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Abstract

We investigate the design challenges of constructing effective and efficient neural sequence la-
beling systems, by reproducing twelve neural sequence labeling models, which include most of
the state-of-the-art structures, and conduct a systematic model comparison on three benchmarks
(i.e. NER, Chunking, and POS tagging). Misconceptions and inconsistent conclusions in ex-
isting literature are examined and clarified under statistical experiments. In the comparison and
analysis process, we reach several practical conclusions which can be useful to practitioners.

1 Introduction

Sequence labeling models have been used for fundamental NLP tasks such as POS tagging, chunking
and named entity recognition (NER). Traditional work uses statistical approaches such as Hidden Markov
Models (HMM) and Conditional Random Fields (CRF) (Ratinov and Roth, 2009; Passos et al., 2014; Luo
etal., 2015) with handcrafted features and task-specific resources. With advances in deep learning, neural
models have given state-of-the-art results on many sequence labeling tasks (Ling et al., 2015; Lample et
al., 2016; Ma and Hovy, 2016). Words and characters are encoded in distributed representations (Mikolov
et al., 2013) and sentence-level features are learned automatically during end-to-end training. Many
existing state-of-the-art neural sequence labeling models utilize word-level Long Short-Term Memory
(LSTM) structures to represent global sequence information and a CRF layer to capture dependencies
between neighboring labels (Huang et al., 2015; Lample et al., 2016; Ma and Hovy, 2016; Peters et al.,
2017). As an alternative, Convolution Neural Network (CNN) (LeCun et al., 1989) has also been used
for its ability of parallel computing, leading to an efficient training and decoding process.

Despite them being dominant in the research literature, reproducing published results for neural mod-
els can be challenging, even if the codes are available open source. For example, Reimers and Gurevych
(2017b) conduct a large number of experiments using the code of Ma and Hovy (2016), but cannot
obtain comparable results as reported in the paper. Liu et al. (2018) report lower average F-scores on
NER when reproducing the structure of Lample et al. (2016), and on POS tagging when reproducing Ma
and Hovy (2016). Most literature compares results with others by citing the scores directly (Huang et
al., 2015; Lample et al., 2016) without re-implementing them under the same setting, resulting in less
persuasiveness on the advantage of their models. In addition, conclusions from different reports can
be contradictory. For example, most work observes that stochastic gradient descent (SGD) gives best
performance on NER task (Chiu and Nichols, 2016; Lample et al., 2016; Ma and Hovy, 2016), while
Reimers and Gurevych (2017b) report that SGD is the worst optimizer on the same datasets.

The comparison between different deep neural models is challenging due to sensitivity on experimental
settings. We list six inconsistent configurations in literature, which lead to difficulties for fair comparison.
e Dataset. Most work reports sequence labeling results on both CoNLL 2003 English NER (Tjong
Kim Sang and De Meulder, 2003) and PTB POS (Marcus et al., 1993) datasets (Collobert et al., 2011;
Huang et al., 2015; Ma and Hovy, 2016). Ling et al. (2015) give results only on POS dataset, while some
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Models Word LSTM+CRF Word LSTM Word CNN+CRF Word CNN
Huang et al. (2015)* Ma and Hovy (2016) | Collobert et al. (2011)* | Strubell et al. (2017)*
No Char Lample et al. (2016) Strubell et al. (2017)* | dos Santos et al. (2015)
Strubell et al. (2017)* Strubell et al. (2017)*
Lample et al. (2016) Lample et al. (2016) No existing work No existing work
Char LSTM | Rei (2017)
Liu et al. (2018)
Ma and Hovy (2016) Ma and Hovy (2016) | dos Santos et al. (2015) | Santos and Zadrozny (2014)
Char CNN Chiu and Nichols (2016)*
Peters et al. (2017)

Table 1: Neural sequence labeling models in literatures. * represents using handcrafted neural features.

papers (Chiu and Nichols, 2016; Lample et al., 2016; Strubell et al., 2017) report results on the NER
dataset only. dos Santos et al. (2015) conducts experiments on NER for Portuguese and Spanish.

