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Abstract

Knowing the state-of-the-art for a particular task is an essential component of any computational
linguistics investigation. But can we be truly confident that the current state-of-the-art is indeed
the best performing model? In this paper, we study the case of frame semantic parsing, a well-
established task with multiple shared datasets. We show that in spite of all the care taken to
provide a standard evaluation resource, small variations in data processing can have dramatic
consequences for ranking parser performance. This leads us to propose an open-source standard-
ized processing pipeline, which can be shared and reused for robust model comparison.

Title and Abstract in French

Effets papillon en analyse automatique de cadres sémantiques:
impact du traitement des données sur la hiérarchie des modèles

Connaı̂tre l’état-de-l’art pour une tâche donnée est un élément essentiel de toute entreprise de
linguistique computationnelle. Peut-on néanmoins s’assurer que l’état-de-l’art connu est bel et
bien le meilleur des modèles ? Dans ces travaux nous nous intéressons au cas de l’analyse
automatique de cadres sémantiques, une tâche bien établie disposant de multiples jeux de données
partagés. Nous montrons qu’en dépit du soin porté à la standardisation du processus d’évaluation,
de faibles variations dans le prétraitement des données peuvent conduire à une remise en question
du classement final des analyseurs. Cette constatation nous conduit à proposer une plateforme
libre de traitement standardisée permettant d’obtenir des données de comparaisons fiables entre
les performances des différents analyseurs.

1 Introduction

A typical contribution to Computational Linguistics research is a new model for a specific task, which
improves performance on a known dataset. The proposed model, whilst being the object of focus in the
associated publication, normally relies on some potentially extensive pre- and post-processing of data
which may only be briefly reported. As shown in the seminal work by (Fokkens et al., 2013), small
alterations to such processing can result in dramatic changes in model performance. In this paper, we
pick up on this point and make a case for harmonizing evaluations by sharing not just datasets but entire
experimental pipelines. We illustrate our point by focusing on recent frame semantic parsing literature.

Frame semantic parsing is the task of automatically extracting semantic structures in text following
the theory of Frame Semantics (Fillmore, 1982) and the framework of FrameNet (Baker et al., 1998,
hereafter FN). Formally defined in the SemEval 2007 shared task 19 (Baker et al., 2007), it consists
of three separate subtasks: (1) target identification: the task of identifying all frame evoking words in
a given sentence; (2) frame identification: the task of identifying all frames of pre-identified targets
in a given sentence; and (3) argument identification: the task of identifying all frame-specific frame
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element spans and labels for pre-identified targets in a given sentence. The following sentence provides
an example of FN annotation for the predicate splash.v evoking the Cause fluidic motion frame,
and its corresponding FLUID, SOURCE and GOAL arguments:

(1) [Wine]Fluid was splashed [from jug]Source [to cup]Goal and often drained in one loud gulp.

Thanks to the shared task, the FN community has produced valuable datasets to evaluate models
against. Still, as we will show in this paper, the actual evaluation settings used by various research
groups exhibit differences which can in some cases have dramatic consequences for the reported re-
sults. In particular, all available research on frame semantic parsing relies on some form of pre- and
post-processing of FN XML data. Post-processing usually involves converting FN train, dev and test
XML splits to standard CONLL-based formats while removing erroneous or problematic annotation. Pre-
processing involves part-of-speech tagging ad minima, and often lemmatization and dependency parsing
as well. We will see that those pre- and post-processing pipelines turn out to be rather inconsistent across
published investigations (see §2.2), preventing fair comparison between models. In fact, we demonstrate
that when using a cleaned up and standardized pipeline, the ranking of existing parsers can change quite
substantially.

The deviations we observe across experimental setups cover various aspects of pre- and post-
processing. First, inconsistencies in the post-processing pipeline lead parsers to be actually evaluated
on slightly different test sets across studies. Moreover, those test sets contain duplicate sentences and
annotations – leading parsers to be scored multiple times on the same data – as well as overlapping data
between train and test sets – thereby artificially improving overall scores. Second, inconsistencies in the
pre-processing pipeline prevent fair comparison across models by conflating the contribution of the pre-
processing toolkit with that of the statistical model itself. We further note that all recent work on frame
semantic parsing rely on the FN 1.5 dataset, while the FN 1.7 dataset, available since 2016, contains nearly
20% more gold annotated data, allowing for larger train and test sets and hence more robust baselines.

The goal of this paper is to highlight the impact of small deviations in experimental settings on model
performance. Our contributions are fourfold: we (1) replicate past results of frame semantic parsing
on a single robust pre- and post-processing pipeline; (2) quantify the impact of the pipeline on model
performance; (3) analyze the robustness of past results when tested on a normalized FN 1.7 setup; and (4)
provide robust baselines on both FN 1.5 and FN 1.7 experimental setups for future research.

