
Proceedings of the 27th International Conference on Computational Linguistics, pages 3228–3239
Santa Fe, New Mexico, USA, August 20-26, 2018.

3228

Character-Level Feature Extraction
with Densely Connected Networks

Chanhee Lee1, Young-Bum Kim2, Dongyub Lee1, HeuiSeok Lim1∗

1Korea University, Republic of Korea
{chanhee0222, judelee93, limhseok}@korea.ac.kr

2Amazon Alexa
youngbum@amazon.com

Abstract

Generating character-level features is an important step for achieving good results in various nat-
ural language processing tasks. To alleviate the need for human labor in generating hand-crafted
features, methods that utilize neural architectures such as Convolutional Neural Network (CNN)
or Recurrent Neural Network (RNN) to automatically extract such features have been proposed
and have shown great results. However, CNN generates position-independent features, and RNN
is slow since it needs to process the characters sequentially. In this paper, we propose a novel
method of using a densely connected network to automatically extract character-level features.
The proposed method does not require any language or task specific assumptions, and shows
robustness and effectiveness while being faster than CNN- or RNN-based methods. Evaluat-
ing this method on three sequence labeling tasks - slot tagging, Part-of-Speech (POS) tagging,
and Named-Entity Recognition (NER) - we obtain state-of-the-art performance with a 96.62
F1-score and 97.73% accuracy on slot tagging and POS tagging, respectively, and comparable
performance to the state-of-the-art 91.13 F1-score on NER.

1 Introduction

Effectively extracting character-level features from words is crucial in many Natural Language Process-
ing (NLP) tasks, such as Named Entity Recognition (NER), Part-of-Speech (POS) tagging, and Slot
tagging. Thus, most state-of-the-art methods for these tasks exploit some kind of character-level fea-
tures (Huang et al., 2015; dos Santos and Zadrozny, 2014). Recently, generating character-level features
with neural architectures such as Convolutional Neural Network (CNN) or Recurrent Neural Network
(RNN) has drawn much attention, mainly because it doesn’t require human labor and shows superior
performance (Ma and Hovy, 2016; dos Santos and Zadrozny, 2014). However, CNN struggles at distin-
guishing anagrams, and RNN is inherently slow due to its sequential nature.
In this paper, we propose an effective and efficient way of extracting character-level features using a
densely connected network. The key benefits of the proposed method can be summarized as follows.
First, it does not require any hand-crafted features or data preprocessing. Each word is processed based
on n-gram statistics of the training data, and vectorized using bag-of-characters. Additional features are
based on hexadecimal values of the character-set (e.g. UTF-16) and number of characters in the word.
Second, it extracts effective character-level features while being efficient. State-of-the-art performance
can be achieved using this method, and the feature extraction is done with a simple densely connected
network with a single hidden layer. Third, it doesn’t depend on features that are language or task specific,
such as character type features or gazetteer (i.e. lists of known named entities such as cities or organiza-
tion names). The only requirement for adopting this method is that the language should be processable as
a sequence of words, which is made of sequence of characters. These benefits, combined with minimum
requirements for application, make the proposed method an easy replacement for conventional methods
such as CNN or RNN.

∗ corresponding author
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

3229

Our contributions are three-fold: 1) We propose an effective yet efficient method for character-level fea-
ture extraction; 2) We quantitatively show that the proposed method is superior to CNN and RNN via
extensive evaluation; 3) We achieve state-of-the-art or comparable to state-of-the-art performance on
three of the most popular and well-studied sequence tagging tasks - Slot tagging, Part-of-Speech (POS)
tagging, and Named Entity Recognition (NER).

2 Related Work

Prior to the introduction of neural architectures for character-level feature generation, manually engi-
neered features were designed by experts based on language and/or domain knowledge. One example is
word shape, in which each word is mapped to a simplified representation that encodes information such
as capitalization, numerals, and length (e.g. CoNLL-2003 to AaAAA-0000). Finkel et al. (2005) com-
bined this feature with other information such as n-grams and gazetteers to train a conditional Markov
model for identification of gene and protein names in biomedical documents. Huang et al. (2015) in-
troduced more hand-crafted features utilizing punctuation or non-letters and used these as an input to a
Bi-LSTM-CRF tagger for POS tagging, CoNLL-2000 chunking, and CoNLL-2003 NER. Even though
these kinds of hand-crafted features showed strong empirical results, they are more expensive than our
approach in that they require expert knowledge of the target domain and language.

