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Abstract

Multi-label classification is an important yet challenging task in natural language processing. It
is more complex than single-label classification in that the labels tend to be correlated. Existing
methods tend to ignore the correlations between labels. Besides, different parts of the text can
contribute differently to predicting different labels, which is not considered by existing models.
In this paper, we propose to view the multi-label classification task as a sequence generation
problem, and apply a sequence generation model with a novel decoder structure to solve it.
Extensive experimental results show that our proposed methods outperform previous work by
a substantial margin. Further analysis of experimental results demonstrates that the proposed
methods not only capture the correlations between labels, but also select the most informative
words automatically when predicting different labels.!

1 Introduction

Multi-label classification (MLC) is an important task in the field of natural language processing (NLP),
which can be applied in many real-world scenarios, such as text categorization (Schapire and Singer,
2000), tag recommendation (Katakis et al., 2008), information retrieval (Gopal and Yang, 2010), and so
on. The target of the MLC task is to assign multiple labels to each instance in the dataset.

Binary relevance (BR) (Boutell et al., 2004) is one of the earliest attempts to solve the MLC task by
transforming the MLC task into multiple single-label classification problems. However, it neglects the
correlations between labels. Classifier chains (CC) proposed by Read et al. (2011) converts the MLC
task into a chain of binary classification problems to model the correlations between labels. However, it
is computationally expensive for large datasets. Other methods such as ML-DT (Clare and King, 2001),
Rank-SVM (Elisseeff and Weston, 2002), and ML-KNN (Zhang and Zhou, 2007) can only be used to
capture the first or second order label correlations or are computationally intractable when high-order
label correlations are considered.

In recent years, neural networks have achieved great success in the field of NLP. Some neural network
models have also been applied in the MLC task and achieved important progress. For instance, fully
connected neural network with pairwise ranking loss function is utilized in Zhang and Zhou (2006).
Kurata et al. (2016) propose to perform classification using the convolutional neural network (CNN).
Chen et al. (2017) use CNN and recurrent neural network (RNN) to capture the semantic information of
texts. However, they either neglect the correlations between labels or do not consider differences in the
contributions of textual content when predicting labels.

In this paper, inspired by the tremendous success of the sequence-to-sequence (Seq2Seq) model in
machine translation (Bahdanau et al., 2014; Luong et al., 2015; Sun et al., 2017), abstractive summa-
rization (Rush et al., 2015; Lin et al., 2018), style transfer (Shen et al., 2017; Xu et al., 2018) and other
domains, we propose a sequence generation model with a novel decoder structure to solve the MLC
task. The proposed sequence generation model consists of an encoder and a decoder with the attention
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mechanism. The decoder uses an LSTM to generate labels sequentially, and predicts the next label based
on its previously predicted labels. Therefore, the proposed model can consider the correlations between
labels by processing label sequence dependencies through the LSTM structure. Furthermore, the atten-
tion mechanism considers the contributions of different parts of text when the model predicts different
labels. In addition, a novel decoder structure with global embedding is proposed to further improve the
performance of the model by incorporating overall informative signals.

The contributions of this paper are listed as follows:

e We propose to view the MLC task as a sequence generation problem to take the correlations between
labels into account.

e We propose a sequence generation model with a novel decoder structure, which not only captures
the correlations between labels, but also selects the most informative words automatically when
predicting different labels.

e Extensive experimental results show that our proposed methods outperform the baselines by a large
margin. Further analysis demonstrates the effectiveness of the proposed methods on correlation
representation.

The whole paper is organized as follows. We describe our methods in Section 2. In Section 3, we
present the experiments and make analysis and discussions. Section 4 introduces the related work. Fi-
nally in Section 5 we conclude this paper and explore the future work.

2 Proposed Method

We introduce our proposed methods in detail in this section. First, we give an overview of the model in
Section 2.1. Second, we explain the details of the proposed sequence generation model in Section 2.2.
Finally, Section 2.3 presents our novel decoder structure.

