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Abstract

We study the problem of grounding distributional representations of texts on the visual domain,
namely visual-semantic embeddings (VSE for short). Begin with an insightful adversarial attack
on VSE embeddings, we show the limitation of current frameworks and image-text datasets (e.g.,
MS-COCO) both quantitatively and qualitatively. The large gap between the number of possible
constitutions of real-world semantics and the size of parallel data, to a large extent, restricts the
model to establish a strong link between textual semantics and visual concepts. We alleviate this
problem by augmenting the MS-COCO image captioning datasets with textual contrastive adver-
sarial samples. These samples are synthesized using language priors of human and the WordNet
knowledge base, and enforce the model to ground learned embeddings to concrete concepts within
the image. This simple but powerful technique brings a noticeable improvement over the baselines
on a diverse set of downstream tasks, in addition to defending known-type adversarial attacks.
Codes are available at https://github.com/ExplorerFreda/VSE-C.

1 Introduction

The visual grounding of language plays an indispensable role in our daily lives. We use language to
name, refer, and describe objects, their properties and generally, visual concepts. Distributional semantics
(e.g., global word embedding (Pennington et al., 2014)) based on large-scale corpora have shown great
success in modeling the functionality and correlation of words in the natural language domain. This further
contributes to the success in numerous natural language processing (NLP) tasks such as language modeling
(Cheng et al., 2016; Inan et al., 2017), sentiment analysis (Cheng et al., 2016; Kumar et al., 2016), and
reading comprehension (Cheng et al., 2016; Chen et al., 2016; Shen et al., 2017). However, effective and
efficient grounding of distributional embeddings remains challenging. Being ignorant of the corresponding
visual concepts, pure textual embeddings demonstrate inferior performances when incorporating with
visual inputs. Typical tasks include image/video captioning, multi-modal retrieval/understanding, and
visual reasoning, some of which are further extensively studied in the paper.

Visual concept and its link with textual semantics, as a cognitive alignment, provide rich supervision
to learning systems. Visual-Semantic Embedding (VSE) aims at building the bridge between natural
language and the underlying visual world. Introduced by Kiros et al. (2014), the embedding spaces of
both images and descriptive texts (captions) are jointly optimized and aligned. Nevertheless, even for
large-scale datasets such as MS-COCO (Lin et al., 2014), the number of image-caption pairs are far less
than the number of possible constitutions of real-world semantics, making the dataset inevitably sparse
and biased.

To reveal this, we begin with constructing textual adversarial samples to attack the state-of-the-art
system VSE++ (Faghri et al., 2017). Specifically, we study the composition of sentences in two aspects:
(1) content words including nouns and numerals and (2) prepositions indicating spatial relations (e.g., in,

∗ Work was done when HS, JM and TX were intern researchers at Megvii Inc. HS, JM and TX contribute equally to this
paper.
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/



3716

Three giraffes and a rhino graze from trees.

relation: graze from

Original CaptionImage Contrastive Adversarial Samples

Three cows and a rhino graze from trees.

noun:

numeral / indefinite article:

Three giraffes and three rhinos graze from trees.

relation:

Three giraffes and a rhino graze on trees.
Trees graze from three giraffes and a rhino.

numeral indef. nounnoun noun

Figure 1: An overview of our textual contrastive adversarial samples. For each caption, we have three
paradigms to generate contrastive adversarial samples, i.e., noun, numeral and relation. For an given
image, we expect the model to distinguish the real captions against the generated adversarial ones.

on, above, below). As shown in Figure 1, we manipulate the original caption to construct hard negative
captions with similar structure but completely contradictory semantics. We found that the models easily
get confused, suffering a noticeable drop in confidence or even wrong predictions in the caption retrieval
task.