Most work uses the development set to select hyperparameters (Lample et al., 2016; Ma and Hovy,
2016), while others add development set into training set (Chiu and Nichols, 2016; Peters et al., 2017).
Reimers and Gurevych (2017b) use a smaller dataset (13862 vs 14987 sentences). Different from Ma and
Hovy (2016) and Liu et al. (2018), Huang et al. (2015) choose a different data split on the POS dataset.
Liu et al. (2018) and Hashimoto et al. (2017) use different development sets for chunking.

e Preprocessing. A typical data preprocessing step is to normize digit characters (Chiu and Nichols,
2016; Lample et al., 2016; Yang et al., 2016; Strubell et al., 2017). Reimers and Gurevych (2017b) use
fine-grained representations for less frequent words. Ma and Hovy (2016) do not use preprocessing.

e Features. Strubell et al. (2017) and Chiu and Nichols (2016) apply word spelling features and Huang
et al. (2015) further integrate context features. Collobert et al. (2011) and Huang et al. (2015) use neural
features to represent external gazetteer information. Besides, Lample et al. (2016) and Ma and Hovy
(2016) use end-to-end structure without handcrafted features.

o Hyperparameters including learning rate, dropout rate (Srivastava et al., 2014), number of layers,
hidden size etc. can strongly affect the model performance. Chiu and Nichols (2016) search for the
hyperparameters for each task and show that the system performance is sensitive to the choice of hyper-
parameters. However, existing models use different parameter settings, which affects the fair comparison.
e Evaluation. Some literature reports results using mean and standard deviation under different random
seeds (Chiu and Nichols, 2016; Peters et al., 2017; Liu et al., 2018). Others report the best result among
different trials (Ma and Hovy, 2016), which cannot be compared directly.

e Hardware environment can also affect system accuracy. Liu et al. (2018) observes that the system
gives better accuracy on NER task when trained using GPU as compared to using CPU. Besides, the
running speeds are highly affected by the hardware environment.

To address the above concerns, we systematically analyze neural sequence labeling models on three
benchmarks: CoNLL 2003 NER (Tjong Kim Sang and De Meulder, 2003), CoNLL 2000 chunking
(Tjong Kim Sang and Buchholz, 2000) and PTB POS tagging (Marcus et al., 1993). Table 1 shows
a summary of the models we investigate, which can be categorized under three settings: (i) character
sequence representations ; (ii) word sequence representations; (iii) inference layer. Although various
combinations of these three settings have been proposed in the literature, others have not been examined.
We compare all models in Table 1, which includes most state-of-the-art methods. To make fair com-
parisons, we build a unified framework! to reproduce the twelve neural sequence labeling architectures
in Table 1. Experiments show that our framework gives comparable or better results on reproducing
existing works, showing the practicability and reliability of our analysis for practitioners. The detailed
comparison and analysis show that (i) Character information provides a significant improvement on ac-
curacy; (ii) Word-based LSTM models outperforms CNN models in most cases; (iii) CRF can improve
model accuracy on NER and chunking but does not on POS tagging. Our framework is based on PyTorch
with batched implementation, which is highly efficient, facilitating quick configurations for new tasks.

'Our code has been released at https: //github.com/jiesutd/NCRFpp.
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Figure 1: Neural sequence labeling architecture for sentence “COLING is held at New Mexico”. Green,
red, yellow and blue circles represent character embeddings, word embeddings, character sequence rep-
resentations and word sequence representations, respectively.

2 Related Work

Collobert et al. (2011) proposed a seminal neural architecture for sequence labeling. It captures word
sequence information with a one-layer CNN based on pretrained word embeddings and handcrafted
neural features, followed with a CRF output layer. dos Santos et al. (2015) extended this model by
integrating character-level CNN features. Strubell et al. (2017) built a deeper dilated CNN architecture
to capture larger local features. Hammerton (2003) was the first to exploit LSTM for sequence labeling.
Huang et al. (2015) built a BILSTM-CREF structure, which has been extended by adding character-level
LSTM (Lample et al., 2016; Liu et al., 2018), GRU (Yang et al., 2016), and CNN (Chiu and Nichols,
2016; Ma and Hovy, 2016) features. Yang et al. (2017a) proposed a neural reranking model to improve
NER models. These models achieve state-of-the-art results in the literature.