2.1 Overview

First of all, we define some notations and describe the MLC task. Given the label space with L labels
L = {l1,la,---,lp}, atext sequence & containing m words, the task is to assign a subset y containing
n labels in the label space £ to . Unlike traditional single-label classification where only one label is
assigned to each sample, each sample in the MLC task can have multiple labels. From the perspective
of sequence generation, the MLC task can be modeled as finding an optimal label sequence y* that
maximizes the conditional probability p(y|x), which is calculated as follows:

n

p(y’w) = Hp(yi|y17y27 T 7yi—laa:) (1)
i=1

An overview of our proposed model is shown in Figure 1. First, we sort the label sequence of each
sample according to the frequency of the labels in the training set. High-frequency labels are placed in
the front. In addition, the bos and eos symbols are added to the head and tail of the label sequence,
respectively.

The text sequence x is encoded to the the hidden states, which are aggregated to a context vector
c; by the attention mechanism at time-step ¢. The decoder takes the context vector c;, the last hidden
state s;—1 of the decoder and the embedding vector g(y;—1) as the inputs to produce the hidden state
s, at time-step t. Here y,_; is the predicted probability distribution over the label space £ at time-step
t — 1. The function g takes y;_1 as input and produces the embedding vector which is then passed to the
decoder. Finally, the masked softmax layer is used to output the probability distribution ;.

2.2 Sequence Generation

In this subsection, we introduce the details of our proposed model. The whole sequence generation
model consists of an encoder and a decoder with the attention mechanism.
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Figure 1: The overview of our proposed model. MS denotes the masked softmax layer. GE denotes the
global embedding.

Encoder: Let (w,wo, -, w,,) be a sentence with m words and w; is the one-hot representation of
the i-th word. We first embed wj to a dense embedding vector x; by an embedding matrix E € RF* VI,
Here || is the size of the vocabulary, and k is the dimension of the embedding vector.

We use a bidirectional LSTM (Hochreiter and Schmidhuber, 1997) to read the text sequence  from
both directions and compute the hidden states for each word,

Ty = LSTM (R i1, a:) )

hi = LSTM( o jar, 1) 3)

We obtain the final hidden representation of the ¢-th word by concatenating the hidden states from
both directions, h; = [h; h;], which embodies the information of the sequence centered around the
1-th word.

Attention: When the model predicts different labels, not all text words make the same contribution.
The attention mechanism produces a context vector by focusing on different portions of the text se-
quence and aggregating the hidden representations of those informative words. Specially, the attention
mechanism assigns the weight «; to the i-th word at time-step ¢ as follows:

ey = vl tanh(W,s; + Uyh;) (4)

exp(e)
_ _ 5
Zj:l exp(e;) ©)

where W,, U,, v, are weight parameters and s; is the current hidden state of the decoder at time-step ¢.
For simplicity, all bias terms are omitted in this paper. The final context vector ¢; which is passed to the
decoder at time-step t is calculated as follows:

Qi =

m

Ct = Z atihz’ (6)

i=1
Decoder: The hidden state s; of the decoder at time-step ¢ is computed as follows:
st = LSTM(s¢—1, [9(y1-1); €—1]) (7)

where [g(y;—1); ¢;—1] means the concatenation of the vectors g(y;—1) and ¢;—1. g(y;—1) is the embed-
ding of the label which has the highest probability under the distribution y;_1. y;—1 is the probability
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distribution over the label space £ at time-step ¢t — 1 and is computed as follows:

or = Wo f(Wyst + Vacy) 3
Yyt = softmax(oy + I;) 9

where W,,, W,, and V;; are weight parameters, I; € R” is the mask vector that is used to prevent the
decoder from predicting repeated labels, and f is a nonlinear activation function.

) (10)
0 otherwise.

1) {—oo if the label /; has been predicted at previous ¢ — 1 time steps.
t)i =

At the training stage, the loss function is the cross-entropy loss function. We employ the beam search
algorithm (Wiseman and Rush, 2016) to find the top-ranked prediction path at inference time. The
prediction paths ending with the eos are added to the candidate path set.

2.3 Global Embedding

In the sequence generation model mentioned above, the embedding vector g(y;—1) in Equation (7) is the
embedding of the label that has the highest probability under the distribution y;_;. However, this calcu-
lation only takes advantage of the maximum value of y;_; greedily. The proposed sequence generation
model generates labels sequentially and predicts the next label conditioned on its previously predicted
labels. Therefore, it is likely that we would get a succession of wrong label predictions in the following
time steps if the prediction is wrong at time-step ¢, which is also called exposure bias. To a certain extent,
the beam search algorithm alleviates this problem. However, it can not fundamentally solve the problem
because the exposure bias phenomenon is likely to occur for all candidate paths. y;_; represents the
predicted probability distribution at time-step ¢ — 1, so it is obvious that all information in y;_ is helpful
when we predict the current label at time-step ¢t. The exposure bias problem ought to be relieved by
considering all informative signals contained in y;_.