In recent years, methods that utilize neural networks to automatically extract character-level features
have been proposed. The most widely adopted and successful method for this is CNN. dos Santos and
Zadrozny (2014) combined this approach with a window-based fully-connected neural network tagger to
perform English and Portuguese POS tagging. This work achieved state-of-the-art results in Portuguese
and near state-of-the-art results in English. In Ma and Hovy (2016), a Bi-LSTM-CRF model incorpo-
rated with a character-level CNN is trained in an end-to-end fashion. They evaluated this approach on
English POS tagging and NER, achieving state-of-the-art performance on both tasks. However, feature
vectors generated by CNN are position-independent due to the max-over-time pooling layer, and are
more sensitive to model weight initialization compared to the method proposed in this paper.

Another effective way of generating feature vectors from a variable length sequence of characters is
to use RNN. For instance, Lample et al. (2016) extracted character-level features using a bi-directional
LSTM and used them with pre-trained word embeddings as word representations for another Bi-LSTM-
CRF model. Evaluating this model for NER, they obtained state-of-the-art results for Dutch, German,
and Spanish, and close to state-of-the-art results for English. Intuitively, character-level feature genera-
tion via RNN should be more effective than CNN, since RNN processes each character sequentially and
thus should form a better model of character ordering. However, Reimers and Gurevych (2017) empiri-
cally showed that these two methods have no statistically significant difference in terms of performance.
Furthermore, RNN has a higher time-complexity caused by its sequential nature, which makes it less
favorable.

3 Proposed Method

The proposed method is built on bag-of-characters (BOC) representation. However, BOC is prone to
anagrams and thus is susceptible to word collisions, i.e. different words having the same vector repre-
sentation. The main focus of the proposed method is to minimize word collision while maintaining the
key benefits described above. To achieve this goal, we split the word into k pieces, and each piece is
vectorized using BOC. Then, two non hand-crafted-features are extracted from the word - character order
and word length. These sparse vectors are concatenated and normalized to form the sparse character-level
feature vector. For a n-dimensional vector x = 〈x1, x2, · · · , xn〉, normalizing is done as follows:

x′i =
xi∑n
j=1 xj

(1)

This sparse vector is then fed into a densely connected network with a single hidden layer to obtain
the final dense character feature vector. Note that the sparse vector representation of each word is fixed,
so it can be cached for efficiency. Figure 1 illustrates the overall process.

3230

Figure 1: Process of generating the character-level feature vector of a word using the proposed method.

3.1 Splitting Words

Each word is split into k pieces to reduce the number of word collisions. To maintain the ordering of
pieces, concatenation is used instead of summation or averaging to merge the vectors. Word splitting is
done based on n-gram frequency. First, n-gram statistics Cng is collected from the training corpus where
Cng(s) is the number of times the n-gram s appears in the corpus. Then, the n-gram with the highest
frequency gets merged into a single piece, and this merging is repeated until only k n-grams are left.
The number of pieces k per word is a configurable hyperparameter. Finally, each piece is converted into
a fixed length vector using BOC. The detailed algorithm is presented in Algorithm 1. This process is
similar to the byte-pair encoding method in Sennrich et al. (2015), except that in the proposed method
each word can only be split into k pieces whereas byte-pair encoding produces an arbitrary number of
pieces. Producing a fixed number of pieces is important, since concatenation is used to merge the vectors.

Algorithm 1: Splitting word into k pieces
Input : word w = (c1, c2, · · · , cn), n-gram statistics Cng, number of pieces k
Output: S = (s1, · · · , sk) where s1 + s2 + · · ·+ sk = w

1 S ← w
2 while |S| > k do
3 m = argmax

i
Cng(ci + ci+1)

4 S ← (· · · , sm−1, sm + sm+1, sm+2, · · ·)
5 end
6 while |S| < k do
7 Append empty string to S
8 end
9 return S

3.2 Character Order Feature

Every character that has a digital representation can be converted into a numerical value via some
character-set (e.g. UTF-16). Then, it is possible to numerically compare two characters. Let
T = {c1, c2, · · · , cn} be a character sequence of length n. Then Fasc(T, k), Fdes(T, k), Casc(T), and
Cdes(T) are defined as follows:

3231

Figure 2: Overview of model architecture for sequence tagging experiments. Question mark indicates
that the component is optional.

