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Abstract

Predicting Machine Translation (MT) quality can help in many practical tasks such as MT post-
editing. The performance of Quality Estimation (QE) methods has drastically improved recently
with the introduction of neural approaches to the problem. However, thus far neural approaches
have only been designed for word and sentence-level prediction. We present a neural framework
that is able to accommodate neural QE approaches at these fine-grained levels and generalize
them to the level of documents. We test the framework with two sentence-level neural QE ap-
proaches: a state of the art approach that requires extensive pre-training, and a new light-weight
approach that we propose, which employs basic encoders. Our approach is significantly faster
and yields performance improvements for a range of document-level quality estimation tasks. To
our knowledge, this is the first neural architecture for document-level QE. In addition, for the
first time we apply QE models to the output of both statistical and neural MT systems for a series
of European languages and highlight the new challenges resulting from the use of neural MT.

1 Introduction

Quality Estimation (QE) (Blatz et al., 2004; Specia et al., 2009) aims at predicting the quality of machine
translation (MT) without human intervention. Most recent work has focused on QE to predict sentence-
level post-editing (PE) effort, i.e. the process of manually correcting MT output to achieve publishable
quality (Bojar et al., 2014; Bojar et al., 2015; Bojar et al., 2016a; Bojar et al., 2017). In this case,
QE indicates to what extent a MT sentence needs post-editing. Document-level QE, on the other hand,
scores or ranks documents according to their quality for fully automated MT usage scenarios where no
post-editing can be performed, e.g. MT for gisting of news articles online.

Recently, neural methods have been successfully exploited to improve QE performance. These meth-
ods mostly rely on either complex architectures, require extensive pre-training, or need some feature
engineering (Patel and M, 2016; Kim et al., 2017a; Martins et al., 2017a; Jhaveri et al., 2018). In ad-
dition, these methods have only been developed for word, phrase and sentence-level QE. These cannot
be directly used for document-level QE since this level requires to take into account the content of the
document in its entirety. State-of-the-art document-level QE solutions still rely on non-neural methods,
and extensive feature engineering (Scarton et al., 2016).

In this paper we propose a neural framework that is able to accommodate any QE approach at a fine-
grained level (e.g. a sentence-level approach), and to generalize it to learn document-level QE models.
We test the framework using a state of the art neural sentence-level QE approach (Kim et al., 2017b),
which uses a complex architecture and requires resource-intensive pre-training, and a light-weight neural
approach employing simple encoders and no pre-training. Our sentence-level prediction approach leads
to comparable or better results than the state of the art at a much lower cost. Additionally, the document-
level framework improves over previous work by a large margin. To our knowledge, this is the first
attempt at document-level QE using purely neural methods.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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The majority of existing QE solutions for all prediction levels have been designed and tested for Statis-
tical MT (SMT). Popular features extracted from SMT translation models are clearly no longer applicable
to neural MT (NMT), while MT system-independent features, such as target language model probabili-
ties, are likely to be less effective. For the first time, we experiment with sentence and document-level
QE methods on the output of both SMT and NMT, for a series of European languages. We show that the
main challenge for QE of high-quality NMT lies in detecting errors in otherwise generally fluent text.
We focus on the estimation of MT quality for news texts, a type of text where gisting is seen as a popular
use of MT.

We start by discussing related work in Section 2. We present our light-weight hierarchical neural
QE architecture in Section 3. We then introduce our experimental settings in Section 4. We provide
the results of state of the art sentence-level methods in Section 4.1 and of the proposed document-level
framework in Section 4.2.

2 Related work

QE targets the prediction of MT quality in the absence of reference translations. Given a set of training
examples labelled for quality, their features extracted from source units and their corresponding MT
units (black-box, system-independent), optionally complemented with features related to the translation
process itself (glass-box, system-dependent), a QE model can be trained to predict a score for unseen
MT units. Various types of units are possible: documents, paragraphs, sentences, words and phrases
have been studied in previous work to different extents. Most work has focused on sentence or word-
level prediction, which have clear application in dissemination scenarios, such as MT followed by post-
editing. Document-level QE, which is applicable in assimilation (i.e. gisting) scenarios, has received
much less attention.

