Quantifying training challenges of dependency parsers
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Abstract

Not all dependencies are equal when training a dependency parser: some are straightforward
enough to be learned with only a sample of data, others embed more complexity. This work
introduces a series of metrics to quantify those differences, and thereby to expose the shortcom-
ings of various parsing algorithms and strategies. Apart from a more thorough comparison of
parsing systems, these new tools also prove useful for characterizing the information conveyed
by cross-lingual parsers, in a quantitative but still interpretable way.

1 Introduction

10 annotated sentences suffice to train a dependency parser that can correctly predict around 70% of
the dependencies in French and Italian, but also in Japanese, Greek, Urdu and other languages. This
surprising fact raises questions on how to interpret such numbers: what do those 70% dependencies look
like? Are they evenly distributed or do they correspond to specific dependency structures?

This work is based on the intuition that in any treebank, some dependencies are intuitively easy to learn
(typically nearly deterministic attachments like the dependencies between a noun and its determiner),
while others seem much harder to predict, corresponding to complex semantic attachments or long lists
of exceptions in the underlying grammar of the language. We thus propose one way to investigate that
distinction, by evaluating the amount of training material needed to learn each kind of dependencies:
with that viewpoint, a dependency structure is qualified as ‘easy to learn’ when it can be learned from
only a few examples and as ‘difficult to learn’ otherwise. In this paper, we formalize this idea and propose
empirical ways to measure the difficulty to learn certain dependencies.

Our metric proposal can be useful as an analysis tool for comparing existing parsers, which we illus-
trate both in monolingual and cross-lingual settings, but also to gain some insight on the information
reliably conveyed by parsers trained on a few sentences. Ulinski et al. (2016) have indeed shown that
such parsers can be successfully leveraged to speed up the manual annotation process. This observa-
tion confirms that they provide some useful content to the annotators, which our formalism can help
characterizing beforehand.

The rest of this paper is organized as follows. Section 2 presents the dependency parsing task and the
parsers used in this study. Our method for estimating difficulty is introduced in Section 3. We then apply
these newly designed tools to conduct two analyses: a detailed comparison of several state-of-the-art
parsers (Section 4), as well as a fine-grained evaluation of cross-lingual transfer (Section 5).

2 Dependency parsing

The purpose of the dependency parsing task is to predict, for each token in a sentence (the child), the
token it depends on (its head), and thereby to build a tree structure over the sentence. There are sev-
eral approaches to build such parsers, mostly corresponding to two categories: transition-based parsers
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(which score and apply locally a sequence of transitions affecting the parser’s inner state) and graph-
based parsers (which compute attachment scores for all pairs of tokens and then optimize the sentence
score globally).

In this work, we consider three dependency parsers, based on diverse parsing algorithms and classi-
fiers, to assess the generality of our findings: UDPIPE (transition-based parser, with a feedforward neural
classifier, i.e. embedding-based), BEAM (transition-based parser, with an averaged perceptron classifier,
i.e. feature-based), and MSTPARSER (graph-based parser). We use version 0.5.1 of MSTPARSER (Mc-
Donald et al., 2005) with default parameters. For UDPIPE, we use version 1.1 (Straka and Strakov4,
2017) with the same hyperparameters as Straka (2017), but without the word embeddings pre-trained on
massive monolingual data (to ensure comparability). For BEAM, we rely on our own open source! im-
plementation, PANPARSER (Aufrant and Wisniewski, 2016), using the ArcEager version (Nivre, 2004)
with a dynamic oracle (Goldberg and Nivre, 2012) adapted for beam search (Aufrant et al., 2017) and
the feature sets of Zhang and Nivre (2011) (coarse PoS, no labels).

3 Measuring difficulty

The purpose of this work is to investigate dependencies for the learning of which large training datasets
are unnecessary, and which can therefore be qualified as ‘easy to learn’. In this section, we formalize this
intuition and introduce several empirical measures to quantify it. We then exploit the results of large-scale
evaluations to design a new metric, COMPLEXITY, which estimates the challenges faced when learning a
given ‘type’ of dependencies: by departing from individual dependencies, we aim at discovering higher-
level properties related to language-independent syntactic phenomena (like the simplicity of annotating
determiners, independently of the language and the parsing system).’