Fasc(T, k) =

{
1, if ck < ck+1

0, otherwise
, Fdes(T, k) =

{
1, if ck > ck+1

0, otherwise
(2)

Casc(T) =
n−1∑
k=1

Fasc(T, k) , Cdes(T) =
n−1∑
k=1

Fdes(T, k) (3)

Bi-grams with the same character repeating are ignored. A sequence of characters can then be cate-
gorized into one of three classes: Casc(T) > Cdes(T), Casc(T) = Cdes(T), Casc(T) < Cdes(T). This
category info is calculated for each word piece, which is then converted into a 3-dimensional vector using
one-hot encoding and concatenated to the sparse word piece vector.

3.3 Word Length Feature

To further reduce the number of word collisions, information about the word’s length is added into the
model. One-hot encoding is used to store an integer from 0 to 20, and any word exceeding 20 characters
is treated as being 20 characters long.

4 Model

In this section, we describe the sequence tagging model’s architecture in detail. Figure 2 illustrates the
model architecture.

4.1 Sequence Tagging with Bidirectional RNN

In sequence tagging tasks, such as POS tagging or NER, both future and past input tokens are available
to the model. Bidirectional RNNs (Graves and Schmidhuber, 2005) can efficiently make use of future
and past features over a certain time frame. We use Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) for our RNN cell, which is better at capturing long-term dependencies than vanilla
RNN. Output of the forward and backward RNN layers are summed to form the feature vector of each
time-step. Each word is tagged based on this feature vector, using either a softmax layer or CRF layer.

3232

To capture a more abstract and higher-level representation in different layers, a densely connected layer
can be added before and after the Bi-LSTM layers. The input to this network at each time-step is the
concatenation of the character-level feature vector and a pre-trained word vector (described in section 5).

4.2 Conditional Random Field

Even though a Bi-LSTM layer can efficiently extract features for each time-step utilizing past and fu-
ture inputs, the prediction is made on each time-step, independent of past and future tag outputs. The
Conditional Random Field (CRF) layer overcomes this limitation by considering state transition prob-
ability, thereby decoding the most probable output tag sequence. It has been shown that adding a CRF
layer on top of a Bi-LSTM network can lead to statistically significant performance increases (Reimers
and Gurevych, 2017). We also test a variant of our model using CRF as the final layer to perform tag
sequence prediction.

4.3 Stacking RNNs with Residual Connection

Increasing the depth of the neural network architecture has proven to be an effective way of improving
performance. However, naively stacking layers can lead to adversarial effects due to the degradation
problem. Residual connection (He et al., 2016) has shown to be an effective way to tackle this issue by
creating a shortcut between layers. The same strategy is adopted to our model when there are more than
one Bi-LSTM layers, in which case the input is added to the Bi-LSTM layer’s output.

4.4 Dropout

Dropout is a popular and effective way of regularizing neural network models, by randomly dropping
nodes (Srivastava et al., 2014). In our model, Inverted dropout is applied to all densely connected layers
for regularization. For the Bi-LSTM layers, variational recurrent dropout (Gal and Ghahramani, 2016) is
used, since naive dropout can deteriorate performance. The word embedding matrix is regularized using
the method proposed in Gal and Ghahramani (2016), i.e. dropping words at random.

5 Training Details

Pre-trained Word Embeddings Utilizing word embeddings pre-trained on large unlabeled text has
shown to be one of the most effective ways to increase performance on various NLP tasks. Our model
uses the GloVe (Pennington et al., 2014) 300-dimensional vectors trained on the Common Crawl corpus
with 42B tokens as word level features, as this resulted in the best performance in preliminary exper-
iments. Words that do not appear in the training data are replaced with a special Out-of-Vocabulary
(OOV) token. To train the vector of this token, we randomly swap words with OOV tokens while train-
ing with a 0.01 probability, as in Lample et al. (2016). The word vector is then concatenated with the
character-level feature vector and fed into the subsequent layer.
Freezing Embeddings It is common practice to fine-tune the pre-trained word vectors through the
training process. However, preliminary experiments have revealed that fine-tuning the word vectors
results in lower performance than freezing the vectors, especially in the early stages of training. We
hypothesize that randomly initialized weights in the model act as noise and degrade the pre-trained word
vectors. To circumvent this issue, the embeddings are frozen for the first Tfreeze phase of training so that
they are not affected by untrained weights. We use Tfreeze = 20% for all experiments.
Dynamic Batch Size Keskar et al. (2016) showed that small batch sizes lead to more global and flat
minimizers, while large batch sizes lead to more local and sharp minimizers. Therefore, starting from
a small batch size and increasing it during training would result in a more global, but sharp minimizer.
While having similar effect to learning rate decay, this strategy also has a benefit of accelerating the
training as the batch size grows (Smith et al., 2017). Adopting this method, we start from a fixed initial
batch size, and increase the batch size by a factor of two on each quarter of the course of training.
Tagging Scheme It is reported that more complicated tagging schemes such as IOBES does not have
statistically significant advantage over BIO scheme (Reimers and Gurevych, 2017), thus we adopt the
BIO scheme for all experiments.