We focus specifically on replicating frame identification results of the SIMPLEFRAMEID system of
Hartmann et al. (2017), and argument identification results of the SEMAFOR system of Das et al. (2014),
as modified by Kshirsagar et al. (2015), and the OPEN-SESAME system of Swayamdipta et al. (2017).
We exclude the FRAMAT system of Roth and Lapata (2015) for brevity, as it uses a different evaluation
script on argument identification given gold frames, and we ignore all other contributions (Hermann et
al., 2014; Täckström et al., 2015; FitzGerald et al., 2015; Roth, 2016; Yang and Mitchell, 2017) which
do not provide open source systems.1

Finally, rather than releasing a fixed preprocessed FrameNet dataset like Bauer et al. (2012), we pro-
pose an application for testing various frame semantic parsers in custom experimental setups. Our ap-
plication allows converting FrameNet XML data to various standard NLP formats (such as, e.g., BIO
or CoNLL-X) relying on a common architecture which handles data processing side effects observed
throughout this work. Preprocessing pipelines can thereby be easily modified while guaranteeing the
consistency and robustness of the experimental setups across parsers.

The structure of the paper is as follows: in Section 2, we introduce all past research on frame semantic
parsing replicated throughout this work, the statistical models used, as well as their experimental and
evaluation setups. In Section 3 we introduce our own experimental setup designed to overcome the
limitations observed in past research. In Section 4, we provide both frame and argument identification
scores for past models trained on our own experimental setup, on both FN 1.5 and 1.7 datasets. In Section 5
we discuss the impact of pre-processing on argument identification, and in Section 6 and Section 7 we
provide new robust baselines on both FN 1.5 and 1.7 datasets and conclude.

1For (Roth, 2016), although decoding and models are open source, training software is not
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2 Existing frame semantic parsing pipelines

2.1 Models
SIMPLEFRAMEID The frame identification model of SIMPLEFRAMEID (Hartmann et al., 2017) is
based on distributed representations of predicates and their (syntactic) context. The overall model re-
lies on a disambiguation classifier which learns weights for all frames in the lexicon, given a vector
space model providing dense vector representations for the predicate and its context. The context of the
predicate can include all words in the sentence (SENTBOW model), or be restricted to direct dependents
of the predicate (DEPBOW model). The overall classifier can rely on two distinct classification methods:
a two-layer neural network (NN) or a WSABIE-based method following the approach of Hermann et al.
(2014), consisting in mapping input representations and frame representations to a common latent space
using the WSABIE algorithm (Weston et al., 2011). In the standard decoding setup, the best scoring frame
is selected among all possible frames of a given predicate, as specified in the lexicon. If the predicate is
not found in the lexicon, the best scoring frame is selected among all frames, while if the predicate is un-
ambiguous and has a single possible frame, the frame is assigned directly. Hartmann et al. (2017) provide
three evaluation metrics for all their models: total, which provides an accuracy score for all predicates in
the test set; ambig which provides accuracy scores for ambiguous predicates only (predicates with more
than one possible frames in the lexicon); and no-lex, accuracy scores while treating each predicate as
unknown and scoring all frames in the lexicon.

SEMAFOR The argument identification model of SEMAFOR is a system originally proposed by Das et
al. (2014) and modified by Kshirsagar et al. (2015). The model derives the set of argument spans via a
rule-based algorithms over the syntactic context of a predicate word, and labels roles using a conditional
log-linear model over spans for each role of each evoked frames, trained using maximum conditional
log-likelihood. The original model makes extensive use of handcrafted features, ranging from lexical
items combinations to syntactic dependency paths. To the original features are added the exemplar and
hierarchy features (henceforth EX and H) proposed by Kshirsagar et al. (2015). EX incorporates FN

exemplar data – lexicographic examples annotating a single predicate – to the original ‘fulltext’ train
set, while H incorporates information regarding specific frame relations (Inheritance and SubFrame).
Decoding is done using beam search which produces a set of k-best hypotheses of sets of span-role pairs.
The approach enforces multiple constraints including the fact that a frame element label may be assigned
to at most one span and that spans of overt arguments must not overlap.

OPEN-SESAME OPEN-SESAME (Swayamdipta et al., 2017) is another argument identification system
based on the SegRNN model of Kong et al. (2015), which relies on a combination of bidirectional RNNs
and semi-Markov CRF – with a slight modification to favor recall over precision – to learn embedded
representations of targets, lexical units, frames, frame elements and spans. In its basic form, the OPEN-
SESAME parser is syntax-free, although it may also incorporate syntactic cues such as dependency parses
or phrase structures. For brevity, and to ease the replication process, we focus in this work on the syntax-
free and dependency-based models only. Note that, throughout this work, we report results with single
models and not ensemble models, and that, due to differences in initialization, variations of F1 scores
can be observed over our reported results, of up to 1 point of F1 score on FN 1.5 setups and .5 points of
F1 score on FN 1.7 setups.