Recently, neural methods have been successfully exploited to improve QE performance. The best-
performing system at the WMT 2017 shared task on QE (Bojar et al., 2017) for the three levels of
prediction (word, phrase and sentence), namely POSTECH, is purely neural and does not rely on feature
engineering (Kim et al., 2017b). POSTECH is a modular architecture that revolves around an encoder-
decoder Recurrent Neural Network (RNN) (so-called predictor), stacked with an bidirectional RNN (so-
called estimator) that produces quality estimates. It predicts quality using the weights assigned by the
predictor to the words we seek to evaluate, which are concatenated with the representations of their
left and right one-word contexts, and then used to feed the estimator. To perform multi-level predictions,
POSTECH relies on a multi-task learning approach which makes the quality estimates, for different levels
of prediction, interdependent. The highest level of quality labels reported by the POSTECH system at
WMT 2017 was sentence-level. Note that, to be effective, this architecture has to be pre-trained using a
significant amount of parallel data, which leads to high training requirements in terms of time, processing
power and dataset size.

Jhaveri et al. (2018) propose a series of neural models for sentence-level QE by simplifying and ex-
tending the POSTECH architecture (e.g. they skip the Predictor step, use convolutional encoders or an
additional attention mechanism). We propose an alternative RNN-based simplification of POSTECH.

Another well performing system in the WMT shared QE task, Unbabel (Martins et al., 2017a; Martins
et al., 2017b), also uses an encoder-decoder architecture with bidirectional RNN layers as part of its
stacked architecture. It follows a hybrid approach where the input to this encoder-decoder is a pre-
extracted feature set: pre-trained word and part-of-speech embeddings, word alignments and contexts.
The system was designed for word and sentence QE.

State-of-the-art QE solutions specifically designed for document-level prediction employ traditional
machine learning algorithms with non-linear kernels, such as Support Vector Machines (Cortes and Vap-
nik, 1995) and Gaussian Process (Rasmussen and Williams, 2005). Standard sets of document-level
features are largely inspired by sentence-level features (Bojar et al., 2016a). Additionally, various dis-
course and neural-based features have been explored (Scarton et al., 2016).

Document-level QE is traditionally framed as averaging over sentence-level QE (Scarton et al., 2016).
Sentence-level architectures consider each sentence separately; at the document level the entirety of
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sentences in the document and the importance of each of these sentences should be taken into account.
While the first problem can be addressed by, for instance, merging all sentences in a document and
reusing a sentence-level QE system, the second problem requires considering every sentence separately
yet as a part of the document, which requires a different QE architecture.

In this work we take advantage of the ability of neural networks to capture hierarchical structures,
and propose a neural framework able to generalize over any sentence-level QE approach to produce
document-level QE models. We test the framework using the state of the art neural sentence-level QE
approach of Kim et al. (2017b), and a low-cost neural approach employing simple encoders, which we
propose.

To our knowledge, the only attempt to shed some light on QE for NMT output is that by Rikters and
Fishel (2017). They use attention mechanism distributions as an indicator the confidence of the neural
decoder on its output at word-level. The hypothesis is that “good” translations can be characterized
by strongly focused attention connections. However, this internal information has not been proved to
map directly into translation quality: a very weak correlation with human judgements in a small-scale
assessment was reported. Therefore, this is the first time that experiments are performed with fully
fledged, MT system-independent QE models for NMT.

3 A neural-based architecture for QE

Our framework performs multi-level translation quality prediction, which has been shown to be success-
ful in both traditional feature-engineered QE frameworks, such as QuEst++ (Specia et al., 2015), and
neural QE architectures (Kim et al., 2017a; Martins et al., 2017a). In such architectures, the representa-
tions at a given level rely on representations from more fine-grained levels (i.e. sentences for document,
and words for sentence).