Reimers and Gurevych (2017b) compared several word-based LSTM models for several sequence
labeling tasks, reporting the score distributions over multiple runs rather than single value. They inves-
tigated the influence of various hyperparameters and configurations. Our work is similar in comparing
different neural architectures under unified settings, but differs in four main aspects: 1) Their exper-
iments are based on a BILSTM with handcrafted word features, while our experiments are based on
end-to-end neural models without human knowledge. 2) Their system gives relatively low performances
on standard benchmarks?, while ours can give comparable or better results with state-of-the-art models,
rendering our observations more informative for practitioners. 3) Our findings are more consistent with
most previous work on configurations such as usefulness of character information (Lample et al., 2016;
Ma and Hovy, 2016), optimizer (Chiu and Nichols, 2016; Lample et al., 2016; Ma and Hovy, 2016)
and tag scheme (Ratinov and Roth, 2009; Dai et al., 2015). In contrast, many results of Reimers and
Gurevych (2017b) contradict existing reports. 4) We conduct a wider range of comparison for word
sequence representations, including all combinations of character CNN/LSTM and word CNN/LSTM
structures, while Reimers and Gurevych (2017b) studied the word LSTM models only.

3 Neural Sequence Labeling Models

Our neural sequence labeling framework contains three layers, i.e., a character sequence representation
layer, a word sequence representation layer and an inference layer, as shown in Figure 1. Character in-
formation has been proven to be critical for sequence labeling tasks (Chiu and Nichols, 2016; Lample et
al., 2016; Ma and Hovy, 2016), with LSTM and CNN being used to model character sequence informa-
tion (“Char Rep.”). Similarly, on the word level, LSTM or CNN structures can be leveraged to capture
long-term information or local features (“Word Rep.”), respectively. Subsequently, the inference layer
assigns labels to each word using the hidden states of word sequence representations.

Based on their detailed experiment report (Reimers and Gurevych, 2017a), the Fl-scores on CoNLL 2003 NER task are
generally less than 90%, while state-of-the-art results are around 91%.
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Figure 2: Neural character sequence representations.

3.1 Character Sequence Representations

Character features such as prefix, suffix and capitalization can be represented with embeddings through
a feature-based lookup table (Collobert et al., 2011; Huang et al., 2015; Strubell et al., 2017), or neural
networks without human-defined features (Lample et al., 2016; Ma and Hovy, 2016). In this work, we
focus on neural character sequence representations without hand-engineered features.

Character CNN. Using a CNN structure to encode character sequences was firstly proposed by Santos
and Zadrozny (2014), and followed by many subsequent investigations (dos Santos et al., 2015; Chiu
and Nichols, 2016; Ma and Hovy, 2016). In our experiments, we take the same structure as Ma and
Hovy (2016), using one layer CNN structure with max-pooling to capture character-level representations.
Figure 2(a) shows the CNN structure on representing word “Mexico”.

Character LSTM. Shown as Figure 2(b), in order to model the global character sequence informa-
tion of a word “Mexico”, we utilize a bidirectional LSTM on the character sequence of each word and
concatenate the left-to-right final state Fg7ps and the right-to-left final state By g as character se-
quence representations. Liu et al. (2018) applied one bidirectional LSTM for the character sequence
over a sentence rather than each word individually. We examined both structures and found that they
give comparable accuracies on sequence labeling tasks. We choose Lample et al. (2016)’s structure as its
character LSTMs can be calculated in parallel, making the system more efficient.

3.2 Word Sequence Representations

Similar to character sequences in words, we can model word sequence information through LSTM or
CNN structures. LSTM has been widely used in sequence labeling (Lample et al., 2016; Ma and Hovy,
2016; Chiu and Nichols, 2016; Huang et al., 2015; Liu et al., 2018). CNN can be much faster than LSTM
due to the fact that convolution calculation can be parallel on the input sequence (Collobert et al., 2011;
dos Santos et al., 2015; Strubell et al., 2017).

Word CNN. Figure 3(a) shows the multi-layer CNN on word sequence, where words are represented
by embeddings. If a character sequence representation layer is used, then word embeddings and character
sequence representations are concatenated for word representations. For each CNN layer, a window of
size 3 slides along the sequence, extracting local features on the word inputs and a ReL.U function (Glorot
et al., 2011) is followed. We follow Strubell et al. (2017) by using 4 CNN layers. Batch normalization
(Ioffe and Szegedy, 2015) and dropout (Srivastava et al., 2014) are applied following each CNN layer.

Word LSTM. Shown in Figure 3(b), word representations are fed into a forward LSTM and backward
LSTM, respectively. The forward LSTM captures the word sequence information from left to right, while
the backward LSTM extracts information in a reversed direction. The hidden states of the forward and
backward LSTMs are concatenated at each word to give global information of the whole sequence.

