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Abstract

This paper describes a personalized text retrieval algorithm that helps language learners select
the most suitable reading material in terms of vocabulary complexity. The user first rates their
knowledge of a small set of words, chosen by a graph-based active learning model. The system
trains a complex word identification model on this set, and then applies the model to find texts
that contain the desired proportion of new, challenging, and familiar vocabulary. In an evaluation
on learners of Chinese as a foreign language, we show that this algorithm is effective in identi-
fying simpler texts for low-proficiency learners, and more challenging ones for high-proficiency
learners.

1 Introduction

Since extensive reading is beneficial for learning a foreign language, students are encouraged to read a
wide range of texts, beyond their textbooks and graded readers. Reading materials for language learning
need to be carefully selected. On the one hand, if the text is too difficult, it would hinder comprehension
and leave the student overwhelmed and discouraged. On the other hand, if the text is too easy, it would not
serve to stretch the student’s language skills. The best material should be challenging yet highly readable,
containing just the right proportion of new, challenging, and familiar vocabulary. Graded readers created
with specific language proficiency levels in mind alleviate this problem to some extent, but they provide
only a limited amount of materials, and the grade levels are still coarse-grained. It often falls to language
teachers to identify appropriate material, but they cannot do so for every individual student.

This paper describes a personalized text retrieval algorithm that helps language learners select the
most suitable reading material in terms of vocabulary complexity. The user first rates their knowledge of
a small set of words, chosen by a graph-based active learning model. The system trains a complex word
identification model (CWI) on this set. Most current CWI approaches assume vocabulary knowledge to
be a dichotomy, labeling each word either as “non-complex”, if the user is familiar with the word, or
as “complex”, if the user is not familiar with it (Paetzold and Specia, 2016; Ehara et al., 2014). There
are, however, many dimensions of vocabulary knowledge (Richards, 1976). As our first contribution, we
take one step in this direction by attempting to identify not only known and unknown words, but also
challenging words.

Further, we apply CWI to the text retrieval task, and measure its effect on the vocabulary complexity
of retrieved texts from the perspective of a language learner. Specifically, the algorithm attempts to find
texts with a minimum proportion of non-complex words and a maximum number of challenging words
for the learner. As our second contribution, we show that the algorithm is effective in retrieving simpler
texts for low-proficiency learners, and more difficult ones for high-proficiency learners.

The rest of this paper is organized as follows. The next section summarizes previous research in
automatic CWI and text retrieval for language learners. Section 3 outlines our approach. Section 4
describes our dataset. Section 5 presents our experimental results. Section 6 concludes the paper.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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2 Previous work

2.1 Complex word identification

The complex word identification (CWI) task aims to tag a word as “complex” if it is unfamiliar for a user,
and “non-complex” otherwise. In the lexical simplification task, CWI is commonly used for identifying
words that should be simplified to improve a user’s understanding of a text while avoiding unnecessary
simplification (Shardlow, 2013). CWI is also an important part in systems that aim to provide suitable
reading material for users. Elhadad (2006), for example, built a system to predict terms in medical
literature that were unlikely to be understood by layman readers and provide definitions. This work uses
CWI to find texts suitable for learners of Chinese as a foreign language by estimating the proportion of
complex, challenging, and non-complex words in a text.

Most previous research has focused on CWI for English as a foreign language. One approach for
predicting vocabulary knowledge is by “word sampling” (Laufer and Nation, 1999). Using a ten-level
proficiency scale, with 1000 words at each level, this approach samples a fixed number of words from
each level and estimates the size of the learner’s vocabulary from his/her knowledge of the sampled
words.

Word frequencies were found to be the most reliable predictor of word complexity in the 2016 SemEval
shared task for CWI in English (Paetzold and Specia, 2016). The best team, which combined various
lexicon-based, threshold-based and machine learning voter subsystems, achieved a precision of 0.147
and recall of 0.769. This approach has yet to be evaluated on language learners at different levels of
proficiency, since the entire test set was annotated by one learner.