2.2 Variations in existing experimental settings
SIMPLEFRAMEID and SEMAFOR rely on the original DAS sets (Das and Smith, 2011; Das et al., 2014).
OPEN-SESAME extracts its test set relying on the exact same list of FN fulltext as Das and Smith (2011),
but via a different pre-processing pipeline. We found both test splits to contain duplicate sentences and
annotationsets,2 as well as at least one overlapping sentence and corresponding annotationsets between
train and test splits.3 The DAS test split contains 4457 annotationsets when the OPEN-SESAME test

2In FN, an annotationset is defined as one set of labels for a predicate and its corresponding arguments in a given sentence.
3The sentence in question being Even if Iran possesses these biological agents, it faces a significant challenge in their

weaponization and delivery .
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split contains 4428 annotationsets. Corresponding parsers are therefore not evaluated on the exact same
set of gold data. The difference in the number of annotationsets is partially explained by the fact that
OPEN-SESAME relies on the BIO tagging scheme, which does not support overlapping frame elements, to
generate its gold data. Of the 4457 annotationsets of the DAS split, at least 162 were actually duplicates.
Of the 2420 sentences listed in both test sets, only 982 contained annotation, and 107 of them were
duplicates, making for an actual test set of 875 unique annotated sentences.

In (Das et al., 2014; Kshirsagar et al., 2015; Hartmann et al., 2017), data are tokenized with SED, part-
of-speech tagged with MXPOST (Ratnaparkhi, 1996), lemmatized with WORDNET (Miller, 1995) and
dependency-parsed with the MST parser (McDonald et al., 2006). In (Swayamdipta et al., 2017), data
retain the original FN tokenization, are lemmatized with NLTK (Bird et al., 2009) and part-of-speech-
tagged and dependency-parsed with SYNTAXNET (Andor et al., 2016). To incorporate exemplars into
the training set, Kshirsagar et al. (2015) apply an extra layer of filtering by excluding annotationsets
containing no overt frame element labels from the training data. As detailed in §5.3, this has a non-
negligible impact on argument identification and we treat this filtering layer as an independent feature.

All the above systems generate their lexicons by scanning the entirety of FN data. This includes the
predicate-to-frame map of SIMPLEFRAMEID, the frame-to-frame-element map of SEMAFOR and OPEN-
SESAME, and the frame-to-frame and frame-element-to-frame-element relation maps of SEMAFOR when
used with the hierarchy feature. Such an approach leads systems to have partial access to information
which is only included in the test set, such as the number of frames available for an unknown predicate,4

the list of frame elements of a given unknown frame, and the relation between an unknown frame and a
known frame.

2.3 Evaluation software
Throughout this work we rely on two distinct evaluation scripts, motivated by considerations over the
design of the original perl evaluation script of the SemEval shared task 19 on frame structure extraction.
Our first script, called SEMEVAL, is the original SemEval evaluation script as-is, and is used to score
argument identification given predicted frames. Our second script, called ARGSONLY, is a modified
version of the evaluation script originally provided by Kshirsagar et al. (2015), which we use to score
argument identification given gold frames. Both scripts provide global precision, recall and F1 scores
microaveraged across a concatenation of the test set.

Modifications to the original SEMEVAL script are motivated by its computing scores for both frames
and arguments jointly, which dilutes contributions to argument identification in gold frames settings by
systematically granting extra credits for gold frames. Unlike the evaluation script of Kshirsagar et al.
(2015) however, our ARGSONLY evaluation does not skip the evaluation of frame-only annotation sets
with no arguments, as it would not penalize parsers for over-predicting arguments.

3 Building a new harmonized experimental setup

3.1 Datasets and post-processing
We generate our train, dev and test splits following the list of fulltext documents provided by
Swayamdipta et al. (2017). For both FN 1.5 and FN 1.7 datasets, dev and test splits are generated from the
same list of FN fulltexts. To guarantee no duplicates and no overlap within and across datasets, we apply
a strong filter based on an annotationset hash generated from the concatenated annotationset sentence
text hash and the annotationset target hash. The sentence text hash is the sentence text lower-cased on
stripped of all its whitespaces while the target hash is a concatenation between the target predicate string
and the target indexes. To guarantee near-perfect matching between SEMEVAL-formatted test XML data
and the original gold FN XML data, we directly convert FN XML data without relying on intermediate
formats (e.g. CONLL or BIO formats), and retain all annotationsets except those with inconsistent labels.5

4I.e. a predicate in the test set not seen during training.
5We define inconsistent labels as those with inconsistent start/end indexes, e.g. when only one of the two indexes is missing.