As our focus is on how parsers exploit the first examples of a training set, even just 10 sentences, we
consider in this work only treebanks under 500 sentences.?

For all experiments, we use the Universal Dependencies 2.0 dataset (Nivre et al., 2017b; Nivre et al.,
2017a), containing 73 treebanks covering a wide array of language families. We first downsize each
treebank, when possible, to the 500 first training sentences,* and resample smaller trainsets of increasing
sizes.’ Since training is significantly unstable at that scale, all reported scores are averaged over five
random samplings, thereby amounting to 5,880 parsers trained on 56 languages. UAS evaluation is
performed using gold PoS tags,® excluding punctuation.

3.1 Class-level learning rate

Dependency classes refer, in the following, to any criterion describing a subset of dependencies (and
by extension, a subset of child tokens) in a treebank. The definition of a class can, for instance, be
based on child-head distance, in-tree depth, edge direction, dependency label, empirical values like fre-
quency, PoS tags, etc. Even though our method applies to any such criterion, we focus in this section
on classes defined by the child PoS and its attachment direction. Indeed, it fits particularly well our

a
intuition regarding many parsing difficulties: due to its frequency and determinism, the ADJ class (that
is, all adjectives whose head is on the right) appears for instance simple in the English UD as it mostly
corresponds to the bigram ‘ADJ NOUN’ and, sometimes, to predicative adjectives. On the contrary, the

!Source code available at https: //perso.limsi.fr/aufrant.

2Such properties can still depend on the annotation scheme though, as repeatedly pointed out in the literature (Schwartz et
al., 2012; Wisniewski and Lacroix, 2017; Wisniewski et al., 2018).

3This size has been chosen to cover both the scale of 10 sentences and that of existing treebanks, around 300 sentences: there
have been publications with 300 Irish sentences (Lynn et al., 2012) or 371 in Slavomir Céplé’s Maltese treebank (Tiedemann
and van der Plas, 2016).

*We similarly downsize the validation sets, used only for early stopping, to their first 10 sentences. We do not alter the test
sets. We only experiment on the 56 treebanks that are large enough to apply these sampling procedures. ar_nyuad, whose
complete data is under license, is also excluded.

5 Resulting trainsets contain 5, 10, 20, 50, 100, 200 and 500 sentences.

SWhile less representative of real-world processing capacities (Tiedemann, 2015), we believe this choice to be crucial in
such studies focusing on syntactic properties, whose measurement would otherwise be biased by properties of the taggers and
language-dependent vocabulary issues.
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attachment decisions on vaDJ tokens seem more complex, first of all because the PoS of the head is
uncertain (sometimes a VERB, a NOUN, another ADJ, etc.). What remains to ascertain is whether this
simple/complex distinction can relate to measurable properties.

Our first experiment aims at studying the rate at which the different dependency classes are learned.
In this experiment, we are not interested in the absolute scores over each class, but rather in how fast
the available information (regarding a given class) can be extracted from a treebank: has everything
been already learned in the 10 first sentences? Would 100 more sentences be really informative? Conse-
quently, all measures are performed in terms of UAS normalized by its maximum, in order to set aside

e
the differences due only to the inherent accuracy of a class. In other terms, for class C' (e.g. DET )
and treebank size s (e.g. 50 sentences), we measure UAS;[C], the number of tokens in class C' whose

head has been correctly predicted based on a treebank of size s, and then compute %&E%}. These

values are computed separately for each language, and then averaged over all languages’ to expose
language-independent trends, i.e. searching for properties of e.g. determiners as a universal category,
while ignoring their idiosyncratic uses in individual languages (e.g. their scarcity in Latin, the annotation
scheme for French multi-word expressions containing determiners, etc.).

