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Abstract

Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance
drop when dealing with domain text, especially for a domain with lots of special terms and
diverse writing styles, such as the biomedical domain. However, building domain-specific CWS
requires extremely high annotation cost. In this paper, we propose an approach by exploiting
domain-invariant knowledge from high resource to low resource domains. Extensive experiments
show that our model achieves consistently higher accuracy than the single-task CWS and other
transfer learning baselines, especially when there is a large disparity between source and target
domains.

1 Introduction

Chinese word segmentation (CWS) is a fundamental task for Chinese natural language processing (NLP).
Most state-of-art methods are based on statistical supervised learning and neural networks. They all
rely heavily on human-annotated data, which is a time-consuming and expensive work. Specially, for
domain CWS, e.g., medical field , the annotation expense is even higher because only domain experts
are qualified for the work.

Moreover, CWS tools trained from open source datasets, e.g., SIGHAN2005', face a significance
performance drop when dealing with domain text. The ambiguity caused by domain terms and writing
style makes it extremely difficult to train a universal CWS tool. As shown in Table 1, given a medical term
“B%k fn 4 & & f1 42~ (methemoglobinemia), Chinese medical experts would annotate it as *“ % /4k/ o 4z
%& @/ £, which means anemia caused by hemoglobin with “high iron” (in Chinese, means iron with
valence of 3), corresponding to the morphology of “Methemoglobinemia”. “PKU” stands for a model
trained on PKU’s People’s Daily corpus, we can see that after segmentation, the word “%k f2” (jagged)
is treated as one word, which is wrong semantically. Also, another popular Chinese CWS tool Jieba 2
mistakenly puts the characters “=” and “#%” together, which stands for the high-speed bullet train in
China.

CWS tool Mk E G i

= E P P

PKU r—J ' X fn 1% a i «}E
high | jagged albumen anemia

. EES iz g o JE

Jieba . . .
train hemoglobin anemia

. = % % g o JE

Medical . . . .
high iron | hemoglobin | anemia

Table 1: Medical CWS ambiguity with CWS tools. PKU stands for a model trained on PKU dataset.

In summary, domain specific CWS task poses significant challenges because:
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1. Tools built on open source annotated corpus works badly on domain specific CWS.
2. Annotated domain data is scarce due to high cost.
3. How to leverage open source annotated data despite their generality is an open question.

Recently, efforts have been made to exploit open source (high resource) data to improve the perfor-
mance of domain specific (low resource) tasks and decrease the amount of domain annotated data (Yang
et al., 2017; Peng and Dredze, 2016; Mou et al., 2016). In this paper, we further this line of work by
developing a multi-task learning (Caruana, 1997; Peng and Dredze, 2016) framework, named Adaptive
Multi-Task Transfer Learning. Inspired by the success of Domain Adaptation (Saenko et al., 2010; Tzeng
et al., 2014; Long and Wang, 2015b), we propose to minimize distribution distance of hidden represen-
tation between the source and target domain, thus make the hidden representations adapt to each other
and obtain domain-invariant features. Finally, we annotated 3 medical datasets from different medical
departments and medical forum, together with 3 open source datasets’*. The contribution of this paper
can be summarized as follows:

e We propose a novel framework for Chinese word segmentation in the medical domain.

e To the best of our knowledge, we are the first to analyze the performance of transfer learning meth-
ods against the amount of disparity between target/source domains.

e Our framework outperforms strong baselines especially when there is substantial disparity.

e We open source 3 medical CWS datasets from different sources, which can be used for further study.

2 Related Work

2.1 Chinese word segmentation

Statistical Chinese word segmentation has been studied for decades. Xue and others (2003) was the first
to treat it as a sequence tagging problem, using a maximum entropy model. Peng et al. (2004) achieved
better results by using a conditional random field model (Lafferty et al., 2001). This method has been
followed by many other works (Zhao et al., 2006; Sun et al., 2012).