Note that when such annotationsets are found, we filter out the entire annotationset and not just the erroneous label, as we
consider the entire annotationset as an indivisible piece of information
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Table 1 details the number of sentences and annotationsets in both FN 1.5 and 1.7 setups. The 50% in-
crease in test gold data between FN 1.5 and 1.7 guarantees more robust baselines when testing on the 1.7

setup.

TRAIN 1.5 FT TRAIN 1.5 FT+EX TEST 1.5 TRAIN 1.7 FT TRAIN 1.7 FT+EX TEST 1.7

#sent 2,654 150,426 875 3,362 168,792 1,247
#anno 16,706 170,889 4,148 19,550 192,554 6,446

Table 1: Number of sentences and annotationsets in train and test splits for both FN 1.5 and FN 1.7 setups,
with training data generated from fulltexts only (FT) or fulltexts and exemplars (FT+EX)

3.2 Pre-processing
In all our experiments we retain the original FN tokenization, while lemmatizing data with NLP4J (Choi,
2016). For part-of-speech tagging, we experiment with MXPOST (Ratnaparkhi, 1996) and NLP4J, and for
dependency parsing with the MST (McDonald et al., 2006) and BIST (Kiperwasser and Goldberg, 2016)
parsers. The BIST parser is used in both its graph-based (BMST) and transition-based (BARCH) variants.
Both MST and BIST parsers are trained on sections 02-21 of the Penn TreeBank (Marcus et al., 1993).
We choose MXPOST and MST for the purpose of replicating previous studies, and NLP4J and BIST for
performance. At the time when this research started, state-of-the-art results on frame semantic parsing
were reported by Roth (2016) who recommended the use of both NLP4J and BIST for pre-processing.

3.3 Frame semantic parsers
We fork the branch of SEMAFOR used in (Kshirsagar et al., 2015), as well as the SIMPLEFRAMEID and
OPEN-SESAME master branches. For each parser, we re-implement lexicon creation methods in order
to include only data seen during training (see §3.1). That is, we reproduce the predicate-frame map of
SIMPLEFRAMEID, the frame-to-frame-element map of SEMAFOR and OPEN-SESAME, and the hierarchy
feature-related relation maps of SEMAFOR. We keep all parsers and hyperparameters as detailed in (Hart-
mann et al., 2017), (Kshirsagar et al., 2015) and (Swayamdipta et al., 2017), and set the regularization
parameter λ for SEMAFOR to λ = 10−5.

3.4 Pipeline release
To ease replication and future work on frame semantic parsing, we release a single Python application
called PYFN, which provides a set of Python models to process FN annotation. We thereby enforce
data consistency across experiments, as data conversion6 is processed via a single set of models. We
create a larger standalone bundle including all forked parsers used as well as all datasets, resources
and scripts necessary to replicate our experiments, and release it open source at https://gitlab.
com/akb89/pyfn. Each experiment introduced in this work is labeled with a unique #id, to which
corresponds a README file listing all necessary instructions for replicating the experiment, found under
the experiments directory of the PYFN repository.

4 Replication of previous studies

The purpose of this section is to measure the contribution of each model introduced in §2.1 on our robust
experimental setup (§3.1). Given that we use slightly different test sets and lexicons from the original
studies, we focus on comparing the order of magnitude of each contribution and the resulting ranking of
models, as well as analyzing the robustness of each contribution when tested on the FN 1.7 dataset.

4.1 Frame identification: the SIMPLEFRAMEID system
On frame identification, Tables 3 and 4 confirm one of the main results of Hartmann et al. (2017) pre-
sented in Table 2, namely, that the NN model outperforms the WSABIE model, and this in both FN 1.5

6E.g. to and from FN XML format, SEMEVAL XML format, CONLL-09 format, CONLL-X format, BIO tagging format, etc.
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and FN 1.7 setups. Table 3 also confirms the hierarchy between models on the FN 1.5 setup, albeit not
as clearly as originally reported, with differences between NN and WSABIE models closer to 2 points
of accuracy rather than 3. However, Table 4 shows that the hierarchy between the NN + SENTBOW and
NN + DEPBOW models are not robust across datasets, as the NN + DEPBOW model performs better than
the NN + SENTBOW model on the FN 1.7 setup, by a margin of .6 accuracy point overall.7 We conclude
that the superiority of the NN + SENTBOW model cannot be generically ascertained, in line with original
experiments reported by Hartmann et al. (2017).