This is motivated by the nature of the task at hand: a document that is composed of high quality
sentences is likely to have high quality as well. However, simply aggregating sentence-level predictions
is not a good strategy, as a document needs to be cohesive and coherent as a whole, i.e. sentences cannot
be considered completely in isolation, and thus the need of a multi-level architecture that is trained jointly
arises. Another important feature of document-level prediction is that certain parts of a document may
be more important than others, such sentences containing keywords in a news article, versus sentences
containing background information. Therefore one should also attempt to assess whether those sentences
in particular are translated accurately. We do so by using different sentence-level weighting schemes for
labelling documents, and by relying on an attention mechanism.

In what follows, we will first present the two sentence-level architectures we employ to then introduce
our document-level framework.

3.1 Sentence-level architectures
The encoder-decoder approach (Sutskever et al., 2014; Bahdanau et al., 2015) provides a general archi-
tecture for sequence-to-sequence prediction problems. This approach has become very popular in many
applications where inputs and outputs are sequential, such as MT. In this approach, an input sequence
is encoded into an internal representation, and then an output sequence is generated left to right from
this representation. Current best practices implement encoder-decoder approaches using RNNs, which
handle inputs as a sequence (here a sequence of words), while taking previous words into account. We
consider two different architectures, both based on the RNN encoder-decoder approach:

POSTECH We reimplement1 the neural-based architecture for multi-level prediction by Kim et al.
(2017a; Kim et al. (2017b), the best performing system at the WMT 2017 shared task on QE. This
architecture is a two-stage end-to-end stacked neural QE model that combines (a) a predictor step, an
encoder-decoder RNN model to predict words based on their context representations; and (b) an estima-
tor step, a bidirectional RNN model to produce quality estimates for words, phrases and sentences based

1No code was originally available; our implementation is based on the NMT-Keras framework (Peris, 2017), and the
Keras tool (Chollet and others, 2015). The code is publicly available online: https://github.com/sheffieldnlp/
deepQuest.
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Figure 1: deepQuest framework. Left: the proposed sentence-level QE architecture: hidden states of
source and MT encoders are concatenated and an attention mechanism over words is applied. Right:
our document-level QE architecture: sentence representations are given to a bi-RNN and an attention
mechanism over outputs of this RNN is applied to weight sentences according to their importance to the
document.

on representations from the predictor. POSTECH requires extensive predictor pre-training to be effective,
which means dependence on large parallel data and computational resources.

BI-RNN BI-RNN uses only two bi-directional RNNs (bi-RNN) as encoders to learn the representation
of the (source, MT) sentence pair. A bi-RNN typically calculates a forward sequence of hidden states
(
−→
h 1, ...,

−→
h J), and a backward sequence of hidden states (

←−
h 1, ...,

←−
h J). The hidden states

−→
h j and

←−
h j are concatenated to obtain the resulting representation hj . In our approach, source and MT bi-
RNNs are trained independently, as illustrated in Figure 1 (left side). The two representations are then
combined via concatenation. However, sentence-level QE scores are not simple aggregations of word-
level representations: they reflect some importance of words within a sentence. Thus, weights should be
applied to those representations. Such weighting is provided by the attention mechanism. We apply the
following attention function computing a normalized weight for each hidden state hj :

αj =
exp(Wah

>
j )∑J

k=1 exp(Wah>k )
. (1)

The resulting sentence vector is thus a weighted sum of word vectors: v =
∑J

j=1 αjhj . A sigmoid

output layer takes this vector as input and produces real-value quality scores.2

3.2 Document-level architecture
Our document-level framework uses a bi-RNN encoder. RNNs have been successfully used for document
representation (Lin et al., 2015) and applied to a series of downstream tasks such as topic labeling,
summarization, and question answering (Li et al., 2015; Yang et al., 2016).