3.3 Inference Layer

The inference layer takes the extracted word sequence representations as features and assigns labels to the
word sequence. Independent local decoding with a linear layer mapping word sequence representations
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Figure 3: Neural word sequence representations.

to label vocabulary and performing softmax can be quite effective (Ling et al., 2015), while for tasks that
with strong output label dependency, such as NER, CRF is a more appropriate choice. In this work, we
examine both softmax and CRF as inference layer on three sequence labeling tasks.

4 [Experiments

We investigate the main influencing factors to system accuracy, including the character sequence rep-
resentations, word sequence representations, inference algorithm, pretrained embeddings, tag scheme,
running environment and optimizer; analyzing system performances from the perspective of decoding
speed and accuracies on in-vocabulary (IV) and out-of-vocabulary (OOV) entities/chunks/words.

4.1 Settings

Data. The NER dataset has been standardly split in Tjong Kim Sang and De Meulder (2003). It contains
four named entity types: PERSON, LOCATION, ORGANIZATION, and MISC. The chunking task is
evaluated on CoNLL 2000 shared task (Tjong Kim Sang and Buchholz, 2000). We follow Reimers
and Gurevych (2017a) by using sections 15-18 of Wall Street Journal (WSJ) for training, section 19
as development set and section 20 as test set. For the POS tagging task, we use the WSJ portion of
Peen Treebank, which has 45 POS tags. Following previous works (Toutanova et al., 2003; Santos and
Zadrozny, 2014; Ma and Hovy, 2016; Liu et al., 2018), we adopt the standard splits by using sections
0-18 as training set, sections 19-21 as development set and sections 22-24 as test set. No preprocessing
is performed on either dataset except for normalizing digits. The dataset statistics are listed in Table 2.

Hyperparameters. Table 3 shows the hyperparameters used in our experiments, which mostly follow
Ma and Hovy (2016), including the learning rate 7 = 0.015 for word LSTM models. For word CNN
based models, a large n leads to convergence problem. We take n = 0.005 with more epochs (200)
instead. GloVe 100-dimension (Pennington et al., 2014) is used to initialize word embeddings and char-
acter embeddings are randomly initialized. We use mini-batch stochastic gradient descent (SGD) with a
decayed learning rate to update parameters. For NER and chunking, we the BIOES tag scheme.

Evaluation. Standard precision (P), recall (R) and F1-score (F) are used as the evaluation metrics for
NER and chunking; token accuracy is used to evaluate the performance of POS tagger. Development
datasets are used to select the optimal model among all epochs, and we report scores of the selected
model on the test dataset. To reduce the volatility of the system, we conduct each experiment 5 times
under different random seeds, and report the max, mean, and standard deviation for each model.

4.2 Results

Tables 4, 5 and 6 show the results of the twelve models on NER, chunking and POS datasets, respec-
tively. Existing work has also been listed in the tables for comparison. To simplify the description,
we use “CLSTM” and “CCNN?” to represent character LSTM and character CNN encoder, respectively.
Similarly, “WLSTM” and “WCNN” represent word LSTM and word CNN structure, respectively.
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Dataset Train | Dev | Test | Label Parameter Value || Parameter Value
#Sent 14,987 | 3,644 | 3,486 char emb size 30 word emb size 100
NER | #Token | 205k | 52k | 47k | 17 char hidden 50 | word hidden 200
#Entity | 23,523 | 5,943 | 5,654 CNN window 3 word CNN layer 4
. #Sent 8,936 | 1,844 2,012 batch size 10 dropout rate 0.5
chunking | #Token | 212k A4k 47k 42 Ly regularization A | le-8 learning rate decay | 0.05
#Chunk | 107k | 22k | 24k word LSTM 7 0.015 || word CNN 7 0.005
pos | #Sent | 3821955275462 . word LSTM epochs | 100 || word CNN epochs | 200
#Token | 912k | 132k | 130k

Table 2: Statistics of datesets. Table 3: Hyperparameters.

As shown in Table 4, most NER work focuses on WLSTM+CREF structures with different character
sequence representations. We re-implement the structure of several reports (Chiu and Nichols, 2016; Ma
and Hovy, 2016; Peters et al., 2017), which take the CCNN+WLSTM+CRF architecture. Our reproduced
models give slightly better performances. The results of Lample et al. (2016) can be reproduced by our
CLSTM+WLSTM+CREFE. In most cases, our “Nochar” based models underperform their corresponding
prototypes (Huang et al., 2015; Strubell et al., 2017), which utilize the hand-crafted features.