Figure 1 presents the resulting learning curves for the UAS broken down by class, as well as for the
overall score in each language (using BEAM parsers). For legibility (notably around 10 sentences), but
also to consider equally the learning speed at all size scales, it is displayed with a logarithmic scale. In
this view, the slope of the curve can be interpreted as the marginal utility of doubling the treebank size.
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Figure 1: Learning curves of UAS by PoS/direction class. P (resp. P ) means all dependencies whose
child PoS is P and reference head is on the left (resp. right, including roots). Percentages indicate the
size of each class; the rarest ones are not represented.

Unsurprisingly, all fine-grained curves and the overall one are roughly linear: even though they rise
quickly to high accuracies, subsequent examples tend to contribute less and less to accuracy, so that the
dataset must be doubled each time to achieve substantial UAS improvements. This supports the idea that,
overall but also for each class, most knowledge is extracted from the first few examples, and additional
data is poorly informative.

What is more intriguing in Figure 1 is that the relative curves can clearly be partitioned into two
groups,® quickly-converging curves and slower-increasing ones, separated by a significant margin. This
observation is consistent with our intuition whereby there are two kinds of dependency classes, the simple
and the complex ones: as expected, DET | and AU)? for instance belong to the former, i.e. the classes
for which most of the available information can already be found in the first examples.

"To ensure reliable scores, we exclude the treebanks whose test set contains less than 30 occurrences of the considered class.
8Because Figure 1 has 3 outliers, it contains in fact 4 groups, but such detailed distinctions are out of the present scope, and
the two retained groups are the curves which start at 70% of their final value, and those which start around 50%.
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One explanation to these differences in learning rate could be the frequency of classes: those which
occur more often are more likely to appear a lot in the first examples, which makes them mechanically
easier to learn. However, the ranking of the curves does not seem fully consistent with the size of

) a a
the corresponding classes: DET has a steeper curve than ADJ , which is itself steeper than NOUN |,

2
although ADJ is the least frequent of all three.

Evidence rather suggests that this ranking relates to linguistic properties (like word order entropy),
complemented by phenomena of the ‘rule versus exception’ kind: among competing classes (with dif-

ferent directions for the same PoS, e.g. C\K‘DJ Versus AD?), there is systematically one simple and one
complex class, in general according to their frequency — but not always, as shown by PROPN. A thor-
ough investigation to explain learning speed differences is however out of the scope of this work, which
focuses on measuring them.

3.2 Complexity measures

Although the aforementioned experiment has already revealed interesting trends, a systematic evaluation
of complexity requires to go beyond visual reading of curve shapes. But their slope is not properly
defined, considering that for several classes, learning speed can show significant variations between 5
and 500 sentences. We consequently aggregate the curve shape into a single metric by computing the
area under the curve; yet we calibrate it on the average curve to enable cross-treebank comparison.’
Formally, we define the COMPLEXITY of a class as the signed area!® between the learning curve of
the (normalized) overall score and that of the class. The logarithmic scale is kept to ensure that the
slope at the smallest scale significantly contributes to the metric.!! A negative COMPLEXITY (curve
above average) means that training on this class is simple (most knowledge is embedded in the first few
examples), a positive value denotes a complex class (compared to the typical complexity of the treebank).
From now on, the terms simple and complex are respectively used to denote classes with negative and
positive COMPLEXITY.

BEAM
) 4 ) 4\ ') ') . 4\ 4\ 4\ 4\ 4\ X (% 8% 8% 8%
CompLexrry|APP DET  PRON' AUX'  ADJ ' CCONJ N ADV'  V PN SCONJ N PN Vv "ADJ "AUX 'ADP
188 -187  -0.6 0.2 1.9 6.3 7.6 96 126 234 350 420 495 525 577 680 1312
') ') ) A ') ¥\ ¥\ ) Y\ ) (% ¥\ . m (Y mn 8%
UAS DET ADP' AUX PRON' SCONJ' ADJ CCONJ ADV' V PN PN N N "Apr 'V "Aux 'App
500 913 89.0 839 82.4 80.2 80.0 771 761 751 690 684 682 679 606 564 528 480
UDPIPE