Based on this motivation, we propose a new decoder structure, where the embedding vector g(y;—1) at
time-step ¢ is capable of representing the overall information at (¢—1)-th time step. Inspired by the idea of
the adaptive gate in highway network (Srivastava et al., 2015), here we introduce our global embedding.
Let e denotes the embedding of the label which has the highest probability under the distribution y;_1.
€ is the weighted average embedding at time ¢, which is calculated as follows:

L
=3yl an
=1

where y,@l is the ¢-th element of y;_1 and e; is the embedding vector of the ¢-th label. Then the proposed

global embedding g(y;—1) passed to the decoder at time-step ¢ is as follows:
Jy-1)=1-H)cet+tHoeE (12)
where H is the transform gate controlling the proportion of the weighted average embedding:
H =Wie + Wse (13)

where Wy, Wy € RE*L are weight matrices. The global embedding g(1;_1) is the optimized combina-
tion of the original embedding and the weighted average embedding by using transform gate H, which
can automatically determine the combination factor in each dimension. y;_; contains the information
of all possible labels. By considering the probability of every label, the model is capable of reducing
damage caused by mispredictions made in the previous time steps. This enables the model to predict
label sequences more accurately.
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Dataset Total Samples Label Sets Words/Sample Labels/Sample
RCV1-V2 804,414 103 123.94 3.24
AAPD 55,840 54 163.42 2.41

Table 1: Summary of datasets. Total Samples, Label Sets denote the total number of samples and
labels, respectively. Words/Sample is the average number of words per sample and Labels/Sample is
the average number of labels per sample.

3 Experiments

In this section, we evaluate our proposed methods on two datasets. We first introduce the datasets,
evaluation metrics, experimental details, and all baselines. Then, we compare our methods with the
baselines. Finally, we provide the analysis and discussions of experimental results.

3.1 Datasets

Reuters Corpus Volume I (RCV1-V2)2: This dataset is provided by Lewis et al. (2004). It consists
of over 800,000 manually categorized newswire stories made available by Reuters Ltd for research pur-
poses. Multiple topics can be assigned to each newswire story and there are 103 topics in total.
Arxiv Academic Paper Dataset (AAPD)3: We build a new large dataset for the multi-label text classifi-
cation. We collect the abstract and the corresponding subjects of 55,840 papers in the computer science
field from the website*. An academic paper may have multiple subjects and there are 54 subjects in
total. The target is to predict corresponding subjects of an academic paper according to the content of
the abstract.

We divide each dataset into training, validation and test sets. The statistics of the two datasets are
shown in Table 1.

3.2 Evaluation Metrics

Following the previous work (Zhang and Zhou, 2007; Chen et al., 2017), we adopt hamming loss and
micro-F score as our main evaluation metrics. Micro-precision and micro-recall are also reported to
assist the analysis.

e Hamming-loss (Schapire and Singer, 1999) evaluates the fraction of misclassified instance-label
pairs, where a relevant label is missed or an irrelevant is predicted.

e Micro-F} (Manning et al., 2008) can be interpreted as a weighted average of the precision and re-
call. It is calculated globally by counting the total true positives, false negatives, and false positives.

3.3 Details

We extract the vocabularies from the training sets. For the RCV1-V2 dataset, the size of the vocabulary
is 50,000 and out-of-vocabulary (OOV) words are replaced with unk. Each document is truncated at the
length of 500 and the beam size is 5 at the inference stage. Besides, we set the word embedding size
to 512. The hidden sizes of the encoder and the decoder are 256 and 512, respectively. The number of
LSTM layers of encoder and decoder is 2.

For the AAPD dataset, the size of word embedding is 256. There are two LSTM layers in the encoder
and its size is 256. For the decoder, there is one LSTM layer of size 512. The size of the vocabulary is
30,000 and OOV words are also replaced with unk. Each document is truncated at the length of 500.
The beam size is 9 at the inference stage.