Table 5 shows the results of the chunking task. Peters et al. (2017) give the best reported single model
results (95.00£0.08), and our CLSTM+WLSTM+CRF gives a comparable performance (94.93+0.05).
We re-implement Zhai et al. (2017)’s model in our Nochar+WLSTM but cannot reproduce their results,
this may because that they use grid search for hyperparameter selection. Our Nochar+ WCNN+CRF can
give comparable results with Collobert et al. (2011), even ours does not include character information.

The results of the POS tagging task is shown in Table 6. The results of Lample et al. (2016),
Ma and Hovy (2016) and Yang et al. (2017b) can be reproduced by our CLSTM+WLSTM+CRF and
CCNN+WLSTM+CRF models. Our WLSTM based models give better results than WLSTM+CRF
based models, this is consistent with the fact that Ling et al. (2015) take CLSTM+WLSTM without CRF
layer but achieve the best POS accuracy. Santos and Zadrozny (2014) build a pure CNN structure on
both character and word level, which can be reproduced by our CCNN+WCNN models.

Based on above observations, most results in the literature are reproducible. Our implementations can
achieve the comparable or better results with state-of-the-art models. We do not fine-tune any hyperpa-
rameter to fit the specific task. Results on Table 4, 5 and 6 are all under the same hyperparameters, which
demonstrates the generalization ability of our framework.

4.3 Network settings

Character LSTM vs Character CNN. Unlike the observations of Reimers and Gurevych (2017b), in
our experiments, character information can significantly (p < 0.01)? improve sequence labeling models
(by comparing the row of Nochar with CLSTM or CCNN on Table 4, 5 and 6), while the difference
between CLSTM and CCNN is not significant. In most cases, CLSTM and CCNN can give comparable
results under different frameworks and different tasks. CCNN gives the best NER result under the WL-
STM+CREF framework, while CLSTM gets better NER results in all other configurations. For chunking
and POS tagging, CLSTM consistently outperforms CCNN under all settings, while the difference is
statistically insignificant (p > 0.2). We conclude that the difference between CLSTM and CCNN is
small, which is consistent with the observation of Reimers and Gurevych (2017b).

Word LSTM vs Word CNN. By comparing the performances of WLSTM+CRF, WLSTM with
WCNN+CRF, WCNN on the three benchmarks, we conclude that word-based LSTM models are sig-
nificantly (p < 0.01) better than word-based CNN models in most cases. It demonstrates that global
word context information is necessary for sequence labeling.

Softmax vs CRF. Models with CRF inference layer can consistently outperform the models with
softmax layer under all configurations on NER and chunking tasks, proving the effectiveness of label
dependency information. While for POS tagging, the local softmax based models give slightly better
accuracies while the difference is insignificant (p > 0.2).