We propose VSE-C, which enforces the learning of correlation and correspondence between textual
semantics and visual concepts by providing contrastive adversarial samples during the training procedure,
incorporating with an intra-pair hard negative sample mining. Instead of defending adversarial attacks,
we focus on the study of limitations of current visual-semantic datasets and the transferability of learned
embeddings. To fulfill the large gap between the number of parallel image-caption pairs and the expres-
siveness of natural languages, we augment the data by employing a set of heuristic rules to generate large
sets of contrastive negative captions, as demonstrated in Figure 1. The candidates are selectively used for
training by an intra-pair hard-example mining technique. VSE-C alleviate the bias of dataset and provide
rich and effective samples on par with original image captions. This strengthen the link between text and
visual concepts by requiring models to detect a mismatch on the level of some precise concepts.

VSE-C learns discriminative and visually-grounded word embeddings on the MS-COCO dataset (Lin
et al., 2014). It is extensively compared with existing works with rich experiments and analyses. Most
importantly, we explore the transferability of the learned embeddings on several real-world applications
both qualitatively and quantitatively, including image-to-text retrieval and bidirectional word-to-concept
retrieval. Furthermore, VSE-C demonstrates a general framework for augmenting textual inputs consider-
ing semantical consistency. The introduction human priors and knowledge bases alleviates the sparsity
and non-contiguity of languages. We hope the framework and the released data are beneficial for building
more robust and data-efficient models.

2 Related works

Joint embeddings Joint embedding is a common technique for a wide range of tasks incorporating
multiple domains, including audio-video embeddings for unsupervised representation learning (Ngiam
et al., 2011), shape-image embeddings (Li et al., 2015) for shape inference, bilingual word embeddings
for machine translation (Zou et al., 2013), human pose-image embeddings for pose inference (Li, 2011),
image-text embeddings for visual description (Reed et al., 2016), and global representation learning from
multiple domains (Castrejon et al., 2016). These embeddings map multiple domains into a joint vector
space which describes the semantical relations between inputs (e.g., distance, correlation).

We focus on the visual-semantic embedding (Mao et al., 2016; Kiros et al., 2014; Faghri et al., 2017),
learning word embeddings with visually-grounded semantics. Examples of related applications include
image caption retrieval and generation (Kiros et al., 2014; Karpathy and Fei-Fei, 2015), and visual
question-answering (Malinowski et al., 2015).

Image-to-text translation Canonical Correlation Analysis (CCA) (Hotelling, 1936) is a statistical
method that projects two views linearly into a common space to maximize their correlation. (Andrew et al.,
2013) proposes a deep learning framework to extend CCA so that it is able to learn nonlinear projections



3717

and has better scalability on relatively large datasets.
In the state-of-the-art frameworks, the pairwise ranking is often adopted to learn a distance met-

ric (Socher et al., 2014; Niu et al., 2017; Nam et al., 2017). (Frome et al., 2013) proposes a cross-modal
feature embedding framework that uses CNN and Skip-Gram (Mikolov et al., 2013) to extract representa-
tions for images and texts respectively, then an objective is applied to ensure that the distance between
the matched image-text pair is smaller than that between the mismatched pair. A similar framework
proposed by (Kiros et al., 2014) uses a Gated Recurrent Unit (GRU) as the sentence encoder. (Wang et al.,
2016) uses a bidirectional loss function with structure-preserving constraints. An attention mechanism on
both image and caption is used by (Nam et al., 2017) where the model estimates the similarity between
images and texts by sequentially focusing on a subset of image regions and words that have shared
semantics. (Huang et al., 2017) utilizes a multi-modal context-modulated attention mechanism to compute
the similarity between an image and a caption. (Faghri et al., 2017) proposes a novel loss to penalize the
hard negatives, i.e., the closest mismatched pairs, instead of averaging the individual violations across all
negatives in (Kiros et al., 2014).

Adversarial attack in text domain Adversarial attacks have recently drawn significant attention in
the deep learning community. The adversarial attacks spread over multiple domains including image
classification (Nguyen et al., 2015), image segmentation and object detection (Xie et al., 2017), and textual
reading comprehension (Jia and Liang, 2017), and deep reinforcement learning (Kos and Song, 2017).

In this paper, we present textual adversarial attacks in image-to-text translation systems such as
image caption frameworks. While focusing on the problem of learning visually-grounded semantics,
the adversarial attack brings new solutions to fulfill the gap between limited training data and numerous
constitutions of natural languages. With extensive experiments on the effects of the adversarial samples,
we reach the conclusion that current visual-semantic embeddings are “insensitive” to the underlying
semantics. The proposed VSE-C shows advance across multiple visual-semantic tasks.