N MY ) ') ) ¥\ ) ) (a3 ) ) MY (8% (% (%

COMPLEXITY ADP  AUX CCONJ DET ADV ADJ PRON PN N \% AUX N SCONIJ ADJ ADP PN \'%
333 245 53 37 23 0.7 33 125 253 260 283 355 359 451 510 518 75.1

4\ ra) 4\ ¥\ ) ¥\ N\ Y 4\ 4\ A . X 2% (% 8% 8%
UAS DET ADP' AUX SCONJ PRON' AD] CCONJ ADV' V PN N N PN 'ADJ] 'V "AUX "ADP
500 89.9 89.0 843 81.0 80.3 79.9 761 746 739 739 699 656 650 569 538 444 422

MSTPARSER

Ve 4\ ') 4\ 4\ 4\ A Y (a3 ¥\ ) &% AN EY 8% (% 8%
CompLexiy |ADP DET * ADI V' CCONJ PRON PN ADV N AUX N ADJ SCONJ ' 'PN "AUX 'V "ADP
277 241  -154 35 6.2 8.7 131 138 234 289 342 474 538 555 567 838 89.1

') 'a) ) ') ) ¥\ ) ) VA (Y (% ) 4\ % mn (Y m
UAS DET ADP AUX ADJ PRON \% CCONJ ADV SCONJ N PN PN N ADJ AUX \% ADP
500 90.6 89.3  80.8 79.8 79.6 76.0 749 743 727 6718 672 671 647 570 564 506 505

Table 1: Comparison of the COMPLEXITY and UAS rankings for all 3 systems. For each system, the
classes with the largest difference between both rankings are highlighted in blue. N, PN and V stand for
NOUN, PROPN and VERB.

Beyond a sign-based grouping criterion, these quantitative measures also provide an interesting diffi-

This aggregation step is inspired by Zubek and Plewczynski (2016)’s work on data complexity, which is close in spirit to
ours (with the same intuition that a dataset is simple if most information can be found in the first few examples) but explores a
different setting: in their work, they measure the similarity of subsets of increasing sizes to the dataset itself (without involving
a prediction step) and aggregate these values to estimate the complexity of that dataset.

!0This can be computed easily using any numerical integration method. In the following experiments, we use Simpson’s
rule.

"n these experiments the area is computed between 5 and 500 training sentences, but another low-resource range could be
chosen, provided that it is the same for all treebanks.
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culty ranking. Table 1 compares the rankings based on UAS (using 500 training sentences) and COM-
PLEXITY. Overall, the results remain consistent with intuition: the simplest classes are closed PoS

) £\ Yy
classes with very deterministic attachments (DET , ADP ), the most complex ones are rare ( ADP) or

N
semantics-driven attachments ( VERB), while classes of average difficulty are mostly NOUNs and other
open classes. But differences between both metrics still appear clearly, thereby confirming that they

capture different properties. For instance, high accuracies are achieved on SCONIJ , but getting there
is cumbersome as it requires many training examples. Conversely, UDPIPE does not learn much about

the FKUX class (whose UAS is particularly low), but it does so almost immediately (as shown by its low
complexity).

Finally, we perform similar computations on each treebank separately:!? they reveal that, even though
some classes have emerged as consistently simple across languages, this property can still depend on

a Y
the language (sometimes even on the corpus). For instance, ADJ is simple and ADJ is complex in
the English treebank, but in French it is the opposite, which is consistent with the respective frequencies

~
of those classes (and thus with the initial intuition). Similarly, ADP is complex for all but 6 treebanks

s 2\
(from which the competing class ADP is virtually absent), and DET , whose attachments are highly
deterministic, is a simple class for all but 7 treebanks (mostly Old Church Slavonic, Arabic, Latin-
PROIEL, but also Basque, Estonian, Korean and Polish to a lesser extent).

4 Application 1: fine-grained comparison of parsers

The metrics we have proposed can now be used for large-scale computation of fine-grained evaluations,
and therefore detailed comparison of parsers. This newly defined notion of complexity opens indeed new
evaluation perspectives, as a complement to the more explicit properties (length, PoS tags, projectivity,
etc.) used in prior work on comparative error analysis (McDonald and Nivre, 2007).