The document-level quality predictor takes as input a set of sentence-level representations. The last
hidden state of the decoder is the summary of an entire sequence. The sum, the maximum, or the average
of hidden states for each sentence can then be provided to the output layer. Our assumption is that
document-level QE scores are not a simple aggregations of sentence-level QE scores: they should reflect
some notion of the importance of sentences within a document. To do so, we use an attention mechanism
(Equation 1) to learn weights of different representations (different sentences). The weighted sum of the
sentence representations is provided to the sigmoid output layer. This sigmoid output layer produces
real-value predictions for a document, as illustrated in Figure 1 (right side).

2Note that Jhaveri et al. (2018) also propose an RNN-based QE architecture. However, following traditional NMT design,
the attention mechanism is applied to the source encoder outputs, whereas we apply it to the outputs of both source and MT
encoders.
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4 Evaluation

In what follows, we first assess the performance of the sentence-level prediction approaches (Section
4.1), then move to the more coarse-grained level of predicting quality for documents (Section 4.2).

4.1 Sentence-level predictions

In this section we analyse the performance of our two sentence-level architectures against official base-
lines of the WMT 2017 QE shared task. We use the QE dataset in (Specia et al., 2017), which i) is
a superset of the official dataset for the WMT 2017 QE task and for which the POSTECH architecture
has been developed, allowing us to validate our reimplementation; ii) contains translations from neural
MT systems. We also report results using the official evaluation metrics of the shared task: Pearson ρ
correlation (primary) and Mean Average Error (MAE) (secondary).

Data The QE dataset contains 28,000 English-German (EN–DE) translations (IT domain) and 18,768
English-Latvian (EN–LV) translations (Life Science domain), produced with either a statistical MT
(SMT), or an NMT system.

We randomly split the data for each language pair into training set (25K sentences for EN–DE, 16K
for EN–LV), development set (1K sentences) and test (2K sentences) set.3 In line with the WMT QE
campaigns, data labelling was performed as described in (Bojar et al., 2017) using the TERCOM toolkit:4

for sentence-level QE, with edit distance scores (HTER) used as labels.
To train POSTECH’s predictor:5 we used the Europarl corpus (Koehn, 2005) (≈ 2M sentences; the

version provided by Tiedemann (2012)) for EN–DE, and the parallel data of the WMT 2017 News
translation task (≈ 2M sentences) for EN–LV. Each experiment was run five times on the same split to
estimate the stability of the model.

Baseline system: We reproduced the WMT 2017 baselines as described in (Bojar et al., 2017). For
the extraction of the sentence-level features for EN–DE, we used the additional resources provided by
the WMT 2017 QE shared task. For EN–LV, the corresponding resources were created using the data
provided for the WMT 2017 News translation task, and the EMEA corpus (Tiedemann, 2009).

Implementation details: We implemented the sentence-level architectures using the Keras toolkit
with Gated Recurrent Units (GRUs) (Cho et al., 2014) as RNNs, and the following hyperparameters:
word embedding dimensionality = 300, vocabulary size = 30K, size of the hidden units of the encoder =
50. The model was trained to minimize the mean squared error loss using the Adadelta optimizer (Zeiler,
2012).

Results The results of our experiments are reported in Table 1. In general, different runs of the models
do not lead to much variation in the performance. For EN–DE, a first observation is the major im-
provement in NMT quality compared to SMT (HTER = 0.09 vs. HTER = 0.24), which results in highly
imbalanced NMT datasets (for EN–DE, ≈54% of all the sentences have 0 HTER vs. ≈13% for SMT).
For EN–LV, the quality of NMT, limited by the amount of training data, is worse than SMT (HTER =
0.15 vs. HTER = 0.23).

These results show that the performance of baseline methods depends on the quality of translations
rather than on the type of system that produced them. The baseline EN–DE methods achieve ρ scores
that are 60% worse for NMT translations, as compared to SMT translation. For EN–LV, the behavior is
the opposite: the performance is 45% better for NMT translations, as compared to SMT translations.