We use the Adam (Kingma and Ba, 2014) optimization method to minimize the cross-entropy loss over
the training data. For the hyper-parameters of the Adam optimizer, we set the learning rate o = 0.001,
two momentum parameters 3; = 0.9 and B = 0.999 respectively, and ¢ = 1 x 10~%. Additionally,

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/1yrl2004_rcvlv2_
README . htm

*https://github.com/lancopku/SGM

*nttps://arxiv.org/
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Models HL() P(+) R+  Fi(+) Models AL P+ R@)  Fi(H)
BR 0.0086 0904 0816  0.858 BR 00316  0.644 0648  0.646
cc 0.0087  0.887 0828  0.857 cC 0.0306  0.657  0.651  0.654
LP 0.0087  0.896  0.824  0.858 LP 00312 0662 0608  0.634
CNN 0.0089 0922 0798  0.855 CNN 0.0256  0.849 0545  0.664
CNN-RNN | 00085 0.889  0.825  0.856 CNN-RNN | 00278 0718 0618  0.664
SGM 0.0081  0.887 0850  0.869 SGM 0.0251  0.746 0659  0.699
+GE 0.0075 0897  0.860  0.878 +GE 0.0245 0748  0.675  0.710

(a) Performance on the RCV1-V2 test set. (b) Performance on the AAPD test set.

Table 2: Comparison between our methods and all baselines on two datasets. GE denotes the global
embedding. HL, P, R, and F1 denote hamming loss, micro-precision, micro-recall, and micro-F}, re-
spectively. The symbol “+” indicates that the higher the value is, the better the model performs. The
symbol “-” is the opposite.

we make use of the dropout regularization (Srivastava et al., 2014) to avoid overfitting and clip the
gradients (Pascanu et al., 2013) to the maximum norm of 10.0. During training, we train the model for a
fixed number of epochs and monitor its performance on the validation set. Once the training is finished,
we select the model with the best micro-F} score on the validation set as our final model and evaluate its
performance on the test set.

3.4 Baselines

We compare our proposed methods with the following baselines:

¢ Binary Relevance (BR) (Boutell et al., 2004) transforms the MLC task into multiple single-label
classification problems by ignoring the correlations between labels.

e Classifier Chains (CC) (Read et al., 2011) transforms the MLC task into a chain of binary classifi-
cation problems and takes high-order label correlations into consideration.

o Label Powerset (LP) (Tsoumakas and Katakis, 2006) transforms a multi-label problem to a multi-
class problem with one multi-class classifier trained on all unique label combinations.

e CNN (Kim, 2014) uses multiple convolution kernels to extract text features, which are then in-
putted to the linear transformation layer followed by a sigmoid function to output the probability
distribution over the label space. The multi-label soft margin loss is optimized.

o CNN-RNN (Chen et al., 2017) utilizes CNN and RNN to capture both the global and local textual
semantics and model the label correlations.

Following the previous work (Chen et al., 2017), we adopt the linear SVM as the base classifier in BR,
CC and LP. We implement BR, CC and LP by means of Scikit-Multilearn (Szymarski, 2017), an open-
source library for the MLC task. We tune hyper-parameters of all baseline algorithms on the validation
set based on the micro-F} score. In addition, training strategies mentioned in Zhang and Wallace (2015)
are used to tune hyper-parameters for the baselines CNN and CNN-RNN.

3.5 Results

For the purpose of simplicity, we denote the proposed sequence generation model as SGM. We report
the evaluation results of our methods and all baselines on the test sets.

The experimental results of our methods and the baselines on dataset RCV1-V2 are shown in Table 2a.
Results show that our proposed methods give the best performance in the main evaluation metrics. Our
proposed SGM model using global embedding achieves a reduction of 12.79% hamming-loss and an
improvement of 2.33% micro-F} score over the most commonly used baseline BR. Besides, our meth-
ods outperform other traditional deep-learning models by a large margin. For instance, the proposed
SGM model with global embedding achieves a reduction of 15.73% hamming-loss and an improvement
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Figure 2: The performance of the SGM model when
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Figure 3: The performance of the SGM model on
different subsets of the RCV1-V2 test set. LLS rep-
resents the length of label sequence of each sample
in the subset. The explanations of symbol “+” and

model performs. The symbol “-” is the opposite. “-” can be found in Figure 2.
of 2.69% micro-F; score over the traditional CNN model. Even without the global embedding, our
proposed SGM model is still able to outperform all baselines.