3 Method

3.1 Preliminaries

Word embeddings We manually split the embeddings of each word into two parts: distributional em-
beddings, and visually-grounded embeddings. We use GloVe (Pennington et al., 2014) as the distributional
embeddings, pre-trained unsupervisedly on large-scale corpora. We focus on the visually-grounded
embeddings of words. The embeddings are optimized using the visual-semantic embedding (VSE)
technique.

Visual-semantic embeddings VSE optimizes and aligns the latent space of both visual and textual
domains. Parallel data are typically obtained from image captioning datasets such as Flickr30K (Young et
al., 2014) or MS-COCO (Lin et al., 2014). The training set S = {(in, cn)}N contains N image-caption
pairs. Typically all (in, cm), n 6= m and (im, cn), n 6= m form the negative samples for a specific pair
(in, cn).

Following the notations used by (Kiros et al., 2014), domain-specific encoders are first employed
to extract latent features of both images and captions, denoted as φ(i) and ψ(c), respectively. We use
ResNet-152 (He et al., 2016) as visual domain encoder and GRU as text domain sentence encoder, which
are both effective for VSE. They are projected into a joint latent space with a linear transformation. A
hinge loss with margin α is employed to optimize the alignment:

`V SE(i, c) =
∑
c′

[α+ s(i, c′)− s(i, c)]+ +
∑
i′

[α+ s(i′, c)− s(i, c)]+ , (1)

where [·]+ = max(0, ·), and s(i, c) =W T
i f(i; θi) ·W T

c g(c; θc) measuring the distance between projected
image embedding W T

i f(i; θi) and caption embedding W T
c g(c; θc). The summations are taken over all

image-caption pairs within a sampled batch.
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Class Original Caption Contrastive Adversarial Example
Noun A person feeding a cat with a banana. A person feeding a dog with a banana.
Numeral A person feeding a cat with a banana. A person feeding five cats with a banana.
Relation-1 A person feeding a cat with a banana. A cat feeding a person with a banana.
Relation-2 A person feeding a cat with a banana. A person feeding a cat in a banana.

Table 1: Examples of contrastive adversarial samples generated with our heuristic rules and knowledge
from WordNet. The samples can be classified into four types: noun replacement, numeral replacement,
relation shuffling, and relation replacement.

3.2 Generating contrastive adversarial samples

Our contrastive adversarial samples can be split into three classes: noun, numeral and relation. Each class
of samples is generated separately.

Noun. We extract a list of heads (Zwicky, 1985) of noun phrases in MS-COCO dataset and label those
with frequency larger than 200 be frequent heads. In addition, since images usually reflect concrete
concepts better than abstract ones, we compute the concreteness of words following Turney et al. (2011),
and only consider those heads with concreteness larger than θ = 0.6. Only frequent concrete heads can be
replaced by other frequent concrete heads with different meaning to form contrastive adversarial samples.

While replacing, we utilize the hypernymy/hyponymy relations in WordNet (Miller, 1995) to confirm
the original noun and the corresponding contrastive adversarial sample are semantically different. Only
words without hypernymy or hyponymy relations can be used as the replacement for adversarial sample
generation. For example, “animal” is a hypernym of “cat”. Therefore, “A person feeding an animal with a
banana” cannot be a valid generated contrastive adversarial caption for the image with the caption of “A
person feeding a cat with a banana.”

Numeral. For each caption, we detect numerals and replace them with other numerals indicating
different quantities to form contrastive adversarial samples. Note that “a” and “an” are treated as “one”
here, though they are (indefinite) articles instead of numerals. Meanwhile, we singularize or pluralize the
corresponding nouns when necessary.

Relation. The relation class includes two different paradigms.
The first one can be viewed as shuffle of noninterchangeable noun phrases. After extracting noun

phrases of a caption, we shuffle them and put them back to the original positions. Although the bag of
words features of the two sentences (caption) remain the same, the semantic meaning alters through this
process.

