
Proceedings of the 27th International Conference on Computational Linguistics: System Demonstrations, pages 53–57
Santa Fe, New Mexico, USA, August 20-26, 2018.

53

Transparent, Efficient, and Robust
Word Embedding Access with WOMBAT

Mark-Christoph Müller and Michael Strube
Heidelberg Institute for Theoretical Studies gGmbH

Schloss-Wolfsbrunnenweg 35
69118 Heidelberg, Germany

{mark-christoph.mueller|michael.strube}@h-its.org

Abstract

We present WOMBAT, a Python tool which supports NLP practitioners in accessing word em-
beddings from code. WOMBAT addresses common research problems, including unified access,
scaling, and robust and reproducible preprocessing. Code that uses WOMBAT for accessing
word embeddings is not only cleaner, more readable, and easier to reuse, but also much more
efficient than code using standard in-memory methods: a Python script using WOMBAT for
evaluating seven large word embedding collections (8.7M embedding vectors in total) on a sim-
ple SemEval sentence similarity task involving 250 raw sentence pairs completes in under ten
seconds end-to-end on a standard notebook computer.

1 Motivation

Word embeddings are ubiquitous resources in current NLP which normally come as plain-text files con-
taining collections of <string, real-valued vector> tuples. Each word embedding collec-
tion (WEC) is uniquely identified by its combination of 1) training algorithm, 2) training parameters,
and 3) training data. The latter, in turn, is characterized by the textual raw data and the preprocessing
that was applied to it.
Word embeddings are often used early on in the system pipeline: in a typical setup, a word embedding
file is loaded up-front (eager loading), and vectors are looked up in memory and used as replacements
for input words. This native approach to word embedding access has a couple of limitations with respect
to transparency, efficiency, and robustness.

1. Writing code in which WECs are easily and unambiguously identified is difficult when each WEC
is treated as a monolith in the file system.This way of identifying WECs completely disregards – and,
in the worst case, obscures – the fact that these resources might share some of their meta data, resulting
in different degrees of similarity between WECs: two or more WECs might be identical except for their
training window sizes, or except for the fact that some additional postprocessing was applied to one of
them. For intrinsic and extrinsic evaluation (Schnabel et al., 2015; Nayak et al., 2016) of the effect of
different training parameters on WECs, these parameters need to be accessible explicitly, and not just on
the level of file names.

2. Experiments with large numbers of WECs do not scale and are inefficient if entire files need to
be loaded every time. Experiments involving large numbers of WECs are not uncommon: Baroni et
al. (2014) employed 48 different WECs, while Levy et al. (2015) used as many as 672. More recently,
Wendlandt et al. (2018) explored the (in)stability of word embeddings by evaluating WECs trained for
all combinations of three algorithms (two of them involving a random component), five vector sizes
(dimensions), and seven data sets. In order to include the effect of randomness, five sets of WECs with
different initializations were trained for the two algorithms, resulting in 385 WECs altogether. Antoniak
and Mimno (2018) focused on training corpora, in particular on the effect of three different sampling
methods. They trained WECs for all combinations of these three methods, four algorithms, six data
sets, and two segmentation sizes. To tackle the effect of randomness, they trained repeatedly for 50

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

54

times, producing a total of 7.200 WECs. None of these papers provides technical details on how WECs
are handled, but the code that is available indicates that the native, eager loading approach seems to be
prevalent. More sophisticated, selective access to stored WECs is required to speed up experimentation
and also support more ad-hoc, explorative approaches.

3. Finally, converting unrestricted raw data into units for WEC vector lookup often amounts to
guesswork because the original preprocessing code is not shared together with the WEC resource. Pre-
processing – which can involve everything from lowercasing, tokenization, stemming or lemmatization,
to stop word and special character removal, right up to detecting and joining multiword expressions –
is often underestimated in NLP, and word embedding research is not an exception: For the well-known
and widely used GloVe embeddings, the documentation simply states to first use ”something like the
Stanford Tokenizer”1. The 100B word data set used to train the GoogleNews embeddings2 contains a
considerable number of automatically detected multiword expressions. As a result, as many as 2.070.978
of the 3M vocabulary items are phrases joined with one or more ” ” characters. Standard preprocessing
without access to the same phrase extraction code cannot detect these items and will thus be blind to al-
most 70% of the GoogleNews WEC vocabulary. Any preprocessing code used in the creation of a WEC
resource has to be considered an integral part of that resource. This is the only way to ensure that the
resource is fully (re)usable, which in turn is a prerequisite for the reproducibility of experiments utilizing
that resource. The topic of reproducibility has been around in e.g. computational biology for some time
(Sandve et al., 2013), and is also gaining attention in NLP (see e.g. the 4REAL workshops in 2016 and
2018). Already in 2013, Fokkens et al. identified preprocessing, in particular tokenisation, as one of the
major sources of errors in their attempts to reproduce NER results.3