Recently, neural network models have been applied on CWS. These methods use automatically derived
features from neural network instead of hand-crafted discrete features. Zheng et al. (2013) first adopted
neural network architecture to CWS. Chen et al. (2015b) used Long short-term memory(LSTM) to
capture long term dependency. Chen et al. (2015a) proposed a gated recursive neural network (GRNN)
to incorporate context information. In this paper, we adopt Bidirectional LSTM-CRF Models (Huang et
al., 2015) as our base model.

2.2 Transfer Learning

Transfer learning distills knowledge from source domain and helps target domain to achieve a higher per-
formance (Pan and Yang, 2010). In feature-based models, many transfer approached have been studied,
including instance transfer (Jiang and Zhai, 2007; Liao et al., 2005), feature representation transfer (Ar-
gyriou et al., 2006; Argyriou et al., 2007), parameter transfer(Lawrence and Platt, 2004; Bonilla et al.,
2007) and relation knowledge transfer(Mihalkova et al., 2007; Mihalkova and et al., 2009).

Recently, the transferability of neural networks is also studied. For example, (Mou et al., 2016)
studied two methods (INIT, MULT) on NLP applications. Peng and Dredze (2016) proposed to use
domain mask and linear projection upon multi-task learning (MTL) (Long and Wang, 2015a). In this
paper, we follow MTL and extend the framework with a novel loss function.

3 Single-Task Chinese word segmentation

In this section, we briefly formulate the Chinese word segmentation task and introduce our base model,
Bi-LSTM-CRF (Huang et al., 2015).
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3.1 Problem Formulation

Chinese word segmentation is often treated as a sequence tagging problem on character level. BIES
tagging scheme is broadly accepted by annotators, each character in sentence is labeled as one of £ =
{B, 1, E, S}, indicating begin, inside, end of a word, and a word consisting of a single character.

Given a sequence with n characters X = {x1,...,2,}, the aim of the CWS task is to find a mapping
from X to Y* = {y},...,y} }

Y" = argmax p(Y|X) (1)
YeLn

where L = {B,I,E,S}

The general architecture of neural CWS contains: (1) a character embedding layer; (2) an encoder
automatically extracts feature and (3) a decoder inferences tag from the feature.

In this paper, we utilize a widely-used model as the base of our framework, which consists of a bi-
directional long short-term memory neural network (BiLSTM) as encoder and conditional random fields
(CRF) (Lafterty et al., 2001) as decoder.

3.2 Encoder

In neural network models, an encoder is usually adopted to automatically extract feature instead of
human-crafted feature engineering.

Bi-LSTM LSTM is a popular variant of RNN in order to alleviate the vanishing gradient problem
(Bengio et al., 1994; Hochreiter and Schmidhuber, 1997). In addition to considering past information
from left, Bidirectional LSTM also captures future information from the right of the token.

3.3 Decoder

We deploy a conditional random fields layer as decoder. Specifically, p(Y|X) in Eq. (1) could be
formulated as

- exp(®(X,Y))
p(Y‘X) - Zy’eﬁ" exp(q)(Xy Y/)) .

Here, ®(-) is a potential function, consider the situation that we only take the influence between two
consecutive variables into account:

(X, Y)=>_ (X, i,y5,yi1) 3)
j=1
A(X, 4, yis yi-1) = S(Xvi)yz: iy “
where 5(X,i) € RI£l is a function that measure the score of the iy, character for each label in £ =
{B,1,E, S}, and t € RI*I¥I£l denotes the transition score between labels. More formally:
s(X,i) =W hi+b ®)

where h; is the hidden state of the it" character after BILSTM; W € RIXILl and b € Rl are all
parameters in the model.

4 Adaptive Multi-Task Transfer Learning

With the motivation to leverage domain-invariant knowledge from high resource domain, we utilize the
framework of multi-task learning (Caruana, 1997), which is one of the methods in transfer learning, and
further introduce three models under the proposed Adaptive Multi-Task Transfer Learning framework
(AMTTL). We exploit three statistical distance measures as the Adaptive part to test the generality of
our framework.
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4.1 Notations and Definitions

In this paper, multi-task learning is defined as a dual-task learning, which contains two domains Dg and
Dr. Our purpose is to improve the performance of target domain by exploiting knowledge from source
domain.

