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Abstract

Answer selection is an important but challenging task. Significant progress has been made in
domains where a large amount of labeled training data is available. However, obtaining rich
annotated data is a time-consuming and expensive process, creating a substantial barrier for ap-
plying answer selection models to a new domain which has limited labeled data. In this paper, we
propose Knowledge-aware Attentive Network (KAN), a transfer learning framework for cross-
domain answer selection, which uses the knowledge base as a bridge to enable knowledge trans-
fer from the source domain to the target domains. Specifically, we design a knowledge module
to integrate the knowledge-based representational learning into answer selection models. The
learned knowledge-based representations are shared by source and target domains, which not
only leverages large amounts of cross-domain data, but also benefits from a regularization effect
that leads to more general representations to help tasks in new domains. To verify the effec-
tiveness of our model, we use SQuUAD-T dataset as the source domain and three other datasets
(i.e., Yahoo QA, TREC QA and InsuranceQA) as the target domains. The experimental results
demonstrate that KAN has remarkable applicability and generality, and consistently outperforms
the strong competitors by a noticeable margin for cross-domain answer selection.

1 Introduction

Answer selection, which is a key component of question answering (QA), has attracted increasing at-
tention recently due to its broad applications in natural language processing and information retrieval,
such as factoid question answering (Wang et al., 2007)) and community-based question answering (Tay
et al., 2017). Given a question, answer selection aims to pick out the most relevant answer from a set of
candidates. In the literature, answer selection has been extensively studied in the last decade (Severyn
and Moschitti, 2015; 'Wang and Nyberg, 2015} [Tan et al., 2016; dos Santos et al., 2016).

Despite the effectiveness of previous studies, answer selection remains a challenge in real-world ap-
plications for two reasons. (1) The background information and knowledge beyond the context, which
play crucial roles in human text comprehension, have received little attention in recent work for answer
selection. (2) Impressive answer selection performances were achieved in domains where a large amount
of labeled data is available. However, such fruitful results are subject to an assumption that the test data
should be drawn from the same distribution as the training data. Previous studies struggle to cope with
answer selection across different data domains. For example, the model trained on SQuAD-T dataset
that consists of open-domain factoid questions, is difficult to generalize to the InsuranceQA dataset that
consists of non-factoid questions in the insurance domain. In a new domain where its own labeled data
is in short supply, obtaining more labels is usually labor-intensive and time-consuming.

Knowledge base (KB), such as YAGO (Weikum et al., 2007), Freebase (Bollacker et al., 2008)), pro-
vides rich information of relations between entities. It has been widely studied and applied in many tasks
(Yang and Mitchell, 2017} [Liu et al., 2017). However, its applicability to answer selection has yet to be
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Question Who played Dumbledore in Harry Potter?

After Harris® death , Michael Gambon portrayed Dumbledore for all of the

Positive Answer .
remaining films.

Professor Albus Percival Wulfric Brian Dumbledore is a major character and

Negative Answer protagonist of J. K. Rowling’s Harry Potter series.

Table 1: Example of QA Candidate Pairs.

well-studied. Considering the example in Table [T existing context-based models may assign a higher
score to the negative answer than the positive answer, since the negative answer is more similar to the
given question at word level. However, with the background knowledge, we can correctly identify the
positive answer based on the relative facts contained in the knowledge base (KB) such as (Dumbledore,
played_by, Michael Gambon), (Michael Gambon, cast_in, Harry Potter). Furthermore, QA datasets in
different domains or types might differ from syntactic and lexical features, but relations of knowledge in
sentences are coherent in the same knowledge base.

Inspired by recent work on transfer learning (TL) and domain adaptation, in this paper, we study
how we can leverage labeled data of source domain and external knowledge in knowledge base to help
the answer selection in the new target domain which has only limited labeled data. Although transfer
learning was employed in many applications (Mou et al., 2016; [Li et al., 2017)), its application in answer
selection is still a relatively new territory and under-explored.