The second one is replacement of prepositions. We extract the prepositions with frequency higher than
200 in MS-COCO dataset. Then we manually annotate a semantic overlap table, which can be found in
Appendix A. In this table, words in the same set may have semantic overlap with each other, e.g., by and
with, in and among.

The noun phrase detection, preposition detection and numeral detection mentioned above are performed
with SpaCy (Honnibal and Johnson, 2015). Examples of different classes of contrastive adversarial sample
generation are shown in Table 1.

3.3 Intra-pair hard negative mining

We extend the online hard example mining (OHEM) technique used by VSE++(Faghri et al., 2017). The
original hinge loss is computed by choosing the hardest sample within an batch (inter-pair). Mathemati-
cally,

`VSE++(i, c) = max
c′ 6=c

[α+ s(i, c′)− s(i, c)] + max
i′ 6=i

[α+ s(i′, c)− s(i, c)]. (2)

There are two major concerns regarding the in-batch hard negative mining. On one hand, mining
negatives from a single batch is inefficient when batch size is not comparable with the size of the dataset.
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On the other hand, for real-world datasets, taking the max in loss function tends to be very sensitive to
label noise, resulting in fake negative samples.

In contrast, given an image-caption pair (i, c), we employ human heuristics and WordNet knowledge
base to generate contrastive negative samples C′(c). To utilize these candidate caption sets, we employ an
intra-pair hard negative mining strategy. Specifically, during the optimization, we add an extra loss term:

`VSE-C(i, c) = `VSE++(i, c) + max
c′′∈C′(c)

[α+ s(i, c′′)− s(i, c)]+. (3)

In our implementation, the candidate set C′ has approximately 1, 000 samples. In each iteration, we
randomly sample N = 8 negatives from it. This simple sample technique are effective and computation-
friendly based on our empirical studies.

4 Experiments

We begin our experiments with an extensive study on the effect of adversarial samples on the baseline
models. Even trained with hard negative mining techniques, VSE++ fails to discriminate words with
completely contradictory visually-grounded semantics. Furthermore, we study the improvement brought
by the introduction of contrastive adversarial samples on a diverse set of tasks. We release our code at
https://github.com/ExplorerFreda/VSE-C.

4.1 Adversarial attacks

We select 1,000 images for test in MS-COCO 5k test split following (Karpathy and Fei-Fei, 2015). Each
image is associated with five captions. Each caption in the selected test set can be manipulated to generate
at least 20 contrastive adversarial samples by all manners (noun, numeral, and relation adversary). The
image-to-caption retrieval task is defined as ranking the candidate captions based on the distance between
their semantics and the given image.

We follow the metric used in Faghri et al. (2017) computing R@1, R@10, median rank and mean rank
w.r.t. the top-ranked correct caption for each image. For each image, the database of retrieval contains the
full set of 1000× 5 captions, in which only 5 captions are labeled as positive. The R@k metric essentially
measures the percentage of images where the set of top-k ranked captions contains at least one positive
caption.

We attack the existing models by adversarial samples. We extend each caption with 60 adversarial
samples (20 noun-typed, 20 numeral-typed and 20 relation-typed). Therefore, each image has 60 × 5
contrastive adversarial samples in total. The candidate retrieval set for each image now becomes 5000 +
300. We discuss the experimental results as follows:

VSE-C are more robust to known-typed adversarial attacks than VSE and VSE++. We compare
the performance of VSE-C with VSE (Kiros et al., 2014) and VSE++ (Faghri et al., 2017) in Table 2. Both
VSE and VSE++ have a significant drop in performance after adding adversarial samples, while VSE-C
training with contrastive adversarial samples is less vulnerable to the attacks. This phenomenon reflects
that the text encoders of VSE and VSE++ do not actually make a good use of the image encodings, as the
image encodings are fixed in all experiments.