While some word embedding APIs and toolkits do exist,4 they mostly focus on providing interfaces
for in-memory vector lookup or for higher-level similarity tasks. None of them adresses scalability or
preprocessing issues.

2 WOMBAT in a Nut Shell

WOMBAT, the WOrd eMBedding dATabase, is a light-weight Python tool for more transparent, effi-
cient, and robust access to potentially large numbers of WECs. It supports NLP researchers and prac-
titioners in developing compact, efficient, and reusable code. Key features of WOMBAT are 1. trans-
parent identification of WECs by means of a clean syntax and human-readable features, 2. efficient
lazy, on-demand retrieval of word vectors, and 3. increased robustness by systematic integration of ex-
ecutable preprocessing code. WOMBAT implements some Best Practices for research reproducibility
(Sandve et al., 2013; Stodden and Miguez, 2014), and complements existing approaches towards WEC
standardization and sharing.5 The WOMBAT source code including sample WEC data is available at
https://github.com/nlpAThits/WOMBAT.
WOMBAT provides a single point of access to existing WECs. Each plain text WEC file has to be im-
ported into WOMBAT once, receiving in the process a set of ATT:VAL identifiers consisting of five sys-
tem attributes (algo, dims, dataset, unit, fold) plus arbitrarily many user-defined ones.

from wombat import connector as wb_conn
wbc = wb_conn(path="/home/user/WOMBAT-data/", create_if_missing=True)
wbc.import_from_file("GoogleNews-vectors-negative300.txt",

"algo:w2v;dataset:googlenews;dims:300;fold:0;unit:token")

Importing the GoogleNews embeddings into WOMBAT.

The above code is sufficient to import the GoogleNews embeddings. The combination of identifiers,
provided as a semicolon-separated string, must be unique, but the supplied order is irrelevant. In this

1https://github.com/stanfordnlp/GloVe/blob/master/src/README.md
2https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
3Fokkens et al. (2013) do not address preprocessing for word embeddings, but their conclusions apply just the same.
4E.g. https://radimrehurek.com/gensim/models/word2vec.html, https://github.com/3Top/

word2vec-api, https://github.com/stephantul/reach, https://github.com/vecto-ai/vecto
5E.g. http://vectors.nlpl.eu/repository, http://wordvectors.org, https://github.com/

JaredFern/VecShare, http://bit.ly/embeddings

55

example, no additional user-defined attributes were assigned, as the publicly available GoogleNews WEC
is sufficiently identifiable. For self-trained WECs, user-defined attributes for hyper-parameters including
minimum frequency, window size, and training iterations are usually employed.
In WOMBAT, each WEC is stored in a single one-table relational database6 with a word column and a
vector column as a float32 NumPy array, which significantly reduces the disk size, e.g. from 12.7
GB to 4.1 GB for GoogleNews. In order to maintain data integrity, the word column employs a unique
database index to prevent multiple entries for the same word.
The most basic WOMBAT operation is the retrieval of embedding vectors from one or more WECs,
which are specified by their identifiers. For this, WOMBAT provides a get vectors(...) method
supporting a grid search-friendly ATT:{VAL1,VAL2,...,VALn} identifier format, which is ex-
panded into n atomic identifiers in the supplied order. In addition, several WEC identifiers can be
concatenated with &. If input words are already preprocessed, they can directly be supplied as a nested
Python list.
The following code retrieves vectors for the words theory and computation from all six GloVe
WECs and from the GoogleNews WEC, in under two seconds on a standard notebook computer. The
special identifier format is used here to specify all four GloVe 6B data sets, which share all properties ex-
cept for dims (vector dimensionality). Other typical uses supported by this format include the evaluation
of WECs trained with different hyper-parameters like e.g. window.

from wombat import connector as wb_conn
wbc = wb_conn(path="/home/user/WOMBAT-data/")
wecs = "algo:glove;dataset:6b;dims:{50,100,200,300};fold:1;unit:token&\

algo:glove;dataset:42b;dims:300;fold:1;unit:token&\
algo:glove;dataset:840b;dims:300;fold:0;unit:token&\
algo:w2v;dataset:googlenews;dims:300;fold:0;unit:token"

v = wbc.get_vectors(wecs, {}, for_input=[["theory", "computation"]], raw=False, as_tuple=True)

Retrieving embedding vectors from several WECs.