Each domain D contains two components: a feature space X and a marginal probability distribution
P(X), where X is a sample sentence, and X = {z1,...,2,} € X.

Given a single domain, D = {X’, P(X)}, a task contains two components: a label space ) and a
predictive function f(-), which can be learned during the training phase. Formally, 7 = {Y, f(-)}.

4.2 Formal Definition
We now give the definition of Adaptive Multi-Task Transfer Learning.

Definition 4.1. Given two domains Dg and Dr, and corresponding tasks Tg, T, Adaptive Multi-Task
Transfer Learning aims to improve the learning of target predictive function f7(-) by using shared pa-
rameter and minimizing the distance between P(Xg) and P(Xg), P(Ys|Xs) and P(Y7|X7), where
Dg # Dr, or Tg # Tr.

4.3 Objective Function

The objective function of our proposed Adaptive Multi-Task Transfer Learning can be formulated as
follows:

j(@(a)’ 9(5)) = Tseg + 0T Adap. + 5JL2 ©

where 0(%) and () are model parameters for task a and b, o and 3 are hyper-parameters to be chosen.
Jseg stands for the negative log likelihood for source domain and target domain. At each training step,
we minimize the mean negative log likelihood:

1¢ )|y (a
Tseg = - ;logp(yi( )‘Xf ))
. m @)
—— > logp(¥,”|x(")
m =1
J Adap. 18 the Adaptive loss used to capture domain-invariant knowledge between different domains,
which forces the hidden representations between two domains to adapt to each other. Given two sets
of hidden representation, denoted as h® and h(b), and a statistic distance function g(-), JAdap. Can be
calculated as:

Tadwp. = g(0® 0™ (8)

where ¢g(-) can be, but is not limited to, KL divergence, maximum mean discrepancy (MMD) (Gretton et
al., 2012) or central moment discrepancy (CMD) (Zellinger et al., 2017); h(® and h®) are different for

different model setting, which will be defined in Sec 4.4.
Jr, is the Lo regularization which is used to control overfitting problem:

= o
2 2

4.4 Models
In this section, we present the design of three variants of our framework in detail. The architectures are
presented in Figure 1.

4.4.1 Model-I Specific LSTM

This model can be interpreted as two parallel tasks connected with Jaqap. after specific Bi-LSTM layers
of two tasks. We design the model in order to see whether knowledge can actually be transfered through
the Adaptive loss alone.

The hidden representation and CRF score of task t at position 7 can be computed as:
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Figure 1: Three models with different settings. The white block represents Embedding lookup layer,
while the gray and black block represents Bi-LSTM layer. The “SHARED” in Figure 1b stands for
shared Bi-LSTM for both tasks. The “Jaqap.” represents Adaptive loss for the hidden representation
after corresponding layer, which is formally discussed in Sec 4.3. The solid arrow and dotted arrow
show the flow of task a and task b respectively.

A = Bi-LSTM(X ™, 9™ (10)
s(X, 1) = WO TR0 L p® (11)

where hz(.t) € R2dn W) ¢ R2dnxIL] K1) ¢ RIZI 9() denotes parameters of domain specific Bi-LSTM.
The Jadap. between two tasks, denoted by a and b, is formulated as:

Jaa. = g(b'”, ) (12)
where h(*) = {hl(t) 1IX® e x®}, X® is a batch of input sequences.

4.4.2 Model-II Shared LSTM

Model-II is designed to adopt domain specific embedding layers, shared Bi-LSTM layer and domain
specific CRF layers. Note that traditional multi-task learning uses shared embedding (Ruder, 2017).
Shared embedding means that source and target domain share the same set of embedding parameters
while domain-specific embedding means that the two domains maintain their own sets.

The hidden representation of task t at position 7 can be computed as:

A" = Bi-LSTM(X "), ) (13)

where two tasks share Bi-LSTM parameter 6, which is the only difference with Model-I. CRF score and
JAdap. 18 the same as (11)(12).