The performance of POSTECH is on average 40% higher for SMT than for NMT (e.g. for EN–LV,
ρ=0.39 for SMT vs. ρ=0.24 for NMT). For EN–DE systems, this can be attributed to the data imbalance.
For EN–LV systems, this could be because the neural QE system has difficulty to handle the many very

3As only part of the EN–DE SMT data was used for the WMT 2017 QE task, we could not use the task’s official split.
4http://www.cs.umd.edu/˜snover/tercom
5Hyperparameters size of hidden units of the word predictor = 500, word embedding dimensionality = 300, vocabulary size

= 30K, QE vector size = 75.
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long sentences produced by the EN–LV NMT (σ2 = 92 of the distribution of the sentence length values
for NMT vs. σ2 = 73 for SMT).

For NMT the difference in variance of predicted HTER scores between language pairs is relatively
high (as reflected in MAE differences between language pairs for neural methods, e.g., for POSTECH
∆ = 0.084), whereas for SMT this difference is lower (for POSTECH MAE ∆ = 0.002).

In general, without pre-training POSTECH does not perform better than the baseline methods (e.g. for
EN–DE SMT, ρ=0.313 for the baseline vs. ρ=0.324 for POSTECH) and is systematically outperformed
by BI-RNN (average ∆ρ=0.06). This difference is statistically significant for both language pairs.6 We
believe that BI-RNN is able to better capture the fluency of NMT by encoding it directly as a sequence
rather than assessing it word for word as POSTECH.

EN–DE EN–LV
model ρ MAE ρ MAE

Baseline
SMT 0.313 ±0.0 0.147 ±0.0 0.100 ±0.0 0.056 ±0.0
NMT 0.130 ±0.0 0.171 ±0.0 0.318 ±0.0 0.070 ±0.0

POSTECH (no pre-training)
SMT 0.324 ±0.015 0.146 ±0.002 0.294 ±0.015 0.136 ±0.002
NMT 0.153 ±0.023 0.103 ±0.001 0.240 ±0.010 0.205 ±0.008

POSTECH
SMT 0.481±0.009 0.131 ±0.002 0.390 ±0.016 0.129±0.005
NMT 0.318 ±0.014 0.092 ±0.002 0.240 ±0.004 0.176 ±0.004

BI-RNN
SMT 0.363 ±0.010 0.142 ±0.002 0.357 ±0.004 0.133 ±0.004
NMT 0.311±0.004 0.090 ±0.003 0.231 ±0.012 0.183 ±0.004

Table 1: Performance on sentence-level predictions for the baseline with QuEst, the POSTECH architec-
ture and our BI-RNN architecture for EN–DE and EN–LV (average and error margins over five runs).
We highlight the best performing systems for a dataset.

4.2 Document-level predictions

As introduced above, our framework relies on representations at sentence level to produce its predic-
tions at document level. Therefore, we experiment with sentence-level representations from either the
POSTECH or our BI-RNN predictor.

The document-level labels we predict are variants of BLEU (Papineni et al., 2002): (i) document-level
BLEU,7 (ii) the weighted average of sentence-level BLEU for all sentences in the document, where the
weights correspond to the reference lengths:

WBLEUd =

∑D
i=1 len(Ri)BLEUi∑D

i=1 len(Ri)
,

where BLEUi is the BLEU score of sentence i, andD is the size of the document in sentences,8 and (iii), a
variant of WBLEU by weighting each sentence by its TFIDF score computed with regard to its aligned ref-
erence (TBLEU). The numerator in the WBLEU equation is therefore replaced by:

∑D
i=1 TFIDFiBLEUi.

Here, for each news document, we learn a TFIDF model on its reference in the target language, and
compute the TFIDF score for each translated sentence, based on that model.