Hartmann et al. (2017) FRAMENET 1.5 SETUP

system pos dep total ambig no-lex

WSB + SENTBOW MXPOST MST 84.5 67.6 72.0
WSB + DEPBOW MXPOST MST 85.7 69.9 71.2
NN + SENTBOW MXPOST MST 87.6 73.8 77.5
NN + DEPBOW MXPOST MST 87.5 73.6 76.5

Table 2: SIMPLEFRAMEID frame identification accuracy scores on DAS splits

(OUR) FRAMENET 1.5 SETUP

xp system total ambig no-lex

#46 WSB + SENTBOW 81.2 66.8 72.9
#46 WSB + DEPBOW 81.4 69.1 74.3
#46 NN + SENTBOW 83.1 73.0 77.0
#46 NN + DEPBOW 82.9 72.7 78.3

Table 3: SIMPLEFRAMEID frame identification ac-
curacy scores on our FN 1.5 splits

(OUR) FRAMENET 1.7 SETUP

xp system total ambig no-lex

#67 WSB + SENTBOW 80.9 64.9 73.2
#67 WSB + DEPBOW 81.7 67.1 72.5
#67 NN + SENTBOW 82.4 69.8 77.0
#67 NN + DEPBOW 83.0 71.7 76.1

Table 4: SIMPLEFRAMEID frame identification ac-
curacy scores on our FN 1.7 splits

4.2 Argument identification: OPEN-SESAME and SEMAFOR

On argument identification, we first try and replicate past results relying on our FN 1.5 and FN 1.7 splits,
as well as a common pre-processing pipeline combining MXPOST and MST, in order to match as closely
as possible the pipeline most widely used in past studies (see Table 5). We report results for the standard
version of SEMAFOR and for all its adaptations introduced in (Kshirsagar et al., 2015), which include the
hierarchy feature (H), the exemplar feature (EX) and the filtering feature (F).

Argument identification on FN 1.5 Gold Frames Predicted Frames
POS DEP P R F1 P R F1

SEMAFOR MXPOST MST (Das et al., 2014) 65.6 53.8 59.1 - - 66.8
SEMAFOR H MXPOST MST (Kshirsagar et al., 2015) 67.2 54.8 60.4 - - -
SEMAFOR EX + F MXPOST MST (Kshirsagar et al., 2015) 66.0 58.2 61.9 - - -
SEMAFOR H + EX + F MXPOST MST (Kshirsagar et al., 2015) 66.0 60.4 63.1 - - 67.9
OPEN-SESAME SYNTAXNET - (Swayamdipta et al., 2017) 64.7 61.2 62.9 68.0 68.1 68.0
OPEN-SESAME SYNTAXNET SYNTAXNET (Swayamdipta et al., 2017) 69.4 60.5 64.6 71.0 67.8 69.4

Table 5: Argument identification scores given gold and predicted frames on DAS splits, as originally
reported in (Kshirsagar et al., 2015; Swayamdipta et al., 2017). Frames are predicted with the proprietary
system of Hermann et al. (2014)

7Note that decrease in absolute score was expected given that all models use a reduced lexicon compared to (Hartmann et
al., 2017), although the unpredictability of performance on duplicates in the DAS test set could have compensated either way.
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Table 6 shows that, contrary to what was previously reported, the OPEN-SESAME parser does not
outperform the best version of SEMAFOR on the FN 1.5 splits. Although the dependency-based version of
OPEN-SESAME does achieve comparable results than SEMAFOR, the syntax-free version is outperformed
by a margin of .9 points of F1 score. The contribution of each H, EX and F feature is confirmed across
datasets, with similar order of magnitudes. Ranking of models changes however across datasets, and
results on the FN 1.7 splits (Table 7) provide a ranking of models closer to the one reported in Table 5.

XP FRAMENET 1.5 SETUP P R F1

#42 SEMAFOR MXPOST MST 59.1 54.3 56.6
#86 SEMAFOR H MXPOST MST 60.3 54.9 57.5
#75 SEMAFOR EX + F MXPOST MST 59.9 58.9 59.4
#89 SEMAFOR H + EX + F MXPOST MST 60.1 60.6 60.4
#43 OPEN-SESAME MXPOST - 59.7 59.4 59.5
#44 OPEN-SESAME MXPOST MST 59.8 59.8 59.8

Table 6: Argument identification scores given
gold frames on our FN 1.5 splits while pre-
processing with MXPOST and MST

XP FRAMENET 1.7 SETUP P R F1

#54 SEMAFOR MXPOST MST 61.2 53.5 57.1
#61 SEMAFOR H MXPOST MST 62.5 53.7 57.8
#97 SEMAFOR EX + F MXPOST MST 64.8 54.9 59.4
#63 SEMAFOR H + EX + F MXPOST MST 63.6 57.4 60.4
#53 OPEN-SESAME MXPOST - 62.9 58.4 60.6
#80 OPEN-SESAME MXPOST MST 63.2 58.9 61.0

Table 7: Argument identification scores given
gold frames on our FN 1.7 splits while pre-
processing with MXPOST and MST

So while frame identification results proved rather consistent across setups in §4.1, argument iden-
tification results proved more erratic, with a clear mismatch of model hierarchy on the FN 1.5 setup,
contradicting previous studies.