Personalized models for CWI adjust their predictions based on user characteristics. Zeng et al. (2005)
showed that demographic features can help improve CWI performance for individual users in the medical
domain. Ehara et al. (2012; 2014) performed CWI for individual learners with a two-step approach. In
the first step, an active learning approach selects the k£ most informative nodes, or words, to be annotated
by the user (see Section 3.1 for details). The user rates their knowledge of these k£ words on a five-point
scale (Table 1). In the second step, the system uses Local and Global Consistency (Zhou et al., 2004),
a label propagation algorithm, to train an independent classifier for each user. The algorithm performs
binary classification on the nodes to predict whether a user knows a word or not. The assumption behind
this algorithm is that two nodes connected by a heavily weighted edge should have similar labels, and
more heavily weighted edges should propagate more labels. The best model, where k=50, achieved
76.44% accuracy on a dataset of Japanese learners of English.

Score | Description Label (Ehara) | Label (this study)
1 Never seen the word before complex complex
2 Probably seen the word before complex complex
3 Absolutely seen the word before but do not know its | complex complex

meaning, or tried to learn the word before but forgot
its meaning

4 Probably know, or able to guess, the word’s mean- | complex challenging
ing
5 Absolutely know the word’s meaning non-complex non-complex

Table 1: Five-point scale for rating vocabulary knowledge, and the mapping to CWI labels used by Ehara
et al. (2012; 2014) and in this study.

Recently, CWI for other languages has begun to receive more attention. The latest CWI shared task,
for example, featured multilingual datasets, covering English, German, Spanish, and French (Yimam et
al., 2018). To the best of our knowledge, there has so far been only one reported study on CWI for
Chinese as a foreign language (CFL) (Lee and Yeung, 2018). They followed Ehara et al. (2012; 2014)
in selecting 50 most informative words to be rated by CFL learners. They then used a support vector
machine (SVM) classifier to train a CWI classifier for each individual learner based on his/her 50-word
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training set. The classifier used features based on word difficulty levels in two assessment scales for
CFL, namely the Test of Chinese as a Foreign Language (TOCFL) (Zeng, 2014) and the Hanyu Shuiping
Kaoshi (HSK) (Hanban, 2014). Details on the features are provided in Section 3.2. On a dataset with
seven CFL learners, this approach achieved 78% CWI accuracy, outperforming the label propagation
method. In this study, we adopt this classification approach and extend it to three-way, so that we may
use not just the proportion of complex and non-complex words, but also challenging words, as criteria
for text retrieval.

2.2 Text retrieval for language learners

Past research has shown that the optimal reading material should fit the learner in terms of vocabulary
and grammatical complexity, as well as personal interests (Heilman et al., 2007). In this study, we focus
on the proportion of non-complex words in a text.

Several studies have been conducted to examine the proportion of words in a text that a learner needs to
know to facilitate reading comprehension. There is no consensus on the “optimal” proportion of known
words in a text. Laufer and Nation (1999), Liu and Nation (1985) and Hirsh et al. (1992) showed that a
student could read and understand a text with ease if 95% to 98% of the words were known. If the goal
is to stretch the student’s vocabulary, the threshold can be made lower. Indeed, in the first 5 books of the
New Practical Chinese Reader, a popular textbook series for Chinese as a foreign language (CFL), the
proportion of difficult words ranges from 9% to 31% (Liang and Song, 2009).

3 Approach

We propose a text retrieval algorithm that aims to help language learners select the most suitable reading
material in terms of vocabulary complexity. The algorithm has three components. First, it employs a
graph-based active learning model to select a small set of words as training set (Section 3.1). After the
user has rated his/her knowledge of these words, the system trains a complex word identification model
on this set (Section 3.2). It then applies the model to find texts that contain the desired proportion of
complex, challenging, and non-complex words (Section 3.3). We now provide details on each of these
components.