3We use r-test to calculate the p value, reporting the highest p value when giving the conclusions on multiple configurations.
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Results (F1-score) NER
WLSTM+CRF [ WLSTM | WCNN+CRF | WCNN
90.10 (H-15)* 87.00 (M-16) | 89.59 (C-11)* | 89.97 (S-17)*
Literature 90.20 (L-16) 89.34 (S-17)* | 90.54 (S-17)*
Nochar 90.43 (S-17)*
Ours Max 89.45 88.57 88.90 88.56
Mean=+std | §9.31£0.10 88.494+0.17 88.65+0.20 88.50£0.05
. 90.94 (L-16) 89.15 (L-16)
CLSTM Literature 91.20 (Y-17)t - -
Ours Max 91.20 90.84 90.70 90.46
Mean=std | 91.08£0.08 90.77+£0.06 90.48+0.23 90.28+0.30
90.91+0.20 (C-16) | 89.36 (M-16)
Literature 91.21 (M-16) - -
CCNN 90.8740.13 (P-17)
ours | Max 91.35 90.73 90.43 90.51
Mean=+tstd | 91.11£0.21 90.60+0.11 90.284+0.09 90.26+0.19
Table 4: Results for NER.*
chunking
Results (F11-score) WLSTM+CRF | WLSTM | WCNN+CRF | WCNN
Literature 94.46 (H-15)* 94.13 (Z-17) ] 9432 (C-1D)* |
Nochar 95.02 (H-17)*
Ours Max 94.49 93.79 94.23 94.12
Mean=std | 94.37+0.11 93.754+0.04 94.11£0.08 94.08+0.06
. 93.15 (R-17)
CLSTM Literature 94.66 (Y-17)t - - -
Ours Max 95.00 94.33 94.76 94.55
Mean=+tstd | 94.93+0.05 94.284+0.04 94.66+0.01 94.484+0.07
Literature 95.00£0.08 (P-17) | — - -
CCNN [ [ Max 95.06 9424 9477 9451
Meanstd | 94.8640.14 94.194+0.04 | 94.664+0.13 | 94.4740.03
Table 5: Results for chunking.*
POS
Results (Accuracy) I GTGTM+CRF | WLSTM | WCNN+CRF | WCNN
Literature 97.55 (H-15)* 96.93 M-16) | 97.29 (C-11)* | 96.13 (S-14)
Nochar 97.45 (H-17)*
Ours Max 97.20 97.23 96.99 97.07
Mean=std | 97.19+0.01 97.20+0.02 96.95+0.04 97.011+0.04
Literature 97.354+0.09 (L-16)t | 97.78 (L-15) B B
CLSTM 97.55 (Y-17)i
Ours Max 97.49 97.51 97.38 97.38
Mean=+std | 97.47+0.02 97.484+0.02 97.334+0.03 97.334+0.04
Literature 97.55 (M-16) 9733 (M-16) | — 97.32 (S-14)
CCNN Ours Max 97.46 97.51 97.33 97.33
Mean=std | 97.4340.02 97.4440.04 | 97.29+0.03 | 97.30+0.02

Table 6: Results for POS tagging.*

* In Tables 4, 5 and 6, the abbreviation (C-11)=Collobert et al. (2011), (S-14)=Santos and Zadrozny (2014), (H-15)=Huang
et al. (2015), (L-16)=Lample et al. (2016), (M-16)=Ma and Hovy (2016), (C-16)=Chiu and Nichols (2016), (Z-17)=Zhai et
al. (2017), (H-17)=Hashimoto et al. (2017), (Y-17)=Yang et al. (2017b), (R-17)=Rei (2017), (S-17)=Strubell et al. (2017) and
(P-17)=Peters et al. (2017). * suggests that models with handcrafted features. Results of (L-16)7 is reported by Liu et al.
(2018) by running the code of Lample et al. (2016) on the corresponding dataset. (Y-17)f use GRU for character and word
sequence representations; here we regard GRU as a variant of LSTM.
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Figure 4: Performance comparison on the CoNLL 2003 NER task.

4.4 External factors

In addition to model structures, external factors such as pretrained embeddings, tag scheme, and opti-
mizer can significantly influence system performance. We investigate a set of external factors on the
NER dataset with the two best models: CLSTM+WLSTM+CRF and CCNN+WLSTM+CRF.

Pretrained embedding. Figure 4(a) shows the F1-scores of the two best models on the NER test
set with two different pretrained embeddings, as well as the random initialization. Compared with the
random initialization, models using pretrained embeddings give significant improvements (p < 0.01).
The GloVe 100-dimension embeddings give higher F1-scores than SENNA (Collobert et al., 2011) on
both models, which is consistent with the observation of Ma and Hovy (2016).

Tag scheme. We examine two different tag schemes: BIO and BIOES (Ratinov and Roth, 2009). The
results are shown in Figure 4(b). In our experiments, models using BIOES are significantly (p < 0.05)
better than BIO. Our observation is consistent with most literature (Ratinov and Roth, 2009; Dai et al.,
2015). Reimers and Gurevych (2017b) report that the difference between the schemes is insignificant.

Running environment. Liu et al. (2018) observe that neural sequence labeling models can give better
results on GPU rather than CPU. We conduct repeated experiments on both GPU and CPU environments.
The results are shown in Figure 4(b). Models run on CPU give a lower mean F1-score than models run
on GPU, while the difference is insignificant (p > 0.2).