6We performed Kolmogorov–Smirnov test for not normally distributed data.
7We compute BLEU scores with the NLP toolkit NLTK (Bird and Loper, 2004). For scoring documents, we used the

corpus bleu() function. For sentence-level scores we used the sentence bleu() function with smoothing method 7.
8According to Chen and Cherry (2014), WBLEU achieves a better correlation with human judgement than the original IBM

corpus-level BLEU.
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Following Turchi et al. (2012), our intuition is that the document-level score should reflect the overall
translation quality at sentence level, weighted by how important each individual sentence (important
sentences have important words) is in that document.

Data: We gathered all submissions at the WMT News shared tasks for various years. This is a task
where each participating system is required to translate a set of news documents.9 This results in a
large set of language pairs, as well as a wide range of different translation quality levels. We col-
lected system submissions from WMT 2008 to 2017, for four language pairs: German-English (DE–
EN, 14,640 documents for 2008-2017, excluding 2010),10 and English–Spanish (EN–ES, 6,733 docu-
ments for 2008-2013, excluding 201010), English–French (EN–FR, 11,537 documents for 2008-2014)
and English-Russian (EN–RU, 6,996 documents for 2013-2017). For each language pair, we consider
either the full set of system submissions, or a filtered version of it (FILT), composed by only both the best
and the worst performing systems for each year. The filtering was done based on the overall BLEU score
achieved by each system, as reported on matrix.statmt.org. Our intuition is that by considering
only the extreme quality levels we would make our data, while smaller, easier to discriminate.11 We note
that for all language pairs, MT systems include a variety of approaches, from rules-based MT, to SMT,
hybrid approaches, and – from 2016 – NMT approaches. The filtered variants include at least one NMT
approach for the language pairs in 2016/2017 (i.e. DE–EN and EN–RU). To support the reproduction of
our work, as well as the development of new models for document-level QE, we release this dataset.12

Taking the heterogeneity of the data into account (composed of outputs of different systems and runs),
to evaluate our models we perform 5-fold cross validation. For each language pair we shuffle the data,
and for each fold we split it per year into train, development and test sets, as follows: for the FILT

dataset, 10% of the documents per year were randomly selected for the development set, an another 10%
for the test set; for ALL, the train data in the quantity equal to the FILT train data was selected randomly
(development and test data were fixed, since ALL contains FILT). We present the averaged results. and
use Kolmogorov–Smirnov test for not normally distributed data to test significance. As an example,
statistics on one of the splits are shown in Table 2. Note that to avoid computation precision issues, we
multiply TBLEU scores by 10.

As POSTECH training is very expensive, for the contrastive experiments we use only DE–EN and
EN–ES. For the experiments with BI-RNN, we use all language pairs.

Baseline system: We reproduced the WMT 2016 document-level baseline as described in (Bojar et al.,
2016b). We extract 17 black-box features using QuEst++ (Specia et al., 2015) and train a document-
level QE system using the Support Vector Regression (SVR) algorithm available in scikit-learn
(Pedregosa et al., 2011). The language resources were created using the News Commentary and Europarl
corpora as provided by WMT campaigns for the corresponding languages (≈ 2M lines per language pair).
These corpora were also used to train POSTECH predictors.13

For BI-RNN, we followed the implementation details as described in Section 4.1. To optimize the
usage of computational resources, in each experiment we fixed the size of a document to the upper
quartile of the distribution of document length values (in sentences). Shorter documents were extended
with dummy sentences to fit to this length, which is a common practice in the field (Hewlett et al., 2017).

Results Results of our experiments are reported in Tables 3 (baseline) and 4 (neural approaches). For
both POSTECH and BI-RNN, we use only the last hidden states of the document decoder (Last) – a
configuration that has been chosen empirically as the best performing among the configurations without
attention, or the vector sum weighted by the attention mechanism (Att) as input to the output layer.

9We considered using the document-level QE dataset in (Graham et al., 2017), however, the small number of documents
(62) and language pairs (only one) made this resource less appealing for this work.