3.1 Training set creation

The system performs graph-based active learning to select a small number of words to be included in the
training set. The entire vocabulary is first organized as a multiple complete graph. Nodes correspond to
words, and edge weights reflect the similarity between the frequency ranks of the words. The assumption
is that words with similar frequency ranks are known to learners whose familiar words are similar to
each other. Using Error Bound Minimization (Gu and Han, 2012), a non-interactive graph-based active
learning algorithm, the system selects the k¥ most informative nodes from the vocabulary graph in a non-
interactive way. This algorithm selects nodes that are globally important, based on the number of edges.
Further, the nodes must not be heavily connected to previously sampled nodes. Following previous work
(Lee and Yeung, 2018; Ehara et al., 2014), we set k as 50. While a larger k can yield better performance,
burdening users with a large amount of vocabulary annotation would be undesirable in practice.

3.2 Complex word identification

The CFL learners scored their knowledge on the 50 words in the training set with the five-point scale in
Table 1. Following Ehara et al. (2014) and Lee and Yeung (2018), we asked the learners to score their
knowledge of words in isolation, rather than in context such as in the CWI shared task.

The context of a word provides clues for learners to guess its meaning, and thus affects how they
score their knowledge of a word. Even if the learner is able to guess a word in one context, the same
is not guaranteed in another context since the content and the density of new words in each text is
different. Since the CWI model in our system is intended for text selection, we did not wish to assume
any one particular context when determining the learner’s knowledge of a word. To more accurately
judge the learners’ ability to understand different reading materials, we asked them to consider each
word in isolation.
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For each individual user, we trained a classifier based on his/her annotation on the 50-word training
set to perform CWI on all Chinese words. In a departure from previous CWI studies, we attempted

three-way classification, labelling each word as “non-complex”, “challenging” or “complex” (see Table
1). We experimented with a feature set similar to that of Lee and Yeung (2018):

e WordList: The difficulty level of the word (1, 2, 3, 4, 5, or 6), according to the HSK and TOCFL
guidelines. HSK was used as the basis for this feature. For words not covered by HSK, we mapped
their TOCFL level to HSK.

o HSK-char-max: A Chinese word may contain multiple characters. This feature takes the maximum
level among the characters in the word (1, 2, 3, 4, 5, or 6), according to the HSK guidelines.

e Freq: The frequency of the word in Chinese Wikipedia.

e LearnerFreq: The frequency of the word in the Jinan Corpus of Learner Chinese (JCLC) (Wang
et al., 2015).

e LearnerFreq-char-min: For each character in the word, we compute its frequency count in JCLC.
This feature takes the minimum frequency.

3.3 Text retrieval

Our system allows the user to specify the minimum (estimated) proportion of words in the retrieved text
that he/she should be able to understand. This parameter can be set to an arbitrary percentage between 0
and 100, but in consideration of the manual effort needed for evaluation, we set this parameter to 80% in
our experiment.

Ehara et al. (2012) assumed that learners could only understand the words that received a score of 5 on
the five-point scale in Table 1, and that they did not know any word with a score of 4 or below. The aim
of our system, however, is to stretch the student’s language skills. Taking lexical guessing in context into
account, we consider both non-complex and challenging words, scored five and four on the five-point
scale respectively, as words that the user should be able to understand.

To stretch the learner’s language skills while maintaining a high level of comprehension, the system
retrieves all documents that satisfy the minimum threshold of 80% non-complex words, and then ranks
them from the highest proportion of challenging words to the lowest.

4 Datasets

4.1 Complex word identification

We used the same training set of 50 words and test set of 550 words as Lee and Yeung (2018). We retained
the original annotations of the seven CFL learners, and included the annotations of an additional learner.
The learners labelled each word in the datasets on a five-point scale (see Table 1). We considered a word
to be “non-complex” if it was scored five, “challenging” if it was scored four, and “complex” otherwise.

The numbers of “non-complex”, “challenging”, and “complex” words of the test set and training set
for each learner are shown in Table 2. We divided the eight learners into two groups. The four who
knew less than 150 of the 550 words were designated as “Low-Proficiency”, and the other four as “High-

Proficiency”.

4.2 Text retrieval

We compiled a collection of texts from Chinese Wikipedia, Chinese Internet Corpus (Sharoff, 2006), and
Duan Mei Wen'. For each text, we extracted the first n sentences such that the total character count was
between 200 to 225. A total of 38,881 texts were included as candidates for the text retrieval algorithms.