Complexity variations Coming back to Table 1, comparing the rankings between all 3 systems also
emphasizes on their respective shortcomings. UDPIPE notably seems to have troubles with determiners:

not only does it achieve a lower score on DET dependencies, but it is also much slower learning those,
compared to the other systems; UDPIPE consequently appears to under-exploit the determinism of that

e
class.!3 It is conversely particularly efficient on CCONJs. As for MSTPARSER, it handles VERB  sig-
nificantly faster than BEAM and UDPIPE, presumably because it does not rely on mostly local features,
as transition-based parsers do. Regarding the BEAM system, its main particularity is its efficient han-

dling of AU)? attachments, even though their UAS is around the same. Overall, according to Figure 2,
COMPLEXITY correlates well with UAS5q0, at least for BEAM and MSTPARSER (Spearman’s p = -.886
and -.882); but it is hardly the case for UDPIPE (p = -.576), which points out at least a difference, and
maybe an issue, which remains to ascertain. All those remarks provide a valuable feedback on the inner
workings of each parsing system, and thereby new insights on possible issues. The COMPLEXITY metric
thus provides a promising way to analyze and improve parsing algorithms in general.

Composite scores A more systematic way to study fine-grained differences between parsers is to in-
vestigate composite scores. However, for large inventories of classes, class-level analysis can be tedious
and hide the main trends. For this reason, we advocate aggregating that information into 2 scores only,
as a trade-off between simplicity and detailed analysis. Contrasting differences among parsers along two
categories, simple and complex dependencies in the present case, is indeed already much more informa-
tive than relying on a single metric.

Table 2 reports the average UAS of the 3 parsers, when computed separately on simple and complex
classes (that is, depending on the sign of COMPLEXITY), and for various data sizes. It appears that all

2In other words, we compute the area under a specific learning curve, instead of the area under the average of all learning
curves.

3 As UDPIPE is the only neural parser in our experiments, this differential treatment of deterministic classes may be related
to the choice of classifier; concluding on such properties is out of the scope of this paper, though.
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Figure 2: UAS of all 3 systems, with 500 training sentences, for classes of increasing complexity.

systems present a significant score difference (up to 30 points) between both categories, in favor of the
simple one, in particular for tiny data (i.e. 10 sentences).

It is important to note that this result was not expected: it is true that UAS measures are involved when
computing COMPLEXITY, but all these scores are first normalized. Therefore, the simple classes are not
by design those with high accuracies on tiny data, despite what the results suggest.'* In this regard, the
score difference between both groups is an actual finding. Besides, the score gap is mostly maintained for
full datasets, which means that the classes that have been singled out using tiny data have truly different
properties (or at least are handled differently by the systems), whatever the data size.

UASio UASs00 UASfun up
simple overall complex simple overall complex simple overall complex
UDPIPE 52.8 42.5 28.4 81.8 74.7 65.2 87.6 83.2 71.3
MSTPARSER  64.4 52.8 36.9 82.7 75.1 64.9 88.2 834 77.1
BEAM 71.1 59.0 42.7 82.9 76.1 67.1 87.3 82.6 76.4

Table 2: UAS of the 3 studied systems, broken down by simple and complex PoS/direction classes,
and for various data sizes. The partitions and corresponding scores are computed separately for each
language, before averaging. All partitions are computed using BEAM, so that the absolute scores remain
comparable (best system in bold). ‘Full UD’ trainsets contain between 598 and 68,495 sentences.

When comparing each system’s results, the dynamics between them become clear: while BEAM pre-
vails across the categories around 10 sentences, MSTPARSER catches up first on simple dependencies
(for 500 sentences), then also on the complex ones (for full UD). As for UDPIPE, it performs poorly
with 10 training sentences, but then gradually reveals its worth for parsing specifically complex classes
(which is consistent with its difficulties with determiners: this system is not so relevant for deterministic
dependencies, its value is elsewhere).