In addition, the SGM model is significantly improved by using global embedding. The SGM model
with global embedding achieves a reduction of 7.41% hamming loss and an improvement of 1.04%
micro-F score on the test set compared with the model without global embedding.

Table 2b presents the results of the proposed methods and the baselines on the AAPD test set. Similar
to the experimental results on the RCV1-V2 test set, our proposed methods still outperform all baselines
by a large margin in main evaluation metrics. This further confirms that our methods have significant
advantages over previous work on large datasets. Besides, the proposed SGM achieves a reduction of
2.39% hamming loss and an improvement of 1.57% micro-F; score on the test set by using global
embedding. This further testifies that the global embedding is capable of helping the model to predict
label sequences more accurately.

3.6 Analysis and Discussion

Here we perform further analysis on the model and experimental results. We report the evaluation results
in terms of hamming loss and micro-F7 score.

3.6.1 Exploration of Global Embedding

As is shown in Table 2, global embedding can significantly improve the performance of the model. The
global embedding g(y;—1) at time-step ¢ takes advantage of all information of possible labels contained
in y;_1, so it is able to enrich the source information when the model predicts the current label, which
leads to the performance of the model significantly improved. The global embedding is the combination
of original embedding e and the weighted average embedding € by using the transform gate H. Here we
conduct experiments on the RCV1-V2 dataset to explore how the performance of our model is affected
by the proportion between two kinds of embeddings. In the exploratory experiment, the final embedding
vector at time-step ¢ is calculated as follows:

gyi—1) =1 =N xe+Axé (14)

The proportion between two kinds of embeddings is controlled by coefficient A\. A = 0 denotes the
proposed SGM model without global embedding. The proportion of weighted average embedding in-
creases when we increase . The experimental results using different A values in the decoder are shown
in Figure 2.

As is shown in Figure 2, the performance of the model varies when different A is used. Overall,
the model using the adaptive gate performs the best, which achieves the best results in both hamming
loss and micro-F;. The models with A # 0 outperform the model with A = 0, which shows that the
weighted average embedding contains richer information, leading to the improvement in the performance
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Models HL(-) F1(+) Models HL(-) F1(+)

SGM 0.0081 0.869 SGM + GE 0.0075 0.878

w/o mask 0.0083({. 2.47%) 0.866(]. 0.35%) w/o mask 0.0078({. 4.00%) 0.873(] 0.57%)

w/o sorting 0.0084(] 3.70%) 0.858({ 1.27%) w/o sorting 0.0083(]. 10.67%) 0.859({ 2.16%)
(a) Ablation study for the SGM model. (b) Ablation study for SGM model with global embedding.

Table 3: Ablation study on the RCV1-V2 test set. GE denotes the global embedding. HL and F1 denote
hamming loss and micro-F7y, respectively. The symbol “+” indicates that the higher the value is, the
better the model performs. The symbol “-” is the opposite. T means that the performance of the model
improves and | is the opposite.

of the model. Without using the adaptive gate, the performance of the model improves at first and then
deteriorates as A increases. It reveals the reason why the model with the adaptive gate performs the
best: the adaptive gate can automatically determine the most appropriate A value according to the actual
condition.

3.6.2 The Impact of Mask and Sorting

Our proposed methods are developed based on traditional Seq2Seq models. However, the mask module
is added to the proposed methods, which is used to prevent the models from predicting repeated labels.
In addition, we sort the label sequence of each sample according to the frequency of appearance of labels
in the training set. In order to explore the impact of the mask module and sorting, we conduct ablation
experiments on the RCV1-V2 dataset. The experimental results are shown in Table 3. “w/o mask” means
that we do not perform mask operation and “w/o sorting” means that we randomly shuffle the label
sequence in order to perturb its original order.