We evaluated three text retrieval methods. Our baseline method randomly selects texts. The other two
methods use the two CWI models that achieved the best performance on low-proficiency learners and

'http://www.duanmeiwen.com
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User Training Set Test Set
non-complex challenging complex | non-complex challenging complex
1 11 2 37 68 25 457
2 7 9 34 78 91 381
3 22 10 18 296 38 216
4 14 8 28 113 114 323
5 17 8 25 217 116 217
6 13 15 22 188 109 253
7 14 8 28 146 75 329
8 20 13 17 268 135 147

Table 2: The numbers of non-complex, challenging, and complex words in the training sets and test sets.

high-proficiency learners (Table 3), respectively, coupled with the retrieval criteria described in Section
3.3. We retrieved the top five texts for each of these three methods.

We asked four of the eight learners — two low-proficiency learners and two high-proficiency learners
— to annotate the fifteen retrieved texts with the same five-point scale used in the CWI experiment. They
were asked to highlight the complex words in red and the challenging words in blue.

S Experimental results

5.1 Complex word identification

Following Ehara et al. (2014) and Lee and Yeung (2018), we trained SVM classifiers and logistic regres-
sion (LR) classifiers. We used the implementation in scikit-learn (Pedregosa et al., 2011), and we tried
all combinations of the features listed in Section 3.1. The results are shown in Table 3.

Features Model All Low-proficiency High-proficiency
WordList SVM  64.18% 70.96 % 57.41%
WordList LR 63.66% 70.41% 56.91%
WordList + HSK-char-max SVM 63.57% 69.68% 57.46%
WordList + HSK-char-max LR 58.82% 65.46% 52.18%
Freq SVM  40.52% 36.82% 44.23%
Freq LR 56.23% 62.82% 49.64%
LearnerFreq SVM 57.02% 64.50% 49.55%
LearnerFreq LR 62.93% 70.09% 55.78%
LearnerFreq + Freq SVM  51.11% 60.64% 41.59%
LearnerFreq + Freq LR 60.64% 66.73% 54.55%
LearnerFreq + LearnerFreq-char-min SVM  43.14% 50.46% 35.82%
LearnerFreq + LearnerFreq-char-min LR 64.27% 69.87% 58.68%
LearnerFreq + LearnerFreq-char-min + | SVM  54.61% 56.36% 52.86%
WordList

LearnerFreq + LearnerFreq-char-min + | LR 64.68 % 70.59% 58.77 %
WordList

Table 3: The average accuracies of 3-way complex word identification for all eight learners, low-
proficiency learners, and high-proficiency learners.

The LR model with LearnerFreq, LearnerFreq-char-min, and WordList features achieved the highest
accuracy, at 64.68%. It slightly outperformed the LR model with LearnerFreq and LearnerFreq-char-
min features, at 64.27%, and the SVM model with WordList features, at 64.18%. In general, CWI
performance is better on low-proficiency learners than on high-proficiency learners.
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The WordList features seem particularly useful for capturing the limited vocabulary of beginners, with
the word lists covering most of the words that they know. This hypothesis is consistent with the fact that
the SVM model with WordList features achieved the best performance for the low-proficiency learners,
at 70.96%. For high-proficiency learners, however, the word lists are insufficient in modelling their
larger vocabularies, and have to be augmented with frequency features in order to cover a wider range
of words. The LR model with LearnerFreq, LearnerFreq-char-min, and WordList features achieved the
highest accuracy for high-proficiency learners, at 58.77%.

5.2 Text retrieval

We evaluated three text retrieval methods:

e WordList: The SVM model with WordList features, which achieved the best CWI results for low-
proficiency learners.

e Learner + WordList: The LR model with LearnerFreq, LearnerFreq-char-min, and WordList fea-
tures, which achieved the best CWI results for high-proficiency learners,

e Baseline: Random selection.

Experimental results for high- and low-proficiency learners are shown in Tables 4 and 5, respectively.
To prevent outliers from skewing the results, we removed the texts with the highest and the lowest
proportion of non-complex words for each user.