Detailed attacking results are shown in Table 3. The three hyper-columns show the ability of the models
to defend the adversarial attack of noun, numeral, and relation-typed respectively. Among three types of
attacks, VSE and VSE++ suffer least from the noun attack. As the constitution of the dataset ensures the
frequency in the entire dataset of the words used for replacement, the visual grounding of these frequent
nouns is easy to obtain. However, the semantics of relations (including prepositions and entity relations)
or numbers are not diverse enough in the dataset, leading to the poor performance of VSE against these
attacks.

Numeral-typed VSE-C improves the counting ability of models. As shown in Table 3, numeral-
typed contrastive adversarial samples improve the counting ability of models. However, it is still not clear
about where the gain comes from, as the creation of numeral-typed samples may change the form (i.e.,
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Model MS-COCO Test MS-COCO Test (w/. adversarial)
R@1 R@10 Med r. Mean r. R@1 R@10 Med r. Mean r.

VSE 47.7 87.8 2.0 5.8 28.0 71.6 4.0 11.7
VSE++ 55.7 92.4 1.0 4.3 35.6 72.5 3.0 11.8
VSE-C (+n.) 50.7 90.7 1.0 5.2 40.3 80.2 2.0 9.2
VSE-C (+num.) 53.3 90.2 1.0 5.8 46.9 86.3 2.0 6.9
VSE-C (+rel.) 52.4 89.0 1.0 5.7 42.3 82.5 2.0 7.2
VSE-C (+all) 50.2 89.8 1.0 5.2 47.4 88.8 2.0 5.5

Table 2: Evaluation on image-to-caption retrieval. Although VSE++ (Faghri et al., 2017) obtains the best
performance on original MS-COCO test set, it is more vulnerable to the caption-specific adversarial attack
compared with the proposed VSE-C, and so does VSE (Kiros et al., 2014).

Model MS-COCO Test (+n.) MS-COCO Test (+num.) MS-COCO Test (+rel.)
R@1 R@10 Mean r. R@1 R@10 Mean r. R@1 R@10 Mean r.

VSE 37.6 85.8 6.9 38.5 82.3 7.7 30.7 76.7 8.8
VSE++ 45.7 89.1 5.5 45.9 82.3 7.2 42.3 80.0 7.6
VSE-C (+n.) 49.2 88.4 5.7 42.1 80.3 9.1 40.4 83.3 7.1
VSE-C (+num.) 51.0 89.5 6.1 53.3 90.2 5.8 49.0 87.0 6.6
VSE-C (+rel.) 48.0 88.8 5.3 45.4 83.9 6.7 50.1 90.2 4.9
VSE-C (+all.) 49.4 89.3 5.3 49.9 89.6 5.2 47.9 89.4 5.3

Table 3: Detailed results on each type of adversarial attack. Training VSE-C on one class gains the best
performance on robustness against the adversarial attack of the class itself. In addition, training with
numeral-typed adversarial samples helps improve the robustness against noun-typed and relation-typed
attack. We hypothesis that this is attributed to the singularization or pluralization of the corresponding
nouns in the process of numeral-typed adversarial sample generation.

Model MS-COCO Test (plural split, +plurals)
R@1 R@10 Mean r.

VSE++ 43.7 78.3 9.1
VSE-C (+num.) 50.6 84.4 7.8

Table 4: Results on plural-typed adversarial attack to the plural split of MS-COCO test set. This split
consists of 205 images, together with the 1,025 original captions. VSE-C outperforms VSE++ by a large
margin on all the three considered metrics.

singular or plural) of nouns to make a sentence plausible. Does the gain comes from the improved ability
to distinguish singulars and plurals?

We conduct the following evaluation to study the counting ability. We extract all the images associated
with captions including plurals from our test split of MS-COCO, forming a plural-split of the dataset, and
generate only plural (numeral)-typed contrastive adversarial samples (changing the numerals) w.r.t. the
plurals in the captions. We report the performance of VSE++ and numeral-typed VSE-C on this plural
split in Table 4. It clearly shows that what VSE-C does not only distinguish singulars against plurals, but
also, at least, distinguish plurals against other plurals (e.g., 3 vs. 5).