5 Impact of the preprocessing pipeline

In this section we report on the impact of different preprocessing pipelines on argument identification
scores for both the SEMAFOR and OPEN-SESAME systems. Note that in §5.1 and §5.2, we compare
OPEN-SESAME to the standard SEMAFOR model, without the H, EX or F features. However, similar
trends can be observed for the feature-expanded versions of SEMAFOR (see §5.3).

5.1 Part-of-speech tagging
Table 8 shows a systematic improvement of F1 score on the FN 1.5 splits when using NLP4J over MXPOST

for part-of-speech tagging (compare with Table 6: #69 vs #42, #78 vs #43, and #79 vs #44). Results
presented in Table 9 (compare with Table 7) tend to show that increase in performances with NLP4J is
not robust across datasets (see notably #56 vs #54). However, further experiments, presented in §5.2 and
§5.3 show that performance on argument identification is highly dependent on the combination of the
part-of-speech tagger and the dependency parser used. In our case, the combination of NLP4J with the
BIST dependency parser actually outperforms any MXPOST-based pre-processing pipeline.

XP FRAMENET 1.5 SETUP P R F1

#69 SEMAFOR NLP4J MST 60.2 55.4 57.7
#78 OPEN-SESAME NLP4J - 59.8 60.2 60.0
#79 OPEN-SESAME NLP4J MST 61.2 60.2 60.7

Table 8: Argument identification scores given
gold frames on our FN 1.5 splits while pre-
processing with NLP4J and MST

XP FRAMENET 1.7 SETUP P R F1

#56 SEMAFOR NLP4J MST 59.1 53.4 56.1
#48 OPEN-SESAME NLP4J - 63.1 58.8 60.9
#55 OPEN-SESAME NLP4J MST 64.4 59.6 61.9

Table 9: Argument identification scores given
gold frames on our FN 1.7 splits while pre-
processing with NLP4J and MST

5.2 Dependency-parsing
Table 10 and Table 11, show a near-systematic improvement of F1 score for both SEMAFOR and OPEN-
SESAME systems when using the BIST dependency parser over MST. On FN 1.5 , the contribution of the
dependency parser itself to overall performance proves non-negligible, with an observed improvement
ranging from .6 points of F1 score for OPEN-SESAME between MST and BARCH (#79 and #83), to 4
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points of F1 score for SEMAFOR between MST and BARCH (#69 and #81). On certain FN 1.5 setups, the
combination of pos tagger and dependency parser may even account, in order of magnitude, for more
than half of the previously reported contribution of the OPEN-SESAME model over the SEMAFOR model
(consider, e.g., #82 in Table 10 and #44 in Table 6 compared to the 1.5 F1 score improvement reported
in Table 5 between the best SEMAFOR model and the dependency-based OPEN-SESAME model).

XP FRAMENET 1.5 SETUP P R F1

#69 SEMAFOR NLP4J MST 60.2 55.4 57.7
#70 SEMAFOR NLP4J BMST 67.5 56.4 61.4
#81 SEMAFOR NLP4J BARCH 67.6 56.8 61.7

#79 OPEN-SESAME NLP4J MST 61.2 60.2 60.7
#82 OPEN-SESAME NLP4J BMST 64.1 59.6 61.2
#83 OPEN-SESAME NLP4J BARCH 61.4 61.3 61.3

Table 10: Argument identification scores given
gold frames on our FN 1.5 splits while pre-
processing with NLP4J and MST, BMST or BARCH

XP FRAMENET 1.7 SETUP P R F1

#56 SEMAFOR NLP4J MST 59.1 53.4 56.1
#47 SEMAFOR NLP4J BMST 64.8 55.7 59.9
#84 SEMAFOR NLP4J BARCH 61.2 55.8 58.4

#55 OPEN-SESAME NLP4J MST 64.4 59.6 61.9
#57 OPEN-SESAME NLP4J BMST 64.6 59.3 61.8
#85 OPEN-SESAME NLP4J BARCH 63.6 60.3 61.9

Table 11: Argument identification scores given
gold frames on our FN 1.7 splits while pre-
processing with NLP4J and MST, BMST or BARCH

5.3 Data filtering
As previously introduced in §2.2, Kshirsagar et al. (2015) apply a filtering layer on training data by
removing all annotationsets with no overt role labels from the exemplar data. Such a filter may remove
valid annotationsets where all arguments of the predicate are found to be null instantiations (Ruppenhofer
et al., 2016) – which may correspond, e.g., to intransitive predicates, lexically licensed zero anaphora or
imperative and passive constructions – but can also remove incompletely annotated annotationsets, where
predicates have been disambiguated (frames have been assigned to specific targets), but frame element
labels have yet to be specified. Such cases are much more frequent in exemplar than in fulltext data,
justifying a priori the filtering layer of Kshirsagar et al. (2015) to prevent negatively biasing SEMAFOR.