Model Non-complex words Challenging words
WordList 90.18% (estimated: 85.06%) 7.84% (estimated: 18.13%)
Learner + WordList | 87.87 % (estimated: 84.62%) 6.13% (estimated: 23.39%)
Random selection 95.36% 4.82%

Table 4: The average proportion of non-complex and challenging words in text retrieved for high-
proficiency learners.

Model Non-complex words Challenging words
WordList 80.60% (estimated: 82.66%) 5.91% (estimated: 38.24%)
Learner + WordList | 86.26% (estimated: 83.91%) 3.76% (estimated: 20.45%)
Random selection 72.91% 6.09%

Table 5: The average proportion of non-complex and challenging words in text retrieved for low-
proficiency learners.

For high-proficiency learners, randomly selected texts were relatively easy to read. This can be seen
in the high proportion of non-complex words (95.36%) in texts returned by the baseline method. In
comparison, the WordList model and Learner+WordList model both retrieved more difficult texts, with
90.18% and 87.87% of non-complex words, respectively. Thus, these models were able to find texts that
presented more new vocabulary to advanced learners, while still exceeding the minimum comprehension
rate of 80

For low-proficiency learners, experimental results showed the opposite effect. The baseline method
retrieved rather difficult texts, in which only 72.91% of the words were non-complex, below the desired
minimum rate of 80%. In contrast, the WordList model and Learner+WordList model retrieved texts with
80.60% and 86.26% of non-complex words, respectively. Thus, they succeeded in finding more readable
texts, with above 80% comprehension rate, for the beginners.

For both the WordList model and the Learner+WordList model, the proportion of challenging words
in the retrieved texts was lower than estimated. As shown in Table 6, among the words estimated to
be challenging by the two best CWI models, most (63.11% and 75.15%, respectively) were scored as
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non-complex by the learners. The discrepancy may be attributable to the fact that learners, with the
benefit of context while reading a text, can better guess the meaning of a word that would otherwise
be challenging. This phenomenon can be even more clearly seen by comparing the scores on the same
words by the same learner in the CWI dataset (Section 4.1) and the text retrieval dataset (Section 4.2).
Indeed, among the words that were annotated as challenging in isolation in the CWI dataset, 68% were
annotated as non-complex in the text retrieval dataset by the same learners. Similarly, among the words
that were annotated as complex in the CWI dataset, 36.67% were annotated as non-complex in the text
retrieval dataset.

We conducted further analysis on the kinds of words that learners are more likely to find non-complex
when reading a text. We found that “challenging” or “complex” single-character words (e.g. LA yi
(with), ¥R chéng (named)) were more likely to be considered “non-complex” in context. Words related
to the theme of the texts (e.g. & kdu yin (accent) in a text about dialects and EJ& zhéng zhi (politic)
in a text about democracy) were also more likely to be changed from “challenging” or “complex” to
“non-complex”.

Gold label All Low-proficiency High-proficiency
WordList

Complex 26.99% 32.16% 21.83%
Challenging 9.90% 6.04% 13.76%
Non-complex 63.11% 61.79% 64.42%
Learner + WordList

Complex 17.44% 14.83% 20.06%
Challenging 7.41% 2.51% 12.30%
Non-complex 75.15% 82.67% 67.64%

Table 6: Gold label for words estimated to be challenging in the text retrieval dataset (Section 4.2).

6 Conclusion

Reading materials for language learning need to be carefully selected. The best material should be
challenging yet highly readable, containing just the right proportion of new and challenging vocabulary.
This paper describes a personalized text retrieval algorithm that aims to help language learners select the
most suitable reading material in terms of vocabulary complexity.

The system first employs a graph-based active learning model to select a small set of informative
words. Each user rates his/her knowledge of these words to create a training set for complex word
identification (CWI). The system then trains a personalized CWI model, and applies it to find texts that
contain the desired proportion of complex, challenging, and non-complex words. We evaluated this
algorithm on learners of Chinese as a foreign language, and showed its effectiveness in identifying easier
texts for low-proficiency learners, and more challenging ones for high-proficiency learners.
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