3233

Dataset ATIS PTB WSJ CoNLL2003

Sentences Tokens Sentences Tokens Sentences Tokens

Training 4978 56591 38219 912344 14987 204567
Develop. - - 5527 131768 3466 51578

Test 893 9198 5462 129654 3684 46666

Table 1: Corpus statistics of each task.

Parameter Optimization Our network is trained by minimizing the cross entropy loss over the tags
for the softmax model, or maximizing the log-likelihood of the tag sequence for the CRF model. The
objective function is optimized using the gradient-based optimization algorithm Adam (Kingma and Ba,
2014). For all experiments, we implement the model using the TensorFlow (Abadi et al., 2016) library.
Hyperparameter Tuning Most hyperparameters, with the following exceptions, are tuned on the devel-
opment sets. Hyperparameters of the character-CNN and character-RNN models are adopted from Ma
and Hovy (2016) and Lample et al. (2016), respectively. The chosen hyperparameters for all experiments
are summarized in Appendix A.

6 Evaluation

We evaluate the effectiveness of the proposed method using three of the most well-studied and common
English sequence tagging tasks - Slot tagging, POS tagging, and NER. Note that to test the generalizabil-
ity of the proposed method, we do not perform any preprocessing for all experiments. Details on each
task and baseline models are described in this section. Table 1 summarizes the statistics of each task.

6.1 Slot Tagging

For slot tagging, we use the Airline Travel Information System (ATIS) dataset. This dataset has 84 types
of slot labels and 127 possible tags with BIO tagging scheme. Since this corpus lacks a development
set, 20% of the training data is randomly sampled and used as the development set for tuning the hy-
perparameters. This task’s performance is measured in F1-score, which is calculated using the publicly
available conlleval.pl script.

6.2 Part-of-Speech Tagging

For POS tagging, we use the Wall Street Journal (WSJ) portion of the Penn TreeBank dataset (Marcus et
al., 1993) and adopt the standard split for part-of-speech tagging experiments - section 0-18 as training
data, section 19-21 as development data, and section 22-24 as test data. This dataset contains 45 different
POS tags. Model performance is measured by token-level accuracy.

6.3 Named Entity Recognition

For NER, the English portion of the CoNLL-2003 shared task (Tjong Kim Sang and De Meulder, 2003)
is used for evaluation. This dataset contains four different types of named entities, which results in
nine possible tags with BIO tagging scheme and an ’O’ tag. Like slot tagging, the final performance is
measured in F1-score using the same conlleval.pl script.

6.4 Baseline Models

Character-level CNN and character-level RNN are the most effective and widely adopted methods for
character-level feature extraction, and thus are suitable as strong baseline methods. We implement these
two methods to use them as baselines for comparison. The CRF layer has the effect of making the model
robust to architectural differences (Reimers and Gurevych, 2017). Since the goal of baseline experiments
is to evaluate the effect of difference in character-level feature generation methods, we use the softmax
layer instead of the CRF layer for these experiments. Every aspect of the sequence tagging model except
the character-level feature generation method is identical for all baseline experiments.

3234

Method Task

Slot POS NER

Char-CNN 96.22 (SD 0.08) 97.68 (SD 0.03) 89.08 (SD 0.20)
Char-RNN 96.25 (SD 0.09) 97.68 (SD 0.03) 90.15 (SD 0.14)

Char-Dense (Ours) 96.28 (SD 0.07) 97.69 (SD 0.02) 90.10 (SD 0.13)

Table 2: Comparison with baseline models.