S Application 2: fine-grained evaluation of cross-lingual parsers

Apart from comparing systems, our proposal can also be used to compute reference values when evaluat-
ing other kinds of parsers, typically cross-lingual parsers. Cross-lingual transfer is an approach to process
low-resourced languages, whereby resources available in other languages (the sources) are leveraged to

"“There remains however an indirect impact of absolute scores on COMPLEXITY: the classes that reach already high scores
(over 80 UAS) with only 10 sentences are doomed to be simple classes, because being complex would imply achieving more
than 100 UAS with 500 sentences. So, there is indeed a score bias towards simple classes. But such classes with early high
scores represent a minority of the dependencies (19% on average), and there are many other kinds of simple classes (for a total
of 57% of dependencies), including poorly accurate ones.
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build new systems in the language of interest (the target). The main methods involve typically projecting
information through word-aligned parallel data (Yarowsky and Ngai, 2001), or training source models
on delexicalized data (that is, using PoS information only) and directly applying them on the target side
(Zeman and Resnik, 2008). The link with our work above is twofold: cross-lingual parsers also focus
on low ranges of training sizes, and at the same time many of them yield UAS around the range covered
by our 5 to 500-sentence long treebanks. We therefore propose to exploit our upper results in this new
frame, with the goal of quantifying and characterizing the amount of knowledge that has been effec-
tively transferred: what kind of information is learned by cross-lingual parsers — only simple classes or
complex knowledge about non-trivial classes?

Multi-source weighted delexicalized transfer Our analysis first focuses on Rosa and Zabokrtsky
(2015)’s state-of-the-art method for cross-lingual parsing: it consists in delexicalized transfer, where
the hypotheses stemming from multiple sources are weighted and combined based on the KL,,,,s3 met-
ric (the Kullback-Leibler divergence of PoS trigram distributions between the source and the target). It
is meant to favour the languages that are syntactically close to the target, while still benefiting from the
diverse information conveyed by a large set of sources.

We reimplement the method of Rosa and Zabokrtsky (2015) on top of the BEAM system: we include as
sources the delexicalized BEAM models based on all 56 (full) treebanks except those covering the same
language. All scores are again averaged over 5 different trainings. To be fair regarding the available
target resources, the KL, metric is computed using the whole source treebank but only 10 target
sentences. In the following, this strategy is referred to as KL-BEAM.

Composite scores Similarly to what has been done for monolingual parsers, we can express the perfor-
mance of KL-BEAM in terms of simple-only UAS and complex-only UAS (using the partition computed
monolingually with BEAM for instance). Those values alone are, however, hard to interpret, and notably
to relate to the actual amount of knowledge transferred via KL-BEAM.

We therefore propose to position those scores along the learning curves of the monolingual parser,
following Aufrant et al. (2016): if the cross-lingual parser achieves the same score as a parser trained on
n sentences, we consider that the amount of transferred knowledge is the amount of knowledge contained
in n sentences. Figure 3 consequently pictures the learning curves of each system on simple and complex
classes (using the PoS/direction criterion), as well as the split UAS for KL-BEAM on the same categories.

100 100 100
| Beam | MSTParser i UDPipe
90 90 | 90 |
2] 80 80 80
<
S S T N I s T TP % S S 72.7
70 70
————— 66.1
60 60 -/ 59
50 50 —— simple
— all
40 40 —— complex
14 32 60 #snt .24 6724 /48 96169 ]
10 20 50 100 200 500 10 20 50 100 200 500 10 20 50 100 200 500

Figure 3: Overall and simple/complex UAS of all 3 parsers with increasing training sizes. The parti-
tions and corresponding scores are computed separately for each language and system, before averaging.
Dashed lines correspond to the overall, simple and complex UAS for KL-BEAM, using the partition
computed for each system. Dotted lines represent the corresponding numbers of annotated training sen-
tences.

Overall, KL-BEAM achieves 66.1 UAS on average, which corresponds to what could have been
achieved by BEAM with 32 sentences. In other words, if more than 32 target sentences are available,
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on average one should prefer monolingual parsing (at least when using BEAM) over KL-BEAM trans-
fer:'> the amount of knowledge transferred across languages seems very limited.