Our idea of leveraging external knowledge as a bridge between source and target domains is moti-
vated by the observation that the data in different domains shares certain common background knowl-
edge which can possibly be transferred from the source domain to the target domain. Thus, we proposed
Knowledge-aware Attentive Network (KAN) for transfer learning on answer selection task. In particu-
lar, we design a context-guided attentive convolutional neural network, which incorporates knowledge
embeddings into sentence representations, to strengthen the representation learning of documents. The
training of the transfer learning is performed in two steps: First, the proposed model is trained with the
labeled data from source domain and the external knowledge from knowledge base, called pre-training
procedure. We expect that the pre-training learns the knowledge-based representation, which enables
domain-independent knowledge to be transferred across domains. In addition, pre-training also gives a
good initialization of the model parameters, and therefore training at the latter stage gives a good gener-
alization performance even if the size of the target domain dataset is limited. Second, we fine-tune the
model on a target domain dataset which has limited labeled data, with the hope that one can safeguard
the performance of answer selection in the target domain by leveraging the shared knowledge learned
from knowledge base.

To verify the effectiveness of our model for cross-domain answer selection, we use SQUAD-T data as
the source domain and three other datasets (i.e., Yahoo QA, TREC QA and InsuranceQA) as the target
domains. The experimental results show that our model consistently outperforms previous methods.

2 Related Work

Answer Selection Recent years have witnessed great successes of applying different neural networks,
e.g., convolutional neural network (CNN) (Severyn and Moschitti, 2015) and recurrent models like the
long short-term memory (LSTM) (Wang and Nyberg, 2015)), into Answer Selection. The key idea behind
deep neural networks is to encode the input sentences as vector representations. Based on the represen-
tations, an output layer is utilized to provide the matching score of two texts. Instead of learning the
representations of the question and the answer separately, some recent studies exploit attention mech-
anisms to learn the interaction information between questions and answers, which can better focus on
relevant parts of the input (Tan et al., 2016} [dos Santos et al., 2016} (Chen et al., 2017). However, these
methods are subject to the amount of labeled data and the limited information provided by contexts.
Thus, we attempt to apply transfer learning and knowledge base to address these issues.
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Transfer Learning Transfer learning aims to transfer knowledge from the source data to the target data
in different domains, tasks, or distributions (Pan and Yang, 2010). Most recent studies in transfer learning
for natural language processing employ deep neural networks to learn the shared feature representation
between two different datasets (Mou et al., 2016; L1 et al., 2017). However, it was not until recent
years that the application of transfer learning on QA received extensive attention. [Min et al. (2017)
and (Wiese et al. (2017) both employ supervised transfer learning techniques to pre-train a model from a
large-scale dataset. [Yuan et al. (2018)) and |Yu et al. (2018) study unsupervised transfer learning under
the circumstance that there is only a little labeled target data or some unlabeled target data. In this paper,
to make the shared representation more knowledge-aware, we go deeper into the first kind of researches
and incorporate external knowledge into transfer learning framework in our method.

Knowledge Base Application As seen in many other tasks, it is a trend to leverage external knowledge
from KBs to enrich the representational learning of deep learning models. Several efforts have been made
on integrating knowledge embeddings trained by knowledge embedding methods (Bordes et al., 2013) to
learn a knowledge-aware sentence representation on machine reading (Yang and Mitchell, 2017), entity
typing (Xin et al., 2018)) and relation extraction (Han et al., 2018)). In this paper, we aim to develop
a more general framework for current models to learn knowledge-aware sentence representations on
answer selection task.

Inspired by these researches, we propose a transfer learning method for answer selection task, which
leverages external knowledge from knowledge base to enrich the representational learning of QA sen-
tences as well as bridge cross-domain QA datasets.

3 Model

In this section, we present the general framework of our transfer learning method on answer selection,
which leverages external knowledge from knowledge base as a bridge connecting cross-domain QA
datasets. Given a question ¢, our model aims to rank a set of candidate answers A = {a1,...,a,}.
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Figure 1: Knowledge-aware Attentive Network for Cross-domain Answer Selection. Blue, red and green
matrices denote knowledge-based representations, context-based representations and final knowledge-
aware sentence representations, respectively.

As is illustrated in Figure |1} the overall architecture of KAN contains two main components: Base
Model and Knowledge Module. In base model, we employ a pair of deep neural networks to learn the
initial context-based representations of questions and answers, separately (Section 3.1). In knowledge
module, a context-guided attentive CNN is designed to learn the knowledge-based sentence representa-
tion from entities in the sentence (Section 3.2). Afterwards, for both question and answer sentences, there
are two different sentence-level representation vectors. @), and A,, are learned from base model, while
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Q. and A, are derived from knowledge module. We obtain the final knowledge-aware attentive sentence
representations of question ¢ (i.e., 7y = [Q : Qc]) and answer a (i.e., 7 = [A, : Ac]), Where [:] is the
concatenation operation. There is a fully connected hidden layer before the final binary classification to
join all the features (Section 3.3). Finally, a transfer learning method is proposed to transfer the shared
knowledge to bridge two different datasets (Section 3.4).