As is shown in Table 3, the performance decline of the SGM model with global embedding is more
significant compared with that of the SGM model without global embedding. In addition, the decline
in the performance of the two models is more significant when we randomly shuffle the label sequence
of the sample compared with removing mask module. The label cardinality of the RCV1-V2 dataset is
small, so our proposed methods are less prone to predicting repeated labels. This explains the reason
why experimental results indicate that the mask module has little impact on the models’ performance.
In addition, the proposed models are trained using the maximum likelihood estimation method and the
cross-entropy loss function, which requires humans to predefine the order of the output labels. Therefore,
the sorting of labels is very important for the models’ performance. Besides, the performance of both
models declines when we do not use the mask module. This shows that the performance of the model
can be improved by using the mask operation.

3.6.3 Error Analysis

In the experiment, we find that the performance of all methods deteriorates when the length of the label
sequence increases (for simplicity, we denote the length of the label sequence as LLS). In order to explore
the influence of the value of the LLS, we divide the test set into different subsets based on different LLS.
Figure 3 shows the performance of the SGM model and the most commonly used baseline BR on different
subsets of the RCV1-V2 test set. As is shown in Figure 3, generally, the performance of both models
deteriorates as the LLS increases. This shows that when the label sequence of the sample is particularly
long, it is difficult to accurately predict all labels. Because more information is needed when the model
predicts more labels. It is easy to ignore some true labels whose feature information is insufficient.

However, as is shown in Figure 3, the proposed SGM model outperforms BR with any value of LLS,
and the advantages of our model are more significant when LLS is large. The traditional BR method
predicts all labels at once only based on the sample input. Therefore, it tends to ignore some true labels
whose feature information contained in the sample is insufficient. The SGM model generates labels
sequentially, and predicts the next label based on its previously predicted labels. Therefore, even if the
sample contains less information of some true labels, the SGM model is capable of generating these true
labels by considering relevant labels that have been predicted.
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e Generating descriptions for videos has many ap- e Generating descriptions for videos has many ap-
plications including human robot interaction. plications including human robot interaction.
e Many methods for [lligglcaptioning rely on pre- ® Many methods for image captioning rely on pre-
trained object classifier CNN and Long Short Term trained object classifier CNN and Long Short Term
Memory recurrent networks. Memory - networks.
e How to learn robust visual classifiers from the e How to learn robust visual classifiers from the
weak annotations of the sentence descriptions. weak annotations of the JEHlSHEE descriptions.

(a) Visual analysis when the SGM model predicts “CV”. (b) Visual analysis when the SGM model predicts “CL”.

Table 4: An example abstract in the AAPD dataset, from which we extract three informative sentences.
This abstract is assigned two labels: “CV” and “CL”. They denote computer vision and computational
language, respectively.

Reference BR SGM SGM + GE

CCAT, C15, C152,C41, C411|CCAT, C15, C13 CCAT, C15, C152 CCAT, C15, C152, C41, C411
CCAT, GCAT, ECAT, C31,|CCAT, GCAT, GDIP, E51 CCAT, ECAT, GDIP, E51,|CCAT, GCAT, ECAT, C3l,
GDIP, C13, C21, E51, E512 E512 GDIP, E51, E512, C312
GCAT, ECAT, G15, G154,|GCAT, ECAT, GENYV, G15 GCAT, ECAT, E21, GI15,/GCAT, ECAT, E21, Gl5,
G151, G155 G154, G156 G154, G155

Table 5: Several examples of the generated label sequences on the RCV1-V2 dataset. The red bold labels
in each example indicate that they are highly correlated.

3.6.4 Visualization of Attention

When the model predicts different labels, there exist differences in the contributions of different words.
The SGM model is able to select the most informative words by utilizing the attention mechanism.
The visualization of the attention layer is shown in Table 4. According to Table 4, when the SGM
model predicts the label “CV”, it can automatically assign larger weights to more informative words,
like image, visual, captioning, and so on. For the label “CL”, the selected informative words are
sentence, memory, recurrent, etc. This shows that our proposed models are able to consider the
differences in the contributions of textual content when predicting different labels and select the most
informative words automatically.