It is worth noting that such counting ability is still not evaluated completely due to the limitation of the
current MS-COCO test split. We find that 99.8% of the plurals in MS-COCO test set comes from one of
“two”, “three”, “four” and “five”. This may reduce the counting problem to a much simpler classification
one.
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an  elephant walking through the weeds   in      the   bird 
0.021   0.134          0.061        0.067    0.029  0.248   0.063   0.065   0.313

an  elephant walking through the weeds   in      the   bird 
0.031   0.136          0.056        0.083    0.050  0.192   0.080   0.069   0.299

eighteen elephants walking through the weeds   in      the   forest
    0.192          0.203          0.069        0.094    0.051   0.198   0.036   0.037   0.121

eighteen elephants walking through the weeds   in      the   forest
    0.306          0.112          0.087        0.087    0.040   0.101   0.079   0.041   0.136

an  elephant walking against the weeds   in      the   forest 
0.039   0.176         0.101        0.087   0.051  0.248   0.060   0.057     0.181

an  elephant walking against the weeds   in      the   forest 
0.030   0.108         0.125        0.258   0.108  0.176   0.077   0.027     0.090

an elephant walking through the weeds in the forestOriginal
Image

Image
Saliency
(VSE-C)

Image
Saliency
(VSE-C)

Image
Saliency
(VSE-C)

VSE++

VSE-C

VSE++

VSE-C

VSE++

VSE-C

Figure 2: Saliency analysis on adversarial samples. The left column shows the saliency of VSE-C on
the image (what is the difference between the image and the image you imagine from caption c′), while
the right column shows the saliency of both VSE++ and VSE-C on the caption (what is the difference
between the caption and the caption you summarize from image i). The magnitude of values indicates the
level of saliency. For better visualization, the image saliency is Linf -normalized and the caption saliency
is L1-normalized. For all the three classes of textual adversarial samples, the image encoding model
(ResNet-152) almost only focuses on the main part of the image, i.e., elephant. For numeral-typed and
relation-typed adversarial samples, VSE-C pays much more attention to the manipulated segments of the
sentence than VSE++.

4.2 Saliency visualization

Given an image-caption pair and its corresponding textual adversarial samples, we are interested in the
following question: what is the semantic distance between the image an adversarial caption? In other
words, which part in the image or caption, in particular, makes them semantically different?

We visualize the saliency on input images and captions w.r.t. changes in sentence semantics. Specifically,
given an image-caption pair (i, c), we manually modify the semantics of the caption c with the techniques
introduced in Section 3.2, and obtains c′ 6= c. We compute the saliency of i or c′ w.r.t. this change by
visualizing the Jacobian:

J = ∇is(i, c
′) = ∇iW

T
i f(i; θi) ·W T

c g(c
′; θc), (4)

where s(i, c′) is the similarity metric for image-caption pairs.
Shown in Figure 2, as for captions, VSE-C captures the change in sentence semantics and thus possesses

large saliency on the manipulated words. In contrast, although trained with hard-negative mining, it is
difficult for VSE++ to capture differences other than nouns.

Interestingly, the saliency of images shows less correlated response to semantics changes while the
replaced word is not the major component in the image. We attribute this to the image embedding extractor,
ResNet, because it is pre-trained on the ImageNet classification task. As the ResNet learns to produce
shift-invariant features focusing on the major components (or concepts) of images, it inevitably learns less
about secondary (and other) concepts.

4.3 Correlate words and objects

As only textual adversarial samples are provided during the training, the model may overfit the training
samples by memorizing incorrect co-occurrence of words or concepts. To quantitatively evaluate the



3722

Image Captions
A table with a huge glass vase and fake flowers come out of it.
A plant in a vase sits at the end of a table.
A vase with flowers in it with long stems sitting on a table with candles.
A large centerpiece that is sitting on the edge of a dining table.
Flowers in a clear vase sitting on a table.

Positive Objects: table, plant, vase.
Negative Objects: screen, pickle, sandwich, toy, hill, coat, cat, etc.

Table 5: An example of the image-to-word retrieval dataset. We extract objects by detecting heads of noun
phrases in captions. We only collect the “object” words with frequency higher than 200 in MS-COCO full
dataset as available positive/negative objects for each image.

learned word embeddings, we conduct experiments on word-level image-to-word retrieval. Specifically,
we first examine how each noun is linked with a visual object. This task shows the concrete link between
words and image concepts, which supports the effectiveness of adversarial samples in enforcing the
learning of visually-grounded semantics beyond co-occurrence memorizing.