Table 12 and Table 13 show that the filter feature has a systematic positive effect on argument iden-
tification performance, and that this result is robust across datasets and across pre-processing pipelines.
Note that, in a configuration where EX and H features are combined, the addition of the F feature leads to
a .5 F1 (compare #89 and #87) to 1.4 F1 (compare #63 and #62) increase in performance depending on
the setup. This result suggests that the filtering layer applied by Kshirsagar et al. (2015) should be con-
sidered as a standalone feature, which contribution should be clearly separated from that of the exemplar
feature, in order to better quantify the contribution of the exemplar feature itself.

XP FRAMENET 1.5 SETUP P R F1

#42 SEMAFOR MXPOST MST 59.1 54.3 56.6
#45 SEMAFOR EX MXPOST MST 63.0 55.4 59.0
#75 SEMAFOR EX + F MXPOST MST 59.9 58.9 59.4
#87 SEMAFOR H + EX MXPOST MST 61.7 58.2 59.9
#89 SEMAFOR H + EX + F MXPOST MST 60.1 60.6 60.4

#70 SEMAFOR NLP4J BMST 67.5 56.4 61.4
#92 SEMAFOR EX NLP4J BMST 65.0 58.9 61.8
#93 SEMAFOR EX + F NLP4J BMST 65.0 60.0 62.4
#94 SEMAFOR H + EX NLP4J BMST 64.2 61.1 62.6
#95 SEMAFOR H + EX + F NLP4J BMST 62.7 63.5 63.1

Table 12: Argument identification scores given
gold frames on our FN 1.5 splits for various
feature-augmented versions of SEMAFOR

XP FRAMENET 1.7 SETUP P R F1

#54 SEMAFOR MXPOST MST 61.2 53.5 57.1
#88 SEMAFOR EX MXPOST MST 61.0 55.1 57.9
#97 SEMAFOR EX + F MXPOST MST 64.8 54.9 59.4
#62 SEMAFOR H + EX MXPOST MST 61.9 56.3 59.0
#63 SEMAFOR H + EX + F MXPOST MST 63.6 57.4 60.4

#47 SEMAFOR NLP4J BMST 64.8 55.7 59.9
#49 SEMAFOR EX NLP4J BMST 63.9 57.5 60.6
#73 SEMAFOR EX + F NLP4J BMST 64.3 59.4 61.8
#64 SEMAFOR H + EX NLP4J BMST 65.8 58.6 62.0
#65 SEMAFOR H + EX + F NLP4J BMST 67.7 59.4 63.3

Table 13: Argument identification scores given
gold frames on our FN 1.7 splits for various
feature-augmented versions of SEMAFOR

Overall, we showed that divergence in the pre-processing pipeline can actually account for a significant
part of the difference in performance previously observed across models, enforcing the need for standard
pre-processing pipelines against which models can be fairly compared.
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6 New baselines for FN 1.5 and FN 1.7

Building upon results of the previous sections, we introduce new baselines for both frame and argument
identification on our FN 1.5 and FN 1.7 splits, relying on an updated preprocessing pipeline combining
NLP4J for lemmatization and part-of-speech tagging, and the BMST variant of the BIST parser for de-
pendency parsing. Although not necessarily the best pipeline observed in all setups, the NLP4J + BMST

combination proved to be the best compromise between performance and speed, an important factor to
take into account for facilitating future replication.

XP FRAMENET 1.5 SETUP P R F1

#70 SEMAFOR NLP4J BMST 67.5 56.4 61.4
#95 SEMAFOR H + EX + F NLP4J BMST 62.7 63.5 63.1
#78 OPEN-SESAME NLP4J - 59.8 60.2 60.0
#82 OPEN-SESAME NLP4J BMST 64.1 59.6 61.2

Table 14: Argument identification baseline scores
given gold frames on FN 1.5 splits

XP FRAMENET 1.7 SETUP P R F1

#47 SEMAFOR NLP4J BMST 64.8 55.7 59.9
#65 SEMAFOR H + EX + F NLP4J BMST 67.7 59.4 63.3
#48 OPEN-SESAME NLP4J - 63.1 58.8 60.9
#57 OPEN-SESAME NLP4J BMST 64.6 59.3 61.8

Table 15: Argument identification baseline scores
given gold frames on FN 1.7 splits

Table 14 and Table 15 confirm, in addition to Table 6 and Table 7, that the ranking of models reported
in (Swayamdipta et al., 2017) is not robust across datasets and experimental setups. In the most robust
setup (FN 1.7 with NLP4J and BMST reported in Table 15) SEMAFOR still outperforms both syntax-free
and dependency-based versions of OPEN-SESAME, by a margin of at least 1.5 points of F1 score.