3.1 Base Models

Given a question ¢ and a set of candidate answers A = {ay, ..., a,}, we first transform them into vector
representations with an embedding layer, and then input these embedding vectors into the base model.

Among numerous deep learning models proposed for answer selection task, we adopt several popu-
lar and typical models as our base model to demonstrate the strong applicability and generality of our
transfer learning method. The selected base models include: (1) Bi-LSTM, a bidirectional Long-Short
Term Memory (Bi-LSTM) network to generate sentence representation (Wang and Nyberg, 2015); (2)
Att-LSTM, an Attentive LSTM model with a simple but effective attention mechanism for the purpose
of improving the semantic representations for the answers based on the questions (Tan et al., 2016); (3)
AP-LSTM, an AP-LSTM model with attentive pooling, a two-way attention mechanism that information
from the question and the answer can directly influence the computation of each others representations
(dos Santos et al., 2016)); and (4) Conv-RNN, a hybrid framework of attention-based Convolutional Re-
current Neural Network (Conv-RNN) (dos Santos et al., 2016) with a similar attention mechanism as
Att-LSTM but in the input of the RNN. Note that, unlike the original paper of Conv-RNN, we employ
Bi-LSTM as the RNN model instead of the Bi-GRU. For the details of the models, please refer to the
original papers.

As for a question vector ¢ and an answer vector a, we obtain the initial context-based sentence repre-
sentation H,, for the question and the answer from the base model, namely (), and A,,,.

3.2 Knowledge Module

Knowledge module is responsible for transferring external knowledge from KB into the knowledge-
based sentence representations. We first employ n-gram matching to detect all the entity mentions in the
sentence, and then retrieve a set of top-K entity candidates from KB for each entity mention. However,
the ambiguity issue of the entity is still remained to be tackled, e.g., Santiago can refer to a city or
a person. Thus, a context-guided attention mechanism is designed to perform a soft entity linking and
learn the knowledge representation for each entity mention simultaneously. We present candidate entities
that related to the ¢-th word in the sentence as e (t) = {e;,, €y, .-, et } € RE* where d, is the
dimension of the entity embedding in KB. Then, the context-guided knowledge embedding for ¢-th word
is given by

m(t) = tanh (Wepme(t) + Wy Hy) , (1)

exp (w?nmtl)

thj em(t) TP (wTJ;Lmtj) 7

é;f - Z Qi €, , (3)

et €e(t)

2

o, =

(3

where Wey,, Wiy, and w,, are parameter matrices to be learned. m (¢) is a context-guided knowledge
vectors, and oy, denotes the context-guided attention weight that is applied over each candidate entity
embedding e;,. The contextual sentence representations I1,, of questions and answers are learned by the
base model, while the embeddings of entities in KB are learned by TransE (Bordes et al., 2013)).

This procedure produces a context-guided representation for each entity mention in the sentence. Then
we apply an CNN layer to learn a higher level knowledge-based sentence representation. The input of
the CNN layer are the attentive knowledge embeddings E = {é1,é3, ..., e} € RE*de,
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In the convolution layer, a filter of size n slides over the input embedding matrix to capture the local
n-gram information, which is useful to extract the entity features since an entity is likely to be a phrase.
Each move computes a hidden layer vector as

J;Z':[ei_anl7...,/éii,...7€i+nT—l], (4)

h; = tanh (Wx; +b), Q)

where W and b are the convolution kernel and the bias vector to be learned. Then we employ max-
pooling over the hidden layer vectors hq, ..., h,, to generate the final output vector y:

yj:max{hlj,...,hnj}, (6)

where y; and h;; are the j-th value of the output vector y and the hidden vector h;.