(a) Slot (b) POS (c) NER

Figure 3: Score distributions for all experiments. Quartiles marked with dashed lines.

7 Results and Discussion

7.1 Experimental Results

For a more in-depth analysis of the performance of the proposed method and two baselines, we train each
model 20 times with different initial parameters, which are randomly initialized (Reimers and Gurevych,
2017). Table 2 summarizes the mean performance with standard deviation in parentheses. Performance
distribution is also visualized using a violin plot in Figure 3.

7.1.1 Slot Tagging

On the task of tagging semantic slots using the ATIS dataset, the proposed method shows the best re-
sults in terms of both performance and variability. Our method has the highest mean F1-score of 96.28.
Furthermore, it has the lowest standard deviation across all runs, which means it is robust to parameter
initialization. On the contrary, both CNN and RNN models have lower performance and higher variabil-
ity compared to the proposed method.
Analyzing the violin plot reveals that there are also differences in score distribution. While CNN models
tend to have a low F1-score on average with occasional high peaks, RNN models have higher F1-score in
general but suffer from a large performance drop with poor parameter initialization. This could be one of
the reasons why models using CNN seem to have superior performance when only the best performance
is reported. On the other hand, our model does not result in peaks or serious drops in performance with
different seed values, which makes it more suitable for real-world applications.

7.1.2 Part-of-Speech Tagging

The proposed method also achieves the best results on the POS tagging task. Similar to the slot tagging
task, our method shows the highest mean accuracy of 97.69 with the lowest standard deviation of 0.02.
For the baseline models, CNN and RNN performed on par.
CNN-based models have higher variability with high peak performance on this task also, as shown in the
violin plot. Similar to the slot tagging task, our method shows the lowest variability, which supports the
robustness of this method.

3235

Figure 4: Sentence processing speed in terms of number of sentences per second.

Slot POS NER

Approach F1 Approach Acc. Approach F1

Mesnil et al. (2015) 94.73 Toutanova et al. (2003) 97.24 Ando and Zhang (2005) 89.31
Yao et al. (2014) 94.85 Manning (2011) 97.32 Collobert et al. (2011) 89.59

Liu and Lane (2015) 94.89 Shen et al. (2007) 97.33 Huang et al. (2015) 90.10
Yao et al. (2014) 95.08 Sun (2014) 97.36 Chiu and Nichols (2015) 90.77

Peng and Yao (2015) 95.25 Moore (2015) 97.36 Ratinov and Roth (2009) 90.80
Vu et al. (2016) 95.56 Hajič et al. (2009) 97.44 Lin and Wu (2009) 90.90

Vu (2016) 95.61 Søgaard (2011) 97.50 Passos et al. (2014) 90.90
Kurata et al. (2016) 95.66 Tsuboi (2014) 97.51 Lample et al. (2016) 90.94
Zhu and Yu (2017) 95.79 Huang et al. (2015) 97.55 Luo et al. (2015) 91.20
Zhai et al. (2017) 95.86 Choi (2016) 97.64 Ma and Hovy (2016) 91.21

Char-Dense
w/o CRF (Ours)

96.36
Char-Dense

w/o CRF (Ours)
97.73 Char-Dense

w/o CRF (Ours)
90.28

Char-Dense
w/ CRF (Ours)

96.62 Char-Dense
w/ CRF (Ours)

97.65
Char-Dense

w/ CRF (Ours)
91.13

Table 3: Comparison with state-of-the-art approaches in the literature.

7.1.3 Named Entity Recognition

On the NER task, the RNN-based model has a slightly better F1-score (90.15) than the proposed method
(90.10). However, our method consistently shows the lowest standard deviation, like as the other tasks, at
0.13. By analyzing the violin plot, we can see that the RNN again shows occasional performance drops
for certain cases of poor weight initialization. Unlike the other two tasks, the model utilizing CNN has a
relatively poor F1-score and does not show any peaks in performance.

7.2 Training Speed

To compare the efficiency of three models, average training speed (i.e. number of sentences processed
per second) is presented in Figure 4. All trainings are performed utilizing a single GeForce GTX 1080
Ti GPU, and the RNN model is implemented using the highly efficient cuDNN LSTM API. It is clear
that the proposed method has the highest training speed, followed by CNN and RNN. On average, our
method was able to process around 867 sentences per second, which is 6.29% and 16.32% higher than
CNN and RNN, respectively.