More often, however, input text is raw and needs to be preprocessed into smaller units before word
vectors can be retrieved. WOMBAT acknowledges the importance of preprocessing by providing a two-
level mechanism for directly integrating user-defined preprocessing code. The first, obligatory level
handles the actual preprocessing by piping each raw input line through a process(...) method.
User-defined Python code implementing this method is directly inserted into the WOMBAT database.
When vectors for raw input text are to be retrieved (raw=True), the correct preprocessing for each
WEC is automatically applied in the background. While each WEC in WOMBAT could have its
own preprocessing, the expected input format for many WECs (e.g. GloVe) is almost identical. Only
glove.840B.300d.txt, e.g., is case-sensitive, while the others are not. This difference, encoded in
the WOMBAT meta data as fold:0 and fold:1, is accounted for automatically during preprocess-
ing. Similarly, some WECs might exist in both an unstemmed and a stemmed variant, which can be
distinguished by the values token and stem in the unit attribute. These values are also evaluated
during preprocessing. The second, optional processing level analyses the token sequence produced by
the first level and joins into phrases those adjacent tokens for which vocabulary items exist in the WEC.
Currently this is done by a gensim.models.phrases.Phraser object, which initially needs to
be trained on the tokenized textual raw data before WEC training, and which then needs to be applied to
this data in order to enrich it with phrase information.
WOMBATs get vectors(...) method returns data as a generic, nested Python data structure.
Basically, it is a list containing one two-item tuple for every WEC, where the first item is the WEC
identifier, and the second item is a nested structure containing the actual result, including the raw and
preprocessed input and a list of <word, vector> tuples. By default, the ordering of this tuple
list is undefined, but input ordering can optionally be maintained (in order=True). For most tasks,
however, ordering is irrelevant, which is why the more efficient in order=False is the default.

6We currently use SQLite (https://sqlite.org).

56

[# top-level result container
[# start of result for first WEC
(
’algo:glove;dataset:6b;dims:50;fold:1;unit:token’, # normalized WEC identifier
[
(
[], # raw input as supplied to for_input (empty here since raw=False)
[’theory’,’computation’], # tokens produced by preprocessing (if raw=True)
[
(# result tuple for ’theory’
’theory’, # token exactly as used in lookup
[0.28217, 0.65819001, ... -0.39082, -0.1266] # vector as NumPy array
),
(# result tuple for ’computation’
’computation’, # token exactly as used in lookup
[-0.25176001, -0.028599, ... 0.31508, 0.25172] # vector as NumPy array
)

]
)
] # end of result for first (and only) input list

)
], # end of result for first (and only) WEC
... # potential result for second WEC

]

Schematic WOMBAT result format.

3 Sample Use Cases

At this point, the wombat.analyse library contains only a few methods (cf. below). Our focus has
been on developing a stable, generic, and efficient code base, on top of which more complex and useful
functionality (incl. further visualizations, nearest neighbors, etc.) can be implemented.

3.1 Global Sentence Similarity
In order to demonstrate WOMBAT in an actual end-to-end use case, we applied it to a sentence pair
similarity ranking task, using the data set from task 1, track 5 of SemEval-2017 (Cer et al., 2017).
The data set consists of 250 tab-separated, raw sentence pairs. Since we focus on preprocessing and
vector retrieval, we implement a simple baseline approach only, in which sentences are represented as
the average vector of their respective word vectors (excluding stop words) and the pairwise distances
are computed as cosine distance. The result is a list containing, for each WEC, an ordered list of tuples
of the form <distance, sentence1, sentence2>. The following code implements the whole
process. The distance metric in the pairwise distances(...) method is provided as a parameter,
and can be set to any method for computing vector distances (or similarities, in which case the output
ordering can be reversed with reverse=True).
import numpy, scipy.spatial.distance
from wombat import connector as wb_conn
from wombat.analyse import pairwise_distances
wbc = wb_conn(path="/home/user/WOMBAT-data/")
wecs = "algo:glove;dataset:6b;dims:{50,100,200,300};folded:1;unit:token&algo:glove;dataset:42b;dims:300;folded:1;unit:token&\