Due to the uncertainty of the length of entities, we exploit several filters of various sizes to obtain
n-gram features {y(l), y@, Ly }, where y(*) denotes the output vector obtained by the i-th filter.
We pass these output vectors through a fully-connected layer to get the final knowledge-based sentence
embedding H, € RE*%, where d 1 1s the total filter sizes of CNN and L is the length of the sentence.
As for the question ¢ and the answer a, we generate their knowledge-based sentence representations (),
and A, as:

Qe =My, .yl Ae = [y, Ly, )
3.3 Training

The initial context-based representations and the knowledge-based representations are concatenated to
form the final sentence representations of question g and answer a:

Tq = [Qw : Qe]; Tq = [Aw : Ae]- 8)

Following the ideas in [Severyn and Moschitti (2015) and [Tay et al. (2017), we incorporate the same
additional features into our overall architecture. First, we compute the bilinear similarity score between
final question and answer vectors, s (14, 7,) = quWra, where W € REXL is a similarity matrix to be
learned. Besides, the same word overlap features Teyirq € R* as Severyn and Moschitti (2015) and
Tay et al. (2017) are also integrated into our model. Thus, the inputs of the hidden layer is a vector
x = [rq,58(rq,7a), Tas Textra), and its output then go through a softmax layer for binary classification:

y(q, a) = softmax (Wsx + bs) . )

where W, € R%*2 and b, € R? are the parameters in the hidden layer. The overall end-to-end model is
trained to minimize the cross-entropy loss function:

N

L=-Y[yilogpi+ (1 —yi)log (1 —p;)] + A6II3, (10)
=1

where p is the output of the softmax layer. 6 contains all the parameters of the network and A||0[|3 is the
L2 regularization.

3.4 Transfer Learning Method

Our goal is to leverage external knowledge from an open-domain knowledge base to bridge cross-domain
answer selection data. The transfer learning method between different datasets is divided into two steps:
we first initialize the the parameters of model pre-trained on the source dataset, then we further fine-
tune on the target dataset. A straightforward way is to fine-tune all the parameters pre-trained by the
source data on the target training dataset. Another fashion is to fine-tune a certain part of parameters
and keep the rest of parameters fixed during fine-tuning. In our overall model, we present three ways to
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fine-tune: (1) Find-tune the entire model; (2) Only find-tune all the weights in the knowledge module.
This way aims at sharing the context-based representational learning module learned from the source
data and training a better knowledge-based representational learning module with the target training set;
(3) Only find-tune all the weights in the base model. On the contrary, this way considers knowledge-
based representational learning module a coherent part for transfer, but the context-based representational
learning module need to be fine-tuned. Note that for training the model, we followed the same procedure
as in |Yuan et al. (2018)), where pre-trained word embeddings are not updated during training. In this
work, so are pre-trained knowledge embeddings.

4 Experiments

4.1 Datasets and Metrics

In the paper, we adopt four widely-used QA datasets for evaluation, including two factoid QA datasets,
SQuAD-T and TREC QA, and two community-based QA datasets, InsuranceQA and Yahoo QA. We
adopt SQuUAD-T as our source dataset for transfer learning due to its high quality and large quantity,
while the other datasets are used as target datasets.

e TREC QA, collected from TREC QA track 8-13 data (Wang et al., 2007), is a benchmark for open-
domain factoid question answering. Most questions are short and factoid-based, and answers are
usually consisting trivia information. Following previous works (Tay et al., 2018} |Rao et al., 2016),
we use Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) as evaluation metrics.

e InsuranceQA, proposed by (Feng et al., 2015)), contains community-based question and answer
pairs from the insurance domain and is split into a training set, a validation set, and two test sets.
For the development and test sets, the InsuranceQA also includes an answer pool of 500 candidate
answers for each question. This answer pool was produced by including the correct answer and
randomly selected candidates from the complete set of unique answers. The top-1 accuracy of the
answer selection is reported.

e Yahoo QA, introduced in Tay et al. (2017), is a cleaned version of original Yahoo QA dataset ﬂ
which is an open-domain CQA dataset collected from Yahoo Answers. In their setting, questions
and answers that are not in the range of 5 - 50 tokens are filtered. Additionally, 4 negative samples
are generated for each question by sampling from the top 1000 hits. Note that almost all the cases
in this dataset are non-factoid questions. For this dataset, we use the same metrics as (Tay et al.,
2017; Tay et al., 2018)), including Precision@1 and MRR.

e SQuAD-T, introduced in Min et al. (2017), is a modification of SQuAD dataset (Rajpurkar et al.,
2016)) for answer selection task. SQuAD is a recent open-domain machine reading QA dataset, in
which each case is a pair of context paragraph from Wikipedia and a question created manually,
and the answer is a span in the context. The task of SQUAD-T is to classify whether each sentence
contains the answer, since its contained context paragraphs are split into sentences.