4.4.3 Model-III Shared & Specific LSTM

Model-III is a combination of Model-I and Model-1I, with both domain specific and shared Bi-LSTM
layers.
The hidden representation and CRF score of task t at position 7 can be computed as:

A" = Bi-LSTM(X, 6") & Bi-LSTM(X, 6)
—p® )

i(specific) = i(shared)

(14)

s(X, 1) = WO 4 p® (15)

where hgt) e Ridn, W) ¢ R¥nxILl and b(") e RIFl. 9(1) and @ denote the parameter of domain
specific and shared Bi-LSTM. Jgap. can be calculated as :

JAdap. = g(h(a)7 h(b)) (16)
where h(®) = {hggpeci fic) 1IX® e x®Y, X1 is a batch of input sequences.
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Table 2: Statistics of number of sentences for corpus.

(a) Open Source (b) Medical
Type #Train  #Dev  #Test Type #Train #Dev #Test
PKU 70498 8369 1945 Cardiology(EMR) 5636 1658 1658
MSR 173850 19453 3985 Respiratory(EMR) 5191 1661 1549
WEIBO 38086 3834 16673 Forum 4863 1412 1474
Sum 15690 4731 4691

S Experiment

In this section, we evaluate our proposed models on real-world medical Chinese word segmentation
tasks®, where annotated data is scarce and domain-drift is significant with open source annotated data.
We conduct extensive experiments and discuss the result in detail. We also conduct an ablation test.

5.1 Datasets

We use three open source CWS datasets, namely PKU and MSR from SIGHAN2005 Bakeoff* and
WEIBO from (Qiu et al., 2016). The information of the datasets is shown in Table 2a.

We annotated three medical datasets for our experiment and future research. The first two datasets
are electronic medical records (EMR) from different departments. The third dataset is medical forum
data from Good Doctor Online’, which is a Chinese forum for medical consult. The information of the
datasets is shown in Table 2b.

The electronic medical records are collected from our partner hospital, the data only permits non-
commercial/academical use. The annotation was done by several doctors. It was carried out following a
Chinese word segmentation criteria ® created by Institute of Computational Linguistics at Peking Univer-
sity. For quality control, annotators were trained until they achieve about 80% inter-annotator agreement
on previously annotated materials. Then we conducted double-blind annotation, with resolution of dis-
agreements by a senior annotator. The entire annotation process follows Cohen et al. (2017).

On medicolegal issues, the EMR data we received had already been anonymized and de-identified.
Given the fact that China doesn’t offer an act like HIPPA (Health Insurance Portability and Accountability
Act), we only released the medical forum dataset.

5.2 Disparity Study

Transfer Learning aim to improve the performance of low-resource domain task by exploiting the anno-
tated data form high-resource domain, thus the Disparity between different tasks is a leading factor to
influence the transferability between different domains with different methods.
In this paper, we used X2 test (Kilgarriff and Rose, 1998) to quantify the Disparity between three
medical corpus. If the size of corpus 1 and( corpus 2) are N1, Ny and word w has observed frequencies
N1 X(0w,1+0w 2

Ow,1, Ow,2, then expected value e,, 1 = — NN, and likewise for e, 2, then

N2
XQZZ(O;) (17)

X2 test shows that Disparity between forum dataset and two EMR datasets are similar, but both are
much larger than the Disparity between the two EMR datasets, as shown in Table 3.

Due to the fact that X2 test doesn’t permit comparison between corpus of different sizes (Kilgarriff
and Rose, 1998), we propose a simple agreement test, using the size of the intersection between the most
common n tokens (bi-gram) to quantify the disparity between medical corpus and open source corpus.
We set n to 500.

30ur code and data are released at ht tps: //github.com/adapt-sjtu/AMITL

*http://sighan.cs.uchicago.edu/bakeoff2005/

Shttp://www.haodf.com
*http://sighan.cs.uchicago.edu/bakeocff2005/data/pku_spec.pdf
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Table 3: Result of X2 test between medical datasets, the larger the higher disparity.