However, when considering the simple/complex scores, it appears that their difference is less pro-
nounced for the cross-lingual parser than the monolingual ones, which results in distinct data-size equiv-
alents. Delexicalized transfer thus appears much more useful for complex classes (score equivalent to
60 sentences) than for simple classes, for which few information was transferred (score equivalent to 14
sentences). This means that KL-BEAM is qualitatively better than a BEAM trained on 32 sentences: it is
able to convey non-trivial information, which otherwise would have only been accessible by collecting
more data.

As UDPIPE and MSTPARSER are less efficient on very small treebanks, the data-size equivalents are
much higher, but the simple/complex difference remains similar in proportions. We additionally perform
similar experiments with other class criteria and obtain similar results, although the simple/complex
gap marginally fluctuates: for BEAM, we measure 20 versus 43 sentences (74.6 and 58.9 UAS) when
considering only the PoS, 15 versus 60 sentences (74.6 and 56.4 UAS) when considering the relation
label only, and 13 versus 67 sentences (74.8 and 53.6 UAS) when using the PoS, label and direction at
the same time.

Other non-conventional parsers The observations made in this section shed a new light on the per-
formance of state-of-the-art parsers trained using non-conventional data. The accuracies achieved with
very small datasets are indeed comparable to other scores reported in the recent literature.

In the original experiments conducted with multi-source weighted delexicalized transfer (not based on
BEAM), Rosa and Zabokrtsky (2015) achieve an UAS of 52.5 on HamleDT 2.0; in another line of cross-
lingual parsing, the projection technique of Tiedemann and Agi¢ (2016) yields 75.43 UAS on UDT 1.0
(CoMBG model). Although neither work is conducted on UD 2.0, and thus the comparison is inexact, our
metrics can still provide a rough estimation of each method’s success: using UD 2.0, these scores would
have been achieved by training on, respectively, 5 and 444! sentences. Empirical evidence hence raises
serious doubts on the actual effectiveness of the main transfer techniques: cross-lingual parsers embed
a limited amount of knowledge, and do not save much annotation effort. This is less true for methods
based on projection, but these already require large data and significant human efforts to find, clean and
sentence-align parallel data — a work which may turn out to be more demanding than annotating a small
treebank.

Unsupervised parsing is another field in which parsers are trained in a non-conventional way, and
would thus benefit from a comparison with monolingual supervision. For instance, Marecek and Straka
(2013) achieve 48.7 UAS on average over the CoNLL 2006-2007 treebanks, while the average UAS of
the rule-based approach of Martinez Alonso et al. (2017) is 57.5 on UD 1.2. These UAS correspond to
4 and 9 annotated sentences, which, again despite the dataset mismatch, still highlights how much work
remains to be done in that field.

Size-based evaluation can consequently provide interesting reference points for parsers stemming from
many fields: cross-lingual transfer and unsupervised models, but also many others like domain adaptation
for instance.

Information conveyed by one source As a final experiment, we propose to evaluate the contribution
of a given source to multi-source transfer, in terms of the amount of conveyed information.

SBecause it is an average, this boundary should not be interpreted in a strict sense but as a trend: it is not applicable to each
individual language in the considered set. The ability to transfer syntactic information depends indeed a lot on the linguistic
setting (standard deviation of 15.3 UAS for KL-BEAM), so that the averages presented here do not replace any prior knowledge
on transfer results for a given known language. However, when tackling a new language, they can provide a rough estimate to
choose between the monolingual and cross-lingual approaches.

6While this amount can appear already substantial, it also denotes the fact that Tiedemann and Agi¢ (2016)’s evaluation is
based on a set of languages with marked relatedness, and thus good transfer properties. When averaging our measures only
over that set of languages (but still not the same treebanks), the data-size equivalent drops to 92 sentences. Similarly, Lacroix
et al. (2016)’s projection approach achieves 79.62 UAS, which is higher than with 500 sentences when considering all UD 2.0
treebanks, but corresponds to 295 sentences when retaining the same set of languages. Overall, the magnitude remains around
a few hundred sentences for projection methods.
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We build a cross-lingual parser for Romanian, using KL-BEAM as before but with a much smaller
source set: French, Italian, Spanish and Bulgarian. The choice of the first three is motivated by their
language family (Romance, like Romanian), and Bulgarian by geographic proximity (and hence various
influences across history). This parser is then compared (overall and also along simple/complex classes)
with those obtained when removing either one of the sources, in order to characterize precisely their
contribution.