3236

7.3 Comparison with Published Results

For comparison with published results, we summarize the performance of our best models along with
state-of-the-art approaches in Table 3. The proposed method was able to surpass the previous state-of-
the-art result on the ATIS dataset with a large margin, even without the CRF layer. With the help of CRF,
our method obtains a new state-of-the-art result with a 96.62 F1-score.
For the POS tagging task with PTB WSJ dataset, we obtain a new state-of-the-art result with a 97.73%
accuracy with the model without a CRF layer. Interestingly, utilizing a CRF layer on this model degraded
the performance on this task whereas it helped with the other two tasks. We hypothesize that this is due
to the fact that unlike the other two tasks where there are many hard constraints between labels (e.g. an
O tag cannot be followed by I- tags), the label dependencies are more ”soft” on POS tagging task. In the
latter case, it is possible that naively taking label transition probability into account could have a negative
impact on performance.
On the task of recognizing named entities, we obtain a result that is comparable to state-of-the-art with
a 91.13 F1-score when a CRF layer is used. Like in slot tagging task, utilizing CRF lead to a significant
increase in performance. It is notable that all results from our method are achieved without depending
on any hand-crafted or language/task-specific features (e.g. capitalization, character type, gazetteer),
whereas most previous approaches utilizes one or more type of such features. This fact supports the
generalizability of the proposed method.

8 Conclusion and Future Work

In this paper, we proposed a fast and effective method of using a densely connected network to auto-
matically generate character-level features. With extensive evaluation, it is shown that this method is
robust to parameter initialization and has high processing speed compared to conventional methods such
as CNN or RNN. This method has also high generalizability and this is supported by the fact that we
were able to obtain superior performance without any task or language specific features.
We plan to explore the followings as future work: 1) In this work, we focused on clean text where there
are minimal semantic or syntactic errors. We would like to test the robustness of this method against
such errors to evaluate whether this method is suitable for real-world applications. 2) Adopting the pro-
posed method and analyzing the effectiveness on other NLP tasks such as neural machine translation or
automatic text summarization could also be worth investigating.

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), South Korea, under the ITRC
(Information Technology Research Center) support program (”Research and Development of Human-
Inspired Multiple Intelligence”) supervised by the IITP (Institute for Information & Communications
Technology Promotion). Additionally, this work was supported by the National Research Foundation of
Korea (NRF) grant funded by the South Korean government (MSIP) (No. NRF-2016R1A2B2015912).

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467.

Rie Kubota Ando and Tong Zhang. 2005. A framework for learning predictive structures from multiple tasks and
unlabeled data. Journal of Machine Learning Research, 6(Nov):1817–1853.

Jason PC Chiu and Eric Nichols. 2015. Named entity recognition with bidirectional lstm-cnns. arXiv preprint
arXiv:1511.08308.

Jinho D Choi. 2016. Dynamic feature induction: The last gist to the state-of-the-art. In Proceedings of NAACL-
HLT, pages 271–281.

3237

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493–
2537.

Cı́cero Nogueira dos Santos and Bianca Zadrozny. 2014. Learning character-level representations for part-of-
speech tagging. In ICML, pages 1818–1826.

Jenny Finkel, Shipra Dingare, Christopher D Manning, Malvina Nissim, Beatrice Alex, and Claire Grover. 2005.
Exploring the boundaries: gene and protein identification in biomedical text. BMC bioinformatics, 6(1):S5.

Yarin Gal and Zoubin Ghahramani. 2016. A theoretically grounded application of dropout in recurrent neural
networks. In Advances in neural information processing systems, pages 1019–1027.

Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional lstm and other
neural network architectures. Neural Networks, 18(5):602–610.

Jan Hajič, Jan Raab, Miroslav Spousta, et al. 2009. Semi-supervised training for the averaged perceptron pos
tagger. In Proceedings of the 12th Conference of the European Chapter of the Association for Computational
Linguistics, pages 763–771. Association for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang.
2016. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836.

Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Gakuto Kurata, Bing Xiang, Bowen Zhou, and Mo Yu. 2016. Leveraging sentence-level information with encoder
lstm for semantic slot filling. arXiv preprint arXiv:1601.01530.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris Dyer. 2016. Neural
architectures for named entity recognition. arXiv preprint arXiv:1603.01360.

Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for discriminative learning. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2-Volume 2, pages 1030–1038. Association for Computational
Linguistics.