The statistics of all datasets, i.e., training sets, development sets and testing sets, are given in Table 2]

#Question #QA Pairs .
Dataset (train/dev/test) (train/dev/test) Question Example
TREC QA 1229/82/100 53417/1148/1517 What was the first Gilbert and Sullivan opera?
InsuranceQA  12887/1000/1800x2  37.1K/500K/900Kx2 Why have renter insurance?
Yahoo QA 50.1K/6.2K/6.2K 253K/31.7K/31.7K How to maximize returns on your investments?
SQuAD-T 87.1K/10.5K/- 708K/53.6K/- What sits on top of the main building at Notre Dame?

Table 2: Summary statistics of datasets.

'http://webscope.sandbox.yahoo.com/catalog.php?datatype=1&did=10
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4.2 Experimental Settings

Pre-trained GloVE embedding of 300 dimensions are adopted as word embeddings. We use a subset of
Freebase (FBSME]) as our KB, which includes 4,904,397 entities, 7,523 relations, and 22,441,880 facts.

For the base models, we followed exactly the same parameter settings as those in their original papers.
For the knowledge module, the width of the convolution filters is set to be 2 and 3, and the number of
convolutional feature maps and the attention sizes are set to be 200. For the rest of our models, the final
hidden layer size is set to 200 and all other parameters are randomly initialized from [-0.1, 0.1]. The
model parameters are regularized with an L2 regularization strength of 0.0001. The learning rate and the
dropout rate are set to 0.0005 and 0.5 respectively. The maximum length of sentence is set to be 40. We
train all the models in batches with size of 64.

4.3 Results and Analysis
4.3.1 Comparisons Between TL Methods

To evaluate the proposed transfer learning method, we conduct the following comparison experiment
with the same base model AP-LSTM (dos Santos et al., 2016), i.e., KAN(AP-LSTM). We first pre-
train the models on the source dataset, and then fine-tune the models on target datasets. We also report
the ablation tests in terms of discarding the knowledge module (i.e., AP-LSTM) and exploiting several
different TL methods as follows:

e Tgt-Only is the baseline trained in the training set of target data.
e Src-Only is another baseline trained in the training set of source data.
e Mixed is to simply mix the training data from both target and source dataset to train the model.

e Fine-Tune is a widely used TL method, where we first train a model on the source data, and then use
the learned parameters to initialize the model parameters for training another model on the target
data. As is presented in Section 3.4, we employ three kinds of fine-tuning methods. Fine-Tune (all)
means that we fine-tune all the parameters on the target data. Find-Tune (1) indicates that we fix all
the weights of the base model and fine-tune parameters of the rest part of the overall model, while
we fix all the weights of the knowledge module in Find-Tune (2).

Model TL Method Yahoo QA TREC QA InsuranceQA
P@l MRR MAP MRR DEV TEST1 TEST2
(a) Tgt-Only 60.8 76.1 75.9 81.0 69.2 69.8 67.0
(b) Src-Only 14.5 36.2 74.9 78.1 61.1 62.1 58.8
AP-LSTM

S (c) Mixed 56.8 73.1 75.1 79.5 69.1 70.2 67.3

(d) Fine-Tune (all) 724 81.9 76.9 82.4 72.2 733 70.4
(e) Tgt-Only 67.2(+6.4)  80.3(+4.2) 78.1(+2.2)  83.1(+2.1) 71.3(+2.1)  71.5(+1.7)  68.8(+1.8)
(f) Src-Only 159(+1.4)  37.4(+1.2) 76.7(+1.8)  81.8(+3.7) 58.1(-3.0) 59.4(-2.7) 56.1(-2.7)
KAN(AP-LSTM) (€3] Mlxed 62.4(+5.6)  76.8(+3.7) 76.7(+1.6)  81.6(+2.1) 70.2(+1.1)  71.0(+0.8)  68.5(+1.2)
(h) Fine-Tune (all) | 74.2(+1.8)  83.4(+1.5) 78.8(+1.9)  84.1(+1.7) | 74.6(+2.4)  753(+2.0)  72.1(+1.7)

(i) Fine-Tune (1) 73.0 82.6 78.7 84.1 74.4 75.6 72.6

(j) Fine-Tune (2) 74.4 84.0 79.7 85.0 74.4 752 72.5

Rank 1 60.1 75.5 771 83.8 1.7 714 68.3

Rank 2 57.3 73.6 78.0 83.4 68.4 71.7 66.4

Rank 3 55.7 73.5 75.0 81.5 70.0 70.1 62.8

Table 3: Comparisons Between TL Methods. The number in the parenthesis indicates the accuracy
change over the same TL method in the base model.

