Understanding With the advances on deep learning, neural models have been applied to
domain and intent classification tasks (Sarikaya et al., 2011; Tur et al., 2012; Sarikaya et al., 2014).
Ravuri and Stolcke (2015) first proposed an RNN architecture for intent determination. For slot filling,
deep learning has been viewed as a feature generator and the neural architecture can be merged with
CRFs (Xu and Sarikaya, 2013). Yao et al. (2013) and Mesnil et al. (2015) later employed RNNs for
sequence labeling in order to perform slot filling. Such architectures have later been extended to jointly
model intent detection and slot filling in multiple domains (Hakkani-Tiir et al., 2016; Jaech et al., 2016).
Recently, Zhai et al. (2017) proposed to tag the semantic labels together with segmentation and achieved
the state-of-the-art performance.
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In addition, how to leverage contextual information and prior linguistic knowledge performs better
understanding is an important issue. End-to-end memory networks have been shown to provide a good
mechanism for integrating longer term knowledge context and shorter term dialogue context into these
models (Chen et al., 2016b; Chen et al., 2016¢). In addition, the importance of the LU module is
investigated in Li et al. (2017a), where different types of errors from LU may degrade the whole system
performance in an reinforcement learning setting.

Dialogue Management — Dialogue State Tracking The state-of-the-art dialogue managers focus on
monitoring the dialogue progress by neural dialogue state trackers. Among the initial models are the
RNN based dialogue state tracking approaches (Henderson et al., 2013) that has shown to outperform
Bayesian networks (Thomson and Young, 2010). More recent work that provided conjoint representa-
tions between the utterances, slot-value pairs as well as knowledge graph representations (Wen et al.,
2016; Mrksi¢ et al., 2016) demonstrated that using neural dialogue models can overcome current obsta-
cles of deploying dialogue systems in larger dialogue domains. Rastogi et al. (2017) also proposed a
multi-domain dialogue state tracker to achieve effective and efficient domain adaptation.

Dialogue Management — Dialogue Policy Optimization The dialogue policy can be learned in ei-
ther a supervised or a reinforcement learning manner (Su et al., 2016). The reinforcement learning based
dialogue agent has been recently developed in different tasks and shown applicable for interactive scenar-
ios (Li et al., 2017b; Dhingra et al., 2017; Shah et al., 2016). In order to enable reinforcement learning,
a simulated environment is required. Several approaches are proposed for building user simulators as
the interactive environment (Li et al., 2016; El Asri et al., 2016; Crook and Marin, 2017), so that the
dialogue policy can be trained in a reinforcement framework.

Natural Language Generation The RNN-based models have been applied to language generation for
both chit-chat and task-orientated dialogue systems (Vinyals and Le, 2015; Wen et al., 2015b). The
RNN-based NLG can learn from unaligned data by jointly optimizing sentence planning and surface
realization, and language variation can be easily achieved by sampling from output candidates (Wen et
al., 2015a). Moreover, Wen et al. (2015b) improved the prior work by adding a gating mechanism for
controlling the dialogue act during generation in order to avoid semantics repetition, showing promising
results. Several aspects of improvement have been achieved using contextual and structured informa-
tion (DuSek and Jurcicek, 2016; Nayak et al., 2017; Su et al., 2018)

4 Recent Trends and Challenges on Learning Dialogues
This part will focus on discussing the recent trends and current challenges on dialogue system technology.

End-to-End Learning for Dialogue Systems With the power of neural networks, there are more and
more attempts for learning dialogue systems in an end-to-end fashion. Different learning frameworks are
applied, including supervised learning and reinforcement learning. This part will discuss the work about
end-to-end learning for dialogues (Dhingra et al., 2016; Wen et al., 2016; Williams and Zweig, 2016;
Zhao and Eskenazi, 2016; Li et al., 2017b).

Recent advance of deep learning has inspired many applications of neural models to dialogue systems.
Wen et al. (2016) and Bordes and Weston (2016) introduced a network-based end-to-end trainable task-
oriented dialogue system, which treated dialogue system learning as the problem of learning a mapping
from dialogue histories to system responses, and applied an encoder-decoder model to train the whole
system. However, the system is trained in a supervised fashion, thus requires a lot of training data, and
may not be able to explore the unknown space that does not exist in the training data for an optimal and
robust policy.