Dataset Cardiology  Respiratory ~ Forum
Cardiology 0 0.069 0.126
Respiratory 0.069 0 0.122
Forum 0.126 0.122 0

Table 4: Result of agreement test between medical datasets and open source datasets, the smaller the
higher disparity.

Dataset ~ Cardiology  Respiratory  Forum

PKU 25 27 76
MSR 23 25 80
WEIBO 54 50 135

Table 5: Performance (F1-score) of Single-task model compared with state-of-art CWS.

Models Cardiology  Respiratory  Forum
Single-task 81.10 81.33 75.62
(Cai and Zhao, 2016) 80.1 81.5 73.0

(Zhang et al., 2016) 82.46 81.74 77.14

Agreement test shows that the Disparity between PKU/MSR and two EMR datasets are close, both far
larger than the Disparity between PKU/MSR and forum dataset. WEIBO dataset is more similar with
medical datasets than PKU and MSR.

5.3 Single-task Performance

Before introducing our experiments on proposed framework, we first evaluate the effectiveness of the
single-task model (Bi-LSTM-CRF), which is our base model. We compare the model with the two
state-of-art on Chinese word segmentation, proposed by Cai and Zhao (2016) and Zhang et al. (2016)
respectively. We run experiments on our datasets with their code released on github”-3. The results show
that the performance of single-task model and state-of-art are close, as shown in Table 5, which indicates
the single-task model is a strong baseline for our advanced models.

5.4 Training

The training phrase aims to optimize the model parameters #(*) and () by minimizing the objective
function defined in Eq. (6). We use Adam (Kingma and Ba, 2014) with mini-batch. Each batch contains
sentences from both domains. The hyper-parameter setting is discussed later.

5.5 Experiment Settings

The dimension of character embedding and the LSTM hidden state dimension are 50. The batch size is
30. We evaluate our framework for a total of 15 transfer learning tasks. For each task, we take all of
source training data and 10% of target training data. Hyper-parameters are determined by tuning against
the development set.

5.6 Baselines

Several baseline methods are compared.

Single-task uses target domain data only, as discussed in Section 3.

INIT fine-tunes the model trained on source domain using target domain data.

Multi-Task shares parameter for both source and target domain, the model is trained simultaneously.
Linear Projection shares encoder and projects hidden representations into specific feature space.
Domain Mask shares encoder and select different part of hidden representation for source and target
domains.

"https://github.com/jcyk/CWS
8https://github.com/SUTDNLP/NNTransitionSegmentor
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Table 6: Fl-score of 6 cross domain multi-task learning CWS tasks. R, C, F stand for Respiratory,
Cardiology, Forum respectively. Model without Adaptive are Multi-Task Learning with different setting
according to our models.

Method Cross Medical
R-C[F-C [ C=oR[F=R [ C=F [ R=F
Baselines
Single-task 81.10 | 81.10 | 81.33 | 81.33 | 75.62 | 75.62
INIT 90.62 | 87.19 | 88.88 | 85.56 | 79.41 | 78.53
Linear Projection 85.57 | 82.95 | 84.95 | 84.54 | 7825 | 77.65
Domain Mask 85.01 | 85.03 | 85.08 | 84.74 | 77.24 | 78.07

Model-II w/o Jadap. 86.71 | 85.27 | 8534 | 83.40 | 77.62 | 78.34
Model-III w/o Jadap.. | 84.39 | 83.59 | 83.80 | 83.27 | 77.18 | 77.38

Adaptive Multi-Task Transfer Learning-KL

Model-I 86.94 | 86.70 | 85.64 | 85.57 | 78.35 | 78.46

Model-II 87.73 | 87.05 | 86.65 | 86.51 | 79.44 | 78.92

Model-IIT 86.66 | 86.53 | 85.86 | 85.39 | 78.67 | 78.72
Adaptive Multi-Task Transfer Learning-MMD

Model-1 8596 | 8543 | 85.45 | 85.58 | 77.85 | 78.16

Model-II 87.55 | 87.24 | 86.17 | 86.40 | 79.45 | 78.57

Model-IIT 86.30 | 85.49 | 85.13 | 85.19 | 77.05 | 77.23
Adaptive Multi-Task Transfer Learning-CMD