Table [3| reports the experimental results of our transfer learning method on Yahoo QA, InsuranceQA
and TREC QA and the performance of previous models that achieve the state of the art. To compare
the previous competing models, we adopt the best three results on each dataset reported in the literature,
which are presented as Rank 1,2,3 in Table 3. Both Yahoo QA and TREC QA results are reported from

2http://nlp.stanford.edu/data/glove.6B.zip
3https://research.facebook.com/researchers/1543934539189348
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Tay et al. (2018)), including [Tay et al. (2018), [Bradbury et al. (2016), |[Rao et al. (2016)) and [Tay et al.
(2017). For InsuranceQA, they are from [Wang et al. (2017), |dos Santos et al. (2016)), and |Wang et al.
(2016)). There are multiple interesting observations from Table 3 as follows:

(1) Our transfer learning method (row (h,i,j)) outperforms the state-of-the-art results on Yahoo QA,
TREC QA and InsuranceQA datasets by about 10%, 2% and 4% respectively.

(2) The results of KAN(AP-LSTM) (row (e-h)) significantly outperform AP-LSTM (row (a-d)), which
demonstrates the effectiveness of incorporating external knowledge into the base model. Among these
results, Src-Only on InsuranceQA is an exception since the target dataset is completely different from the
source dataset in domain, which interferes the training of the knowledge module with the source dataset
and brings a negative effect on the performance.

(3) For row (e), (f) and (g), we observe that Src-Only perform much worse than Tgt-Only, which
indicates that the source QA dataset is quite different from all the target QA datasets. The greater the
difference between the experimental results, the greater the difference between source and target datasets.
Thus, we notice that Yahoo QA is the most different from SQuAD-T, and InsuranceQA is also very
different from SQuAD-T, while TREC QA is the most similar one. Besides, the performance of Mixed is
also worse than Tgt-Only, which implies that simply mixing the training data from two different datasets
may lead to the overfitting of the source data.

(4) For row (h), (i) and (j), it can be observed that the Fine-Tune methods outperform the Tgt-Only
method (row (e)), demonstrating that pre-training the model parameters on a source dataset is better than
randomly initializing them. In specific, fine-tuning all the parameters of the model (row (h)) cannot
always achieve the best result, because it may cause overfitting to fine-tune the entire model. For Yahoo
QA and TREC QA, only fine-tuning the parameters of the base model (row (j)) achieves the best result.
We infer that it is due to the shared knowledge from knowledge base is coherent between the source and
target datasets. Conversely, InsuranceQA achieves its best performance with fine-tuning only the weights
of the knowledge module (row (i)). Results on InsuranceQA indicate that one should pay attention to
fine-tune the knowledge module rather than the base model when domain knowledge of the target dataset
is quite different from the source dataset as InsuranceQA and SQuAD-T.

4.3.2 Applicability and Generality of our TL Method

To demonstrate the applicability and generality of our transfer learning method, besides AP-LSTM,
we implement the overall transfer learning framework with other three base models, including Conv-
RNN (Wang et al., 2017), Bi-LSTM (Wang and Nyberg, 2015)), and Att-LSTM (Tan et al., 2016)). The
experimental results on TREC QA are summarized in Table 4]

From Table |4, we observe a similar result as Section 4.3.1. For these three base models, it makes a
significant performance boost to incorporate external knowledge into the overall architecture. Besides,
compared with Tgt-Only, Fine-Tune methods perform much better, which demonstrates that our transfer
learning framework works on all the given models.