Zhao and Eskenazi (2016) first presented an end-to-end reinforcement learning (RL) approach to dia-
logue state tracking and policy learning in the DM. This approach is shown to be promising when applied
to a task-oriented system, which is to guess the famous person a user thinks of. In the conversation, the
agent asks the user a series of Yes/No questions to find the correct answer. Dhingra et al. (2016) proposed
an end-to-end differentiable KB-Infobot to improve the flexibility of question types and robustness. Li
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et al. (2017b) further presented an end-to-end neural dialogue system for completing tasks, which sup-
ported flexible question types, allowed user-initiated requests during conversation, and finally achieved
better robustness. Human feedback is also effectively leveraged into the learning framework for on-line
training in an end-to-end manner (Liu et al., 2018).

Dialogue Breadth In order to extend the coverage of the systems, transfer learning has been applied to
different extended systems in order to proceed to a multi-domain scenario. Chen et al. (2016a) transfered
the dialogue acts across different domains so that the performance of the newly-developed domain can
be boosted. Kim et al. (2016) proposed to learn a domain-specific and domain-independent information
in order to transfer the shared knowledge more efficiently and effectively. In addition, Gasi¢ et al. (2015)
presented the policy committee in order to boost the performance for policy training in a new domain.
All above work extended the dialogue coverage using different directions.

Dialogue Depth Most current systems focus on knowledge-based understanding, but there are hierar-
chical understanding according to the dialogue complexity. For example, an intent about party scheduling
may include restaurant reserving and invitation sending. Sun et al. (2016) learned the high-level inten-
tions that span on multiple domains in order to achieve common sense understanding. Moreover, a more
complex dialogue such as “I feel sad...” requires empathy in order to generate the suitable response.
Fung et al. (2016) first attempted to leverage different modalities for emotion detection and built an
emotion-aware dialogue system.

Given two branches of development, the ultimate goal is to build an open-domain dialogue system
(coverage) with all levels of understanding (depth).

5 Tutorial Instructors

Yun-Nung (Vivian) Chen is an assistant professor in the Department of Computer Science and In-
formation Engineering at National Taiwan University. Her research interests focus on spoken dialogue
system, language understanding, natural language processing, deep learning, and multimodality. She
received Google Faulty Research Awards 2016, MOST Young Scholar Fellowship 2018, NVIDIA 2017
Best Scientific Research Award, two Best Student Paper Awards from IEEE ASRU 2013 and IEEE SLT
2010 and a Student Best Paper Nominee from INTERSPEECH 2012. Chen earned the Ph.D. degree
from School of Computer Science at Carnegie Mellon University, Pittsburgh in 2015. Prior to joining
National Taiwan University, she worked in the Deep Learning Technology Center at Microsoft Research,
Redmond.

o Affiliation: National Taiwan University, Taipei, Taiwan

e Email: y.v.chen@ieee.org

e Website: http://vivianchen.idv.tw

Asli Celikyilmaz is currently a researcher at the Deep Learning Technology Center at Microsfot Re-
search. Previously, she was a Research Scientist at Microsoft Bing from 2010 until 2016 focusing on
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doc Researcher at the EECS Department of the UC Berkeley from 2008 until 2010. She has worked
with researchers at ICSI @ Berkeley during her postdoc research study. She has earned her Ph.D. from
University of Toronto, Canada in 2008. Asli’s research interests are mainly machine learning and its
applications to conversational dialogue systems, mainly natural language understanding and dialogue
modeling. In the past she has also focused on research areas including machine intelligence, semantic
tagging of natural user utterances of human to machine conversations, text analysis, document summa-
rization, question answering, co-reference resolution, to name a few. Currently she is focusing on reason-
ing, attention, memory networks as well as multi-task and transfer learning for conversational dialogue
systems. She has been serving as area chair, co-organizer of numerous NLP and speech conferences,
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