Dataset Based on captions, we extract positive objects for each image in MS-COCO dataset by detecting
heads of noun phrases using SpaCy. As mentioned in Section 3.2, we only let those objects without direct
hypernymy/hyponymy relation to positive objects of the image be negative objects to avoid ambiguity.
Table 5 shows an example of the preparation of image-object dataset.

Training Inspired by Gong et al. (2018), we train an image-word alignment network through the
interaction space, since this structure reflects the property of “alignment” better than just concatenating
the feature vectors of word and image. In the training stage, the network is fed by batches of samples
in the form of (image, word, label), where the label is 0 or 1, indicating whether the word is a negative
or positive object of the image. Let vW (w) denote the embedding of word w and vI(img) denote the
feature vector of image img extracted by ResNet-152 (He et al., 2016). As shown in Figure 3, we use the
full interaction matrix vW (w)vI(img)

T as the feature for object retrieval. While fixing both the image
and word features, we only tune the parameters of multi-layer perceptron (MLP).

Image Encoder
(ResNet 152)

Vase

Image Embedding: !(#)

Word Embedding: %(&)

Embedding
Interaction

Pr Positive	 #, &]

Word: &

Figure 3: Model structure for image-to-word retrieval. The
network is trained though the interaction space. Note that
only parameters in MLP are tuned during training.

Model MAP
GloVe 58.69
VSE 61.65
VSE++ 61.08
VSE-C (+all) 62.16
VSE-C (+n.) 62.80
VSE-C (+rel.) 62.29
VSE-C (+num.) 61.96

Table 6: Evaluation result (MAP in per-
centage) on image-to-word retrieval.

Testing We use mean average precision (MAP), which is a widely-applied metric in information retrieval,
to evaluate the performance of the word embeddings. For each image, we treat it as a query. The average
precision (AP) is defined by

AP =

∑n
k=1 P (k)× positive(k)

number of positive objects
(5)

where n is the quantity of objects in data base, i.e., both positive and negative objects, P (k) is the precision
at cut-off k in the list, positive(k) is an indicator function equaling 1 if the object at rank k is a positive
one, 0 otherwise (Turpin and Scholer, 2006).
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A table with a huge glass _____ and fake flowers come out of it.

GRU
Encoder

Word
Embeddings

Fusing with MLP

Predicted Word: Vase

……

……

…… ……

…… ….…

Image Embedding: !(#)

Figure 4: Model structure for fill-in-the-blank.

Based on the definition of AP, MAP can be computed by MAP =
∑|Q|

i=1 AP (i)
|Q| , where Q is the query

set, i.e., image set. It is worth noting that the database for retrieval of each query may be different from
others, which is similar to Section 4.1.

Results We show the evaluation results in Table 6. It is as expected that VSE-C (+n.) achieves the
best performance in the image-object retrieval task. All of the VSE-C models outperform the baselines
produced by VSE (Kiros et al., 2014), VSE++ (Faghri et al., 2017) and GloVe (Pennington et al., 2014),
showing the concrete link between learned word semantics and visual concepts. With surprise, VSE-C with
only relation adversarial samples shows comparable performance as VSE-C with noun adversarial samples.
This further supports the effectiveness of sentence-level manipulation (relation-shuffle in Figure 1) on
strengthening the link.

4.4 Concept to word

We quantitatively evaluate the performance of concept-to-word retrieval performance by introducing a
sentence completion task. Given an image-caption pair (i, c), we manually replace concept words (nouns
and relational words) with blanks. A separate model is trained to fill in the blanks.

Dataset and implementation details Based on captions, we extract nouns and relational words from
captions for each image in MS-COCO dataset using SpaCy. These selected words are marked as “concept”
representatives. During training, we randomly sample a word from the representative set, and the word is
masked as a blank to be filled. Given the image and the rest of the words, the model is trained to predict
the embedding of the word.