TL Knowledge Conv-RNN Bi-LSTM Att-LSTM
Method Module ~ MAP MRR MAP MRR MAP MRR
Tet.Onl wlo 771 824 750 804 735 792
st-only w/ 780 831 774 825 759  80.1
Sre.Onl wlo 749 787 741 795 721 769
y w/ 763 802 756 813 748 786
Mixed wlo 764 810 752 806 733 793
w/ 776 827 770 824 755 800
Fino-Tune (all) wlo 783 832 768 823 753 798
u w/ 794 848 782 836 771 813
Fine-Tune (1) w/ 788 840 784 831 777 816
Fine-Tune (2) w/ 797 848 785 837 779 819

Table 4: Experiment with Different Base Models.
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4.3.3 Size of Target Dataset for Fine-tuning

We conduct experiments to study the relationship between the performance and the amount of training
data from the target dataset for fine-tuning the model. We first pre-train the models on SQuAD-T, then
vary the training data size of the target dataset, i.e., TREC QA and InsuranceQA, for fine-tuning. Note
that we employ the AP-LSTM as the base model (i.e., KAN(AP-LSTM)) and fix all the parameters of
the knowledge module during fine-tuning (i.e., Fine-Tune (2)).

The experimental result is summarized in Table 5] In general, fine-tuning with more target data actu-
ally improves the overall results. We observe that the performance increase from using 0% to 20% of
target training data is substantially larger than latter increases. This result shows that we can achieve a
competitive result with a small amount of target labeled data, by using our transfer learning method. Be-
sides, it is obvious to notice that when increasing the number of target training data, the improvement on
InsuranceQA is much more significant than that on TREC QA. As is presented in the analysis in Section
4.3.1, the InsuranceQA dataset is much different from the source dataset than the TREC QA dataset, not
only in types but also in domains. Thus, the experiment result demonstrates the strong applicability in
transferring shared knowledge between diverse datasets, even with limited labeled target data.

Percentage of target TREC QA InsuranceQA

data for fine-tuning MAP MRR DEV TEST1 TEST2
0% 76.7 81.8 58.1 59.4 56.1
20% 78.1(1.4) 834(L.7) 720(13.9) 728 (13.4) 69.5(13.4)
40% 78.9(0.8) 83.7(0.3) 73.2(1.2) 74.0 (1.2) 71.1(1.6)
60% 79.1(0.2) 84.2(05) 73.6(0.4) 74.5 (0.5) 71.6 (0.5)
80% 793(0.2) 84.7(0.5) 74.1(0.5) 74.9 (0.4) 72.1 (0.6)
100% 79.7(0.4) 85.0(0.3) 74.4(0.3) 75.2(0.3) 72.5(0.4)

Table 5: Results of varying sizes of the target datasets used for fine-tuning. The number in the paren-
thesis indicates the accuracy increases over the previous row.

4.3.4 Completeness of Knowledge Base

To observe the effect of the completeness of KB on the performance, we report the results on TREC
QA and InsuranceQA with the incomplete knowledge base that randomly drops 20%-80% knowledge.
Note that as the experimental settings in Section 4.3.3, we also employ the AP-LSTM as the base model
(i.e., KAN(AP-LSTM)) and fix all the parameters of the knowledge module during fine-tuning (i.e.,
Fine-Tune (2)). Figure [Z] shows that our model is robust and achieves excellent performance on the KB
with different completeness. Besides, the more complete the knowledge base we leverage, the better
the overall performance, which demonstrates the effectiveness of integrating external knowledge into the
proposed method.

Experiment on TREC QA Experiment on InsuranceQA
—=@-—MAP MRR —@—DEV TEST1 TEST2
0.86 0.76
» 0.84 - 0.75
2 2
E 0.82 ‘3 0.74
s 08 = 0.73
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= 076 3 07
= 0.74 = 0.69
0.72 0.68
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Completeness of Knowledge Base Completeness of Knowledge Base

Figure 2: Effect of KB Completeness
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5 Conclusion

In this paper, we propose knowledge-aware attentive network (KAN), a novel and general transfer learn-
ing framework, for cross-domain answer selection. We incorporate external knowledge from knowledge
base into deep learning models to enrich the sentence representational learning and aid in transferring
more valuable information between cross-domain datasets. Experimental results on three benchmark
datasets demonstrate the superiority of our proposed method on answer selection task. We also conduct
experiments to show the applicability and generality of our method and show that a resource-poor dataset
can benefit from not only the scale of a resource-rich dataset but also the shared knowledge learned from
knowledge base.
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