3.6.5 Case Study

We give several examples of the generated label sequences on the RCV1-V2 dataset in Table 5, where
we compare the proposed methods with the most commonly used baseline BR. The red bold labels in
each example indicate that they are highly correlated. For instance, the correlation coefficient between
ES51 and E512 is 0.7664. Therefore, these highly correlated labels are likely to appear together in the
predicted label sequence. The BR algorithm fails to capture this label correlation, leaving many true
labels unpredicted. However, our proposed methods accurately predict almost all highly correlated true
labels. The proposed SGM captures the correlations between labels by utilizing LSTM to generate la-
bels sequentially. Therefore, for some true labels whose feature information is insufficient, the proposed
SGM is still able to generate them by considering relevant labels that have been predicted. In addition,
label sequences that are more accurate are predicted by using global embedding. The SGM model with
global embedding predicts more true labels compared with the SGM model without global embedding.
The reason is that the source information is further enriched by incorporating overall informative signals
in the probability distribution y;_; when the model predicts the label at time-step ¢. Enriched infor-
mation makes global embedding more smooth, which enables the model to reduce damage caused by
mispredictions made in the previous time steps.

4 Related Work

The MLC task studies the problem where multiple labels are assigned to each sample. There are four
main types of methods for the MLC task: problem transformation methods, algorithm adaptation meth-
ods, ensemble methods, and neural network models.
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Problem transformation methods map the MLC task into multiple single-label learning tasks. Binary
relevance (BR) (Boutell et al., 2004) decomposes the MLC task into independent binary classification
problems by ignoring the correlations between labels. In order to model label correlations, label power-
set (LP) (Tsoumakas and Katakis, 2006) transforms a multi-label problem to a multi-class problem with
a classifier trained on all unique label combinations. Classifier chains (CC) (Read et al., 2011) trans-
forms the MLC task into a chain of binary classification problems, where subsequent binary classifiers
in the chain are built upon the predictions of preceding ones. However, the computational efficiency and
performance of these methods are challenged by applications with a large number of labels and samples.

Algorithm adaptation methods extend specific learning algorithms to handle multi-label data directly.
Clare and King (2001) construct decision tree based on multi-label entropy to perform classification.
Elisseeff and Weston (2002) optimize the empirical ranking loss by using maximum margin strategy and
kernel tricks. Collective multi-label classifier (CML) (Ghamrawi and McCallum, 2005) adopts maximum
entropy principle to deal with multi-label data by encoding label correlations as constraint conditions.
Zhang and Zhou (2007) adopt k-nearest neighbor techniques to deal with multi-label data. Fiirnkranz et
al. (2008) make ranking among labels by utilizing pairwise comparison. Li et al. (2015) propose a novel
joint learning algorithm that allows the feedbacks to be propagated from the classifiers for latter labels to
the classifier for the current label. Most methods, however, can only be used to capture the first or second
order label correlations or are computationally intractable in considering high-order label correlations.

Among ensemble methods, Tsoumakas et al. (2011) break the initial set of labels into a number of
small random subsets and employ the LP algorithm to train a corresponding classifier. Szymariski et al.
(2016) propose to construct a label co-occurrence graph and perform community detection to partition
the label set.

In recent years, some neural network models have also been used for the MLC task. Zhang and Zhou
(2006) propose the BP-MLL that utilizes a fully-connected neural network and a pairwise ranking loss
function. Nam et al. (2013) propose a neural network using cross-entropy loss instead of ranking loss.
Benites and Sapozhnikova (2015) increase classification speed by adding an extra ART layer for cluster-
ing. Kurata et al. (2016) utilize word embeddings based on CNN to capture label correlations. Chen et
al. (2017) propose to represent semantic information of text and model high-order label correlations by
combining CNN with RNN. Baker and Korhonen (2017) initialize the final hidden layer with rows that
map to co-occurrence of labels based on the CNN architecture to improve the performance of the model.
Ma et al. (2018) propose to use the multi-label classification algorithm for machine translation to handle
the situation where a sentence can be translated into more than one correct sentences.

5 Conclusions and Future Work

In this paper, we propose to view the multi-label classification task as a sequence generation problem
to model the correlations between labels. A sequence generation model with a novel decoder structure
is proposed to improve the performance of classification. Extensive experimental results show that the
proposed methods outperform the baselines by a substantial margin. Further analysis of experimental
results demonstrates that our proposed methods not only capture the correlations between labels, but
also select the most informative words automatically when predicting different labels.

As analyzed in Section 3.6.3, when a large number of labels are assigned to a sample, how to predict
all these true labels accurately is an intractable problem. Our proposed methods alleviate this problem to
some extent, but more effective solutions need to be further explored in the future.
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