Model-I 86.17 | 86.03 | 85.58 | 85.83 | 78.61 | 78.39

Model-II 87.49 | 86.95 | 86.79 | 86.29 | 79.52 | 79.08

Model-1IT 86.54 | 86.36 | 85.68 | 86.05 | 78.23 | 78.63

Table 7: Fl1-score of 9 multi-task learning CWS tasks between open source datasets and medical datasets.
R, C, E, P, M, W stand for Respiratory, Cardiology, Forum, PKU, MSR, WEIBO respectively. Model
without Adaptive are Multi-Task Learning with different setting according to our models.

Open Source - Medical

Method P-C [M—C | W5C [ PSR [ MSR | WoR | PoF | MSF | WoF
Baselines

Single-task 81.10 | 8I.10 | 8I.10 | 81.33 | 81.33 | 81.33 [ 75.62 | 75.62 | 75.62

INIT 86.20 | 8432 | 87.72 | 84.05 | 82.83 | 86.56 | 82.54 | 8178 | 84.37

Linear Projection 86.21 | 86.08 | 85.35 | 85.18 | 84.58 | 85.27 | 77.62 | 77.15 | T77.54
Domain Mask 85.60 | 86.17 | 84.99 | 84.83 | 84.16 | 84.65 | 77.50 | 77.46 | 77.14
Model-II w/o Jadgap. | 85.63 | 85.84 | 86.14 | 84.17 | 8542 | 86.09 | 78.60 | 78.80 | 78.32
Model-III w/o Jadap. | 84.43 | 86.19 | 85.61 | 8438 | 85.02 | 85.79 | 77.61 | 77.87 | 78.38

Adaptive Multi-Task Transfer Learning-KL

Model-I 86.30 | 86.60 | 86.64 | 85.66 | 85.44 | 85.69 | 78.55 | 78.21 | 78.11

Model-II 87.01 | 86.20 | 86.94 | 85.88 | 85.61 | 8596 | 78.82 | 78.69 | 79.37

Model-III 86.56 | 86.25 | 87.29 | 85.30 | 85.60 | 85.52 | 78.20 | 77.45 | 78.56
Adaptive Multi-Task Transfer Learning-MMD

Model-I 85.82 | 86.62 | 8647 | 8526 | 85.48 | 85.87 | 77.69 | 7826 | 79.01

Model-II 86.77 | 86.34 | 86.82 | 85.98 | 86.17 | 85.80 | 79.04 | 79.21 | 78.80

Model-III 85.89 | 85.68 | 86.59 | 85.05 | 85.27 | 85.64 | 78.37 | 78.30 | 78.39
Adaptive Multi-Task Transfer Learning-CMD

Model-I 86.52 | 8593 | 86.39 | 85.71 | 8536 | 8597 | 78.66 | 78.29 | 78.49

Model-IT 87.21 | 86.92 | 86.83 | 85.83 | 85.82 | 86.24 | 78.82 | 79.01 | 78.90

Model-III 86.54 | 8599 | 86.64 | 86.12 | 85.66 | 85.63 | 78.73 | 78.15 | 78.71

Our implementation of INIT follows Mou et al. (2016), and the implementation of Multi-Task follows
the models we proposed in Sec. 4 by removing Jadap., annotating Model w/o Jaqap. in Table 6 and 7.
Linear Projection and Domain Mask both come from (Peng and Dredze, 2016).

5.7 Hyper-parameter

In our framework, we have two hyper-parameters o and 3, which controls the weight of Jadap. and J7,.
Our experiments show that o € [0.3,0.7] and 5 € [0.2,0.3] works best.
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5.8 Result and Discussion

Table 6 and Table 7 respectively shows the performance of 6 cross medical CWS experiments and 9
experiments between open source datasets and medical datasets. Bold indicates scores that outperforms
all baselines. Underline indicates the highest score for each task. In general, we learn that

1. All transfer learning methods outperforms strong baseline of single-task method (discussed in Sec-
tion 5.3). Especially, our models outperforms from 2% to 6% than single-task baseline.