algo:glove;dataset:840b;dims:300;folded:0;unit:token&algo:w2v;dataset:googlenews;dims:300;folded:0;unit:token"
infile = "STS.input.track5.en-en.txt"
pp_cache = {}
vecs_1 = wb.get_vectors(wecs, pp_cache, for_input=[numpy.loadtxt(infile, dtype=str, delimiter=’\t’, usecols=0)], raw=True)
vecs_2 = wb.get_vectors(wecs, pp_cache, for_input=[numpy.loadtxt(infile, dtype=str, delimiter=’\t’, usecols=1)], raw=True)
pd = pairwise_distances(vecs_1, vecs_2, metric=scipy.spatial.distance.cosine, reverse=False)

Global sentence similarity computation with WOMBAT.

The execution time for reading the input file (column 0 and column 1 separately), preprocessing, vector
retrieval from seven WECs, vector averaging per sentence, pairwise distance computation, and sorting is
under ten seconds on a standard notebook computer.

3.2 Word-Level Sentence Similarity
WOMBAT was originally developed in a research project dealing with scientific publication title simi-
larity, which involved light-weight semantic matching based on WEC-based similarities. Figure 1 shows
two sample outputs of WOMBATs plot heatmap(...) method, which accepts as input the generic
output vectors produced by get vectors(...). The two plots show the contribution of phrase-aware
preprocessing in the comparison of two publication title strings: the left plot was fed with <string,
vector> tuples which were created with phrases temporarily disabled, and shows a spurious maximal

57

similarity for the term net in the two titles. The right plot, in contrast, was fed with tuples which were
created with phrases enabled, including a separate vector for Petri net. The plot shows a more differ-
entiated, still high, but not maximal similarity between Petri net and net, resulting in a more accurate
general representation of the to titles’ similarities. Heat maps, of course, are standard visualization, but
WOMBAT provides methods for their efficient, large-scale creation.

Figure 1: Word-level sentence similarity without (left) and with (right) phrase-aware preprocessing.

Acknowledgements The research described in this paper was conducted in the project SCAD – Scalable
Author Name Disambiguation, funded in part by the Leibniz Association (grant SAW-2015-LZI-2), and
in part by the Klaus Tschira Foundation. We thank the anonymous COLING reviewers for their useful
suggestions.

References
Maria Antoniak and David Mimno. 2018. Evaluating the stability of embedding-based word similarities. TACL,

6:107–119.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count, predict! A systematic comparison
of context-counting vs. context-predicting semantic vectors. In Proceedings of ACL 2014, pages 238–247.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017. Semeval-2017 task 1:
Semantic textual similarity - multilingual and cross-lingual focused evaluation. CoRR, abs/1708.00055.

Antske Fokkens, Marieke van Erp, Marten Postma, Ted Pedersen, Piek Vossen, and Nuno Freire. 2013. Offspring
from reproduction problems: What replication failure teaches us. In Proceedings of ACL 2013, pages 1691–
1701.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from
word embeddings. TACL, 3:211–225.

Neha Nayak, Gabor Angeli, and Christopher D. Manning. 2016. Evaluating word embeddings using a represen-
tative suite of practical tasks. In Proceedings of the 1st Workshop on Evaluating Vector-Space Representations
for NLP, pages 19–23.

Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. 2013. Ten simple rules for reproducible
computational research. PLoS Computational Biology, 9(10).

Tobias Schnabel, Igor Labutov, David M. Mimno, and Thorsten Joachims. 2015. Evaluation methods for unsuper-
vised word embeddings. In Proceedings of EMNLP 2015, pages 298–307.

Victoria Stodden and Sheila Miguez. 2014. Best practices for computational science: Software infrastructure and
environments for reproducible and extensible research. Journal of Open Research Software, 2(1):1–6.

Laura Wendlandt, Jonathan K. Kummerfeld, and Rada Mihalcea. 2018. Factors influencing the surprising insta-
bility of word embeddings. In Proceedings NAACL-HLT 2018, pages 2092–2102.