10Individual submissions are not available but system combinations only
11In (FILT) we have also discarded submissions for years 2008 and 2009, since official system-level scores are not available.
12https://github.com/fredblain/docQE
13http://www.statmt.org/wmt18/translation-task.html;http://www.statmt.org/wmt13/

translation-task.html
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set # docs av # sent BLEU WBLEU TBLEU

DE–EN
FILT 1147 26 0.529 0.316 0.457
ALL 1147 26 0.530 0.316 0.461
dev 140 26 0.527 0.319 0.454
test 140 26 0.521 0.314 0.459

EN–ES
FILT 420 35 0.516 0.324 0.423
ALL 420 34 0.529 0.324 0.420
dev 51 34 0.504 0.323 0.424
test 51 34 0.533 0.324 0.426

EN–FR
FILT 894 26 0.442 0.318 0.445
ALL 894 27 0.500 0.320 0.446
dev 109 27 0.464 0.320 0.454
test 109 24 0.475 0.320 0.440

EN–RU
FILT 1052 22 0.591 0.329 0.561
ALL 1052 23 0.587 0.329 0.562
dev 130 22 0.585 0.330 0.561
test 130 24 0.581 0.330 0.551

Table 2: Statistics of the document-level dataset gathered from all submissions at the WMT News trans-
lation shared task. The first column presents the dataset considered, while second and third columns
report the number of news documents in a dataset and the average number of sentences per document.
The last three columns report respectively the average BLEU, average weighted BLEU (WBLEU) and the
average variant of weighted BLEU (TBLEU) we propose in that set.

DE–EN EN–ES
ρ MAE ρ MAE

FILT

BLEU 0.065 0.477 0.024 0.064
WBLEU 0.177 0.010 0.032 0.008
TBLEU 0.043 0.045 0.046 0.047

ALL

BLEU 0.044 0.973 0.143 0.063
WBLEU 0.033 0.010 0.051 0.007
TBLEU 0.019 0.046 0.050 0.050

Table 3: Baseline document-level score prediction results for DE–EN and EN-ES. We highlight the best
performing systems for a dataset.

A first observation is that the performance of our neural approach varies significantly for different
quality labels: the best performance is systematically observed for TBLEU, the worst – for BLEU (e.g.
for DE–EN neural models, ρ=0.69 vs. ρ=0.39, on average respectively). This is not true for the baselines
where the best performance is observed for other scores depending on the training data used. We at-
tribute the high prediction performance for TBLEU to the fact that our architecture builds document-level
representation from sentence-level representations, which in turn depend on word representations. The
TBLEU reflects this hierarchy in the most consistent way as those document-level scores depend directly
on semantic importance of words they contain. BLEU, on the other hand, depends on n-gram translation
quality. MAE is in general the lowest for WBLEU with the lowest variance.
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DE–EN EN–ES
score Last Att Last Att