Surprisingly however, the ranking of models is significantly modified when testing models with pre-
dicted frames output by SIMPLEFRAMEID, and a 10 points drop in recall is observed between the feature-
expanded and the standard version of SEMAFOR (Tables 16 and 17). Those results suggest that the
feature-expanded version of SEMAFOR acquires, most likely via the exemplar data, representations that
deviate too much from that of those found in the fulltext test set, making it unable to compensate for
the wrongly predicted frames of SIMPLEFRAMEID. Such considerations stress once again the possible
domain-specific nature of both fulltext and exemplar data (Das et al., 2014), considerations which are
reinforced by our results on frame identification trained on exemplar (see Table 18 and Table 19) which
show a systematic decrease in performance on ambiguous predicates, suggesting that ambiguous predi-
cates observed in the exemplar training data do not beneficially contribute to predictions on ambiguous
predicates in the fulltext test set.

XP FRAMENET 1.5 SETUP P R F1

#170 SEMAFOR NLP4J BMST 63.4 60.2 61.8
#295 SEMAFOR H + EX + F NLP4J BMST 66.8 50.3 57.4
#178 OPEN-SESAME NLP4J - 63.7 64.4 64.1
#182 OPEN-SESAME NLP4J BMST 66.1 64.0 65.0

Table 16: Argument identification baseline scores
on FN 1.5 splits, with frames predicted by SIMPLE-
FRAMEID trained on the FN 1.5 train splits

XP FRAMENET 1.7 SETUP P R F1

#147 SEMAFOR NLP4J BMST 63.1 60.6 61.8
#265 SEMAFOR H + EX + F NLP4J BMST 68.7 48.5 56.9
#148 OPEN-SESAME NLP4J - 64.0 55.2 59.3
#157 OPEN-SESAME NLP4J BMST 65.7 62.9 64.3

Table 17: Argument identification baseline scores
on FN 1.7 splits, with frames predicted by SIMPLE-
FRAMEID trained on the FN 1.7 train splits

xp FN 1.5 pos dep total ambig no-lex

#66 FT NLP4J BMST 83.2 73.6 77.8
#90 FT + EX NLP4J BMST 84.6 69.3 75.8

Table 18: Frame identification accuracy baseline
on FN 1.5 trained on fulltext (FT) and combined
fulltext and exemplar (FT+EX) data

xp FN 1.7 pos dep total ambig no-lex

#98 FT NLP4J BMST 82.3 70.0 76.6
#99 FT + EX NLP4J BMST 83.6 66.7 74.3

Table 19: Frame identification accuracy baseline
on FN 1.7 trained on fulltext (FT) and combined
fulltext and exemplar (FT+EX) data
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7 Conclusion

In this paper, we have discussed the impact of pre- and post-processing pipelines on frame semantic
parsing performance. We have shown that the ranking of existing state-of-the-art systems can be severely
impacted by arguably ‘small’ factors outside of the main models, to the point that respective model
performance cannot be fully ascertained.

Our replication study drew the following conclusions. We found that on the whole, previous frame
identification results by (Hartmann et al., 2017) could be replicated. Results on argument identification,
however, gave a much patchier picture. Replication on a robust experimental setup showed a change in
model ranking between OPEN-SESAME and SEMAFOR. Further experiments on pre-processing demon-
strated that the combination of a particular parts-of-speech tagger and dependency parser (NLP4J and
BIST) gives best performance on the task. The contribution of the dependency parser itself may be more
than previously reported: we found that half of the advantage of OPEN-SESAME over SEMAFOR may
be due to this pre-processing choice, closing the gap between the two models. We also highlighted that
filtering the training data has a robust and very significant effect on performance.

Building upon these results, we ran two robust baselines on both FN1.5 and FN1.7. These experiments
result in a different model ranking from what has previously been reported in the literature. However,
we also found that the feature-expanded version of SEMAFOR suffers a huge drop in recall when given
predicted rather than gold frames. Here again, it seems vital to be able to distinguish the contribution of
different processing stages on the actual model.

On the back of the replication results presented here, we feel there is a need for a standardized ex-
perimental pipeline that would allow researchers to fully test the contribution of different pre- and post-
processing factors independently from their model. Following on this recommendation, we release an
open source toolkit8 including all necessary scripts and datasets to replicate our experiments in a robust
setting. We hope to thus foster more fine-grained analyses of past and future results in frame semantic
parsing.
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