Bing Liu and Ian Lane. 2015. Recurrent neural network structured output prediction for spoken language under-
standing. In Proc. NIPS Workshop on Machine Learning for Spoken Language Understanding and Interactions.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie. 2015. Joint entity recognition and disambiguation.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 879–888.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354.

Christopher D Manning. 2011. Part-of-speech tagging from 97% to 100%: is it time for some linguistics? In In-
ternational Conference on Intelligent Text Processing and Computational Linguistics, pages 171–189. Springer.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2):313–330.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong He, Larry
Heck, Gokhan Tur, Dong Yu, et al. 2015. Using recurrent neural networks for slot filling in spoken language
understanding. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3):530–539.

Robert Moore. 2015. An improved tag dictionary for faster part-of-speech tagging. In Proc. of EMNLP. Citeseer.

3238

Alexandre Passos, Vineet Kumar, and Andrew McCallum. 2014. Lexicon infused phrase embeddings for named
entity resolution. arXiv preprint arXiv:1404.5367.

Baolin Peng and Kaisheng Yao. 2015. Recurrent neural networks with external memory for language understand-
ing. arXiv preprint arXiv:1506.00195.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word represen-
tation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pages 1532–1543.

Lev Ratinov and Dan Roth. 2009. Design challenges and misconceptions in named entity recognition. In Proceed-
ings of the Thirteenth Conference on Computational Natural Language Learning, pages 147–155. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting score distributions makes a difference: Performance study of
lstm-networks for sequence tagging. arXiv preprint arXiv:1707.09861.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909.

Libin Shen, Giorgio Satta, and Aravind Joshi. 2007. Guided learning for bidirectional sequence classification. In
ACL, volume 7, pages 760–767. Citeseer.

Samuel L Smith, Pieter-Jan Kindermans, and Quoc V Le. 2017. Don’t decay the learning rate, increase the batch
size. arXiv preprint arXiv:1711.00489.

Anders Søgaard. 2011. Semisupervised condensed nearest neighbor for part-of-speech tagging. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies:
short papers-Volume 2, pages 48–52. Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958.

Xu Sun. 2014. Structure regularization for structured prediction. In Advances in Neural Information Processing
Systems, pages 2402–2410.

Erik F Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceedings of the seventh conference on Natural language learning
at HLT-NAACL 2003-Volume 4, pages 142–147. Association for Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1, pages
173–180. Association for Computational Linguistics.

Yuta Tsuboi. 2014. Neural networks leverage corpus-wide information for part-of-speech tagging. In EMNLP,
pages 938–950.

Ngoc Thang Vu, Pankaj Gupta, Heike Adel, and Hinrich Schütze. 2016. Bi-directional recurrent neural network
with ranking loss for spoken language understanding. In Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on, pages 6060–6064. IEEE.

Ngoc Thang Vu. 2016. Sequential convolutional neural networks for slot filling in spoken language understanding.
arXiv preprint arXiv:1606.07783.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geoffrey Zweig, and Yangyang Shi. 2014. Spoken language
understanding using long short-term memory neural networks. In Spoken Language Technology Workshop
(SLT), 2014 IEEE, pages 189–194. IEEE.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen Zhou. 2017. Neural models for sequence chunking.

Su Zhu and Kai Yu. 2017. Encoder-decoder with focus-mechanism for sequence labelling based spoken language
understanding. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on,
pages 5675–5679. IEEE.

3239

Appendix A Hyperparameters

Group Hyperparameter Slot POS NER

Char-CNN
Window size 3 3 3

Number of filters 30 30 30
Character dimension 30 30 30

Char-RNN
Layer size 50 50 50

Character dimension 50 50 50

Char-Dense
Layer size 50 50 50

Number of pieces per word 2 2 2

Word-level

Pre-trained word embeddings GloVe 300d GloVe 300d GloVe 300d
RNN layer size 350 350 350

RNN layer depth 2 3 3
Pre-RNN layer size 350 350 None
Post-RNN layer size 350 350 None

Dropout keep probability

Char-Dense 0.7 0.7 0.7
Word feature 0.9 0.9 0.9

Word-level RNN layer 0.5 0.5 0.5
Pre/post-RNN layers 0.5 0.5 0.5

Training
Initial batch size 8 16 16

Number of epochs 100 100 100

Table 4: Chosen hyperparameters for all experiments.