Optimizer. We compare different optimizers including SGD, Adagrad (Duchi et al., 2011), Adadelta
(Zeiler, 2012), RMSProp (Tieleman and Hinton, 2012) and Adam (Kingma and Ba, 2014). The results
are shown in Figure 5°. In contrast to Reimers and Gurevych (2017b), who reported that SGD is the
worst optimizer, our results show that SGD outperforms all other optimizers significantly (p < 0.01),
with a slower convergence process during training. Our observation is consistent with most literature
(Chiu and Nichols, 2016; Lample et al., 2016; Ma and Hovy, 2016).

4.5 Analysis

Decoding speed. We test the decoding speeds of the twelve models on the NER dataset using a Nvidia
GTX 1080 GPU. Figure 6 shows the decoding times on 10000 NER sentences. The CRF inference
layer severely limits the decoding speed due to the left-to-right inference process, which disables the
parallel decoding. Character LSTM significantly slows down the system. Compared with models without
character information, adding character CNN representations does not affect the decoding speed too
much but can give significant accuracy improvements (shown in Section 4.3). Due to the support of
parallel computing, word-based CNN models are consistently faster than word-based LSTM models,
with close accuracies, leading to large utilization potential in practice.

>We fine-tune the learning rates for Adagrad, Adadelta, RMSProp and Adam, and report the best results in the figure.
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Figure 5: Optimizers. Figure 6: Decoding times (10000 NER sentences).
Results NER (F1-score) chunking (F1-score) POS (Accuracy)

v OOTV OOEV OOBV | IV OOTV OOEV OOBV | IV OOTV OOEV OOBV
Nochar+WLSTM+CRF | 91.33 87.36  100.00 69.68 | 94.87 90.84 9551 9147 |97.51 89.76 94.07 75.36
CLSTM+WLSTM+CRF | 92.18 90.63  100.00 78.57 | 95.20 92.65 9438 94.01 | 97.63 93.82 94.07 87.32
CCNN+WLSTM+CRF | 91.76 91.25 100.00 81.58 | 95.15 9234 97.75 9355 |97.62 9333 94.69 83.82
Nochar+WCNN+CRF 90.71 86.99 100.00 69.09 | 9456 9098 9326 91.71 |97.29 89.10 9417 74.15
CLSTM+WCNN+CRF | 91.59 90.07 100.00 77.92 |95.02 91.86 9438 9332 | 9748 93.28 94.17 88.29
CCNN+WCNN+CRF 91.35 90.46 100.00 78.88 |94.83 9242 96.63 9240 |97.46 9274 93.86 87.80

Table 7: Results for OOV analysis.

OOV error. We conduct error analysis on in-vocabulary and out-of-vocabulary words with the CRF
based models®. Following Ma and Hovy (2016), words in the test set are divided into four subsets:
in-vocabulary words, out-of-training-vocabulary words (OOTV), out-of-embedding-vocabulary words
(OOEV) and out-of-both-vocabulary words (OOBV). For NER and chunking, we consider entities or
chunks rather than words. The OOV entities and chunks are categorized following Ma and Hovy (2016).

Table 7 shows the performances of different OOV splits on three benchmarks. The top three rows
list the performances of word-based LSTM CRF models, followed by the word-based CNN CRF mod-
els. The results of OOEV in NER keep 100% because of there exist only 8 OOEV entities and all are
recognized correctly. It is obvious that character LSTM or CNN representations improve OOTV and
OOBYV the most on both WLSTM+CRF and WCNN+CRF models across all three datasets, proving that
the main contribution of neural character sequence representations is to disambiguate the OOV words.
Models with character LSTM representations give the best IV scores across all configurations, which
may be because character LSTM can be well trained on IV data, bringing the useful global character
sequence information. On the OOVs, character LSTM and CNN gives comparable results.

5 Conclusion

We built a unified neural sequence labeling framework to reproduce and compare recent state-of-the-
art models with different configurations. We explored three neural model design decisions: character
sequence representations, word sequence representations, and inference layer. Experiments show that
character information helps to improve model performances, especially on disambiguating OOV words.
Character-level LSTM and CNN structures give comparable improvements, with the latter being more
efficient. In most cases, models with word-level LSTM encoders outperform those with CNN, at the
expense of longer decoding time. We observed that the CRF inference algorithm is effective on NER
and chunking tasks, but does not have the advantage on POS tagging. With controlled experiments
on the NER dataset, we showed that BIOES tags are better than BIO. Besides, pretrained GloVe 100d
embedding and SGD optimizer give significantly better performances compared to their competitors.

5We choose the models that give the median performance on the test set for conducting result analysis.
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