2. The Adaptive part of our model, Jadap., is proven to be promising. First, Model-1, which is a parallel
training without sharing parameters and leveraging pretrained optimized initialization, outperforms
single-task baseline by 4% on average. Second, Jadap. improves the performance by 1% on average
for both Model-II and Model-III. It shows that the Jadap. does capture domain-invariant knowledge
apart from the shared parameters.

3. Within the three models we proposed, Model-II performs best, outperforming other two on 40/45
experiment instances. Model-I and Model-1II are equal in match. We argue that it is because the
missing of shared parameter of Model-I and the possible noise encoded by the specific layer of
Model-III.

4. For the three statistic distance measures we test in experiment, the overall performance is close.
Compared with MMD and CMD, KL gains a more stable improvement on all experiments. How-
ever, CMD performs better to hit more best scores than KL and MMD.

Next, we analyze the result from a special aspect, the Disparity between source and target datasets:

1. In Table 6, INIT outperforms all other baselines and our approaches in task R — C and C — R,
but downperforms our approaches in the others. We argue that the effectiveness of INIT on task
between domain R and C result from the low Disparity between the two domains, as shown in
Table 3. We speculate that the INIT approach works so well between domains with low disparity
because: (a) well trained model in the source domain provides a good start point for training in the
target domain, which is very similar to the source; (b) the final model is fine-tuned against the target
domain only. Our method is disadvantaged in this scenario because: (a) our model parameters are
randomly initialized and are independent between two domains (except for the shared parameters),
thus it cannot inherit so much information from the source domain as INIT does; (b) the final model
is fine-tuned against both the source and the target domain at the same time; thus noise from the
source domain may be introduced into the target domain. This is a research problem we want to
tackle in the future.

2. We first refer to Table 4. We can simply categorize the 9 types of domain transfers into 4 levels. P
— C,P —- R, M — C and M — R indicate high disparity, W — C, W — R indicate low disparity,
P — F, M — F indicate low similarity, W — F indicates high similarity. Then we can find that,
in 4 tasks of high disparity, our approach outperforms all baselines. When disparity goes down to
the second level, our approach underperforms INIT but only with gap of 0.4%. However, when
disparity continuously goes down to the third and forth level, INIT outperforms our approach by
3-4%.

At last, we’d like to discuss the effect of transferring from a general-domain dataset (which has the
advantage of larger quantity) against that of transferring from a medical dataset (which is better at qual-
ity). After comparing the tasks with the same target domain, we conclude that quality weighs more
than quantity. Taking Cardiology as an example, the size of source training set used in cross-medical
(high quality) tasks is only 1 percent of that used in general-to-medical (high quantity) tasks, but the
cross-medical results still outperform the latter.
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5.9 Ablation Test

To investigate the effectiveness of different components in our framework, we do ablation test based on
Model-II on task (P — R) with Jaqap. calculated by MMD. Results are reported in Table 8. Model-11
w/o shared Bi-LSTM uses domain-specific Bi-LSTM, while Model-11 w/o specific embedding uses shared
embedding for both domains.

Results show that the choice of statistic distance measure weights least, since the performance of
different measures are close. The test verifies our choice of shared Bi-LSTM and specific embedding.

Table 8: Comparisons of different settings of our method.

Settings F1-score 0

Model-II + Jadap.-MMD 85.98 0
Model-II + Jadap.-KL 85.88 -0.10
Model-II + Jadap.-CMD 85.83 -0.15
Model-II w/o Jadap. 84.17 -1.49
Model-II w/o shared Bi-LSTM 85.26 -0.40
Model-II w/o specific embedding 82.09 -3.57

6 Conclusion

In this paper, we propose an adaptive multi-task transfer learning framework and three model instances
with different settings. 15 experiments between medical datasets and open source datasets show that:
AMTTL(1) outperforms multi-task learning all the way; (2) outperforms all baselines when the disparity
between target and source dataset is high. For future work, we plan to study the transferability between
different tasks for Chinese NLP and cross-lingual NLP tasks.
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