Model The sentences with blank are encoded by two mono-directional GRU layer. The words before
the blank and after the blank are separately encoded using GRUf and GRUb respectively. The image
feature extracted from a pre-trained ResNet152 is then concatenated with the last output of both GRUs.
The prediction of embedding is made by a two-layer MLP taking in the concatenated feature. We use
cosine similarity as the loss function. Figure 4 shows the demonstration of our fill-in-the-blank model.

Results We present in Table 7 the performance of the proposed VSE-C on filling in both nouns and
prepositions. VSE-based models outperform GloVe without visual grounding and concretely correlate
word semantics with image embeddings. We found that only small gaps exist between VSE++ and VSE-C
on preposition filling, which again shows the limited diversity on visual relations within the dataset.
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Model Noun Filling Prep. Filling All (n. + prep.)
R@1 R@10 R@1 R@10 R@1 R@10

GloVe 23.22 58.75 23.34 79.92 23.27 66.55
VSE++ 24.98 61.74 34.88 84.88 28.44 68.12
VSE-C (ours) 27.30 62.87 35.17 85.24 30.02 70.98

Table 7: Evaluation result on the fill-in-the-blank task (in percentage). The word embeddings learned
by VSE-C with all classes of contrastive adversarial samples help reach a better performance than those
learned by VSE++ (Faghri et al., 2017).

5 Discussion and conclusion

In this paper, we focus on the problem of learning visually-grounded semantics using parallel image-text
data. With extensive experiments on adversarial attacks against existing frameworks (Kiros et al., 2014;
Faghri et al., 2017), we obtain new insights on the limitation of datasets as well as frameworks. (1) Even
for large-scale datasets such as MS-COCO captioning, the large gap between the number of possible
constitutions of real-world visual semantics and the size of dataset still exists. (2) Existing models are not
powerful enough to fully capture or extract the information contained in visual embeddings.

We propose VSE-C, introducing contrastive adversarial samples in the text domain and an intra-pair
hard-example mining technique. To delve deeper into the embedding space and its transferability, we study
a set of multi-modal tasks both qualitatively and quantitatively. Beyond being robust to adversarial attacks
on image-to-caption retrieval tasks, experimental results on image-to-word retrieval and fill-in-the-blank
reveal the correlation between the learned word embeddings and visual concepts.

VSE-C also demonstrates a general framework for augmenting textual inputs considering semantical
consistency. The introduction human priors and knowledge bases alleviates the sparsity and non-contiguity
of languages. We hope the framework and the released data are beneficial for building more robust and
data-efficient models.
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A Semantic Overlap Table of Frequent Prepositions

Set # Words in a Semantical Set
1 towards, toward, beyond, to
2 behind, after, past
3 outside, out
4 underneath, under, beneath, down, below
5 on, upon, up, un, atop, onto, over, above, beyond
6 in, within, among, at, during, into, inside, from, between
7 if, while
8 with, by, beside
9 around, like
10 to, for, of
11 about, within
12 because, as, for
13 as, like
14 near, next, beside
15 though
16 thru, through
17 besides, along
18 against, next, to
19 along, during, across, while
20 off, out
21 without
22 than
23 before

Table 8: Manually annotated semantic overlap table.

Table 8 shows our manually annotated semantic overlap sets. Prepositions in each row has overlap in
semantics, i.e., can be replaced by each other in some level. A preposition can appear in several sets.

B Training Details of VSE-C

In all experiments, we use Adam (Kingma and Ba, 2015) as the optimizer of which the learning rate is
set to 1e-3, with the batch size of 128. The learning rate is updated by multiplying 0.1 after every 15
epochs. We do not apply any regularization or dropout term. Word embeddings are initialized with the
300-dimensional GloVe (Pennington et al., 2014)1. The text encoder is a bidirectional 512-dimensional (in
total 1024D) 1-layer GRU. The dimensionality of joint (multimodal) embedding is also 1,024. Empirically,
with training data and hyper-parameters fixed, there is no significant variance in performance caused by
different random seeds for the sampling.

1http://nlp.stanford.edu/data/glove.840B.300d.zip