Table 3 reports the overall and simple/complex UAS measures, as well as data-size equivalents based
on the Romanian BEAM. Comparing the full source set with the reduced ones, the respective bene-
fits of each source appear clearly: Italian and French convey mostly complex information (respectively
+0.3/+1.8 and +0.2/+1.2 on simple/complex scores), while Bulgarian improves mostly on simple classes
(+1.5/40.2 on simple/complex scores) and Spanish contributes equally in both cases (+1.5/+1.2).

UAS (ro) #sentences (r0)
Sources

simple overall complex simple overall complex
fr+it+es+bg 814 74.4 60.3 167 213 231
X it es bg 812 73.8 59.1 149 165 179
fr x es bg 8Ll 73.6 58.5 142 155 162
fr it x bg 799 73.0 59.1 77 131 179
fr it es x 799 73.3 60.1 77 142 219

Table 3: Cross-lingual UAS and equivalent monolingual supervision in Romanian, for a KL-BEAM
parser trained with various sets of sources. The simple/complex partition is that of BEAM in Romanian.

Regarding Spanish and Bulgarian, it is interesting to note that combining both sources more than
doubles the amount of knowledge on simple classes (from 77 to 167). This suggests that multi-source
combination itself enables valuable interactions between languages, thereby granting access to knowl-
edge that would have been hard to obtain otherwise.

The results for Bulgarian are worth a closer look: the kind of information it conveys corresponds to
syntactic structures that are easy to learn in Romanian (possibly deterministic), and yet not provided by
other (Romance) sources. The Bulgarian influence on Romanian — in other words the structures that are
out of the scope of Romance syntax — consequently seems to materialize as straightforward dependencies
on unambiguous patterns.

On a final note, looking at composite scores instead of UAS only safeguards against overrating a given
language: for instance, even though Spanish seems more valuable as a source than Italian (73.6 vs 73.0),
it is only so because of the (numerous) simple dependencies, and it actually underperforms Italian on
complex dependencies, where the true challenge is though.

6 Conclusion

In this work, we have introduced a new metric, called COMPLEXITY, to evaluate the difficulty to learn
a given class of dependencies, in terms of data requirements: inspired by an in-depth analysis of fine-
grained learning curves, we have aggregated their information into a single value. A series of systematic
computations using that metric has unveiled interesting properties of the 3 considered parsing algorithms;
it has notably revealed the kind of dependencies for which the parsers make an abnormally high amount
of efforts during training, and hinted at some syntactic properties that they under-exploit.

Computing composite scores by separating simple and complex dependencies has been further en-
lightening for analyzing the aforementioned parsers, but above all it has enabled an extensive assessment
of the benefits of parsers trained in a non-conventional way, typically cross-lingual parsers. While the
typical UAS achieved by delexicalized transfer remain low and can easily be obtained with just a sam-
ple of target-side supervision, the information conveyed by cross-lingual parsers has in fact appeared
of better quality: their actual added value is on complex dependencies. As a final case study, we have

3199



leveraged the notion of complexity to characterize the contribution of a given source to a multi-source
transfer procedure.

Regarding the notion of complexity, additional experiments with other class criteria can be found in the
PhD thesis of the first author (Aufrant, 2016), as well as some insights on what makes a class complex,
and proposals on how to leverage the COMPLEXITY information to improve cross-lingual transfer.

A natural continuation of this work would be to reproduce these measures with other cross-lingual
transfer algorithms, and also with other kinds of non-conventional parsers, like unsupervised or out-of-
domain parsers. Since the proposed procedure for estimating COMPLEXITY is in fact not specific to
dependency parsing (only the class criterion is), it may also be interesting to apply it to other sequence
labeling tasks, for instance PoS tagging.
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