ρ MAE ρ MAE ρ MAE ρ MAE
FILT

POSTECH
BLEU 0.122 0.064 0.170 0.060 0.472 0.078 0.548 0.070

WBLEU 0.330 0.010 0.511 0.007 0.317 0.015 0.300 0.032
TBLEU 0.632 0.035 0.744 0.088 0.739 0.030 0.854 0.020

BI-RNN
BLEU 0.213 0.056 0.157 0.050 0.487 0.084 0.568 0.070

WBLEU 0.413 0.008 0.590 0.007 0.512 0.072 0.407 0.025
TBLEU 0.770 0.031 0.814 0.029 0.898 0.020 0.903 0.020

ALL

POSTECH
BLEU 0.306 4.735 0.344 4.730 0.476 0.075 0.365 0.074

WBLEU 0.536 0.007 0.544 0.007 0.491 0.008 0.345 0.028
TBLEU 0.742 0.030 0.807 0.027 0.820 0.025 0.895 0.019

BI-RNN
BLEU 0.317 4.724 0.363 3.816 0.471 0.073 0.439 0.191

WBLEU 0.660 0.007 0.650 0.006 0.617 0.012 0.655 0.016
TBLEU 0.854 0.024 0.889 0.022 0.927 0.017 0.941 0.017

EN–FR EN–RU
score Last Att Last Att

ρ MAE ρ MAE ρ MAE ρ MAE
FILT

BI-RNN
BLEU 0.517 0.125 0.687 0.103 0.379 0.087 0.377 0.110

WBLEU 0.425 0.010 0.504 0.009 0.648 0.006 0.575 0.005
TBLEU 0.827 0.031 0.815 0.032 0.826 0.034 0.849 0.036

ALL

BI-RNN
BLEU 0.559 0.103 0.723 0.086 0.402 0.087 0.418 0.090

WBLEU 0.469 0.008 0.426 0.008 0.726 0.005 0.573 0.006
TBLEU 0.838 0.023 0.844 0.022 0.866 0.029 0.876 0.028

Table 4: Document-level score prediction results for neural approaches for DE–EN, EN–ES, EN–FR,
and EN–RU. Last refers to the results after we take the last hidden state of the document-level encoder
as input to the output layer; Att – with an attention mechanism. We highlight the best performing
systems for a dataset.

The baseline yields poor performance (e.g., for BLEU ρ=0.07 on average across configurations),
whereas BI-RNN systematically outperforms POSTECH for all three prediction tasks and across con-
figurations (e.g., for DE–EN ∆ρ=0.08). For DE–EN, this difference is statistically significant, while for
EN–ES it is not. We believe this can be explained by lower stability of classifiers trained on the smaller
EN–ES dataset.

The best performance improvement is observed for WBLEU, which we believe is because BI-RNN is
less “focused” on word-level predictions (e.g., for DE–EN ∆ρ=0.10). Additionally, BI-RNN is about 40
times faster to train than POSTECH.14

14BI-RNN takes around 20 minutes to train on a 12G GeForce TITAN X NVIDIA GPU with batch size = 10. Pre-training
a POSTECH model in the same conditions with around 2M lines of parallel data takes around 12 hours plus the training of the



3155

The contribution of the attention mechanism also depends on the type of quality label, but it is not sta-
tistically significant. It can be particularly beneficial for BLEU (for instance, for BI-RNN DE–EN across
configurations, ∆ρ=0.10 on average), but particularly harmful for WBLEU (for instance, for BI-RNN
EN–RU, a decrease of ρ=0.12 is observed). This can be explained by the influence of variable reference
lengths and hence the difficulty to find optimal weights.

The training data filtering procedure is not beneficial for the performance. This procedure is partic-
ularly harmful for DE–EN BLEU and WBLEU scores (for BI-RNN, average ∆ρ=0.11), which is the
most well represented language pair across WMT years. Thus, it may be the case that the random ALL

selection contains more useful data.
Pre-training the predictor for POSTECH is essential for this architecture; for EN–ES BLEU Last, for

example, a decrease of up to ∆ρ=0.3 is observed without pre-training.
As for the difficulty of prediction for different language pairs: DE–EN and EN–RU BLEU prediction

seems to be the most challenging (for BI-RNN, on average ρ=0.26 and ρ=0.40, respectively). This could
be explained by the traditionally lower MT quality for those systems, involving significant word order
differences for these language pairs.

5 Conclusions

We have proposed a new approach for neural-based document-level QE that is able to generalize any
neural sentence-level architecture to the level of documents. This approach is part of our new framework
for QE, named deepQuest, that reimplements the state of the art neural-based architecture to date for
sentence-level quality prediction – the POSTECH approach – as well as our light-weight neural archi-
tecture relying on bi-directional RNNs. Our experiments have shown that latter outperforms POSTECH
when used to predict document-level quality estimates for a range of quality scores and is 40 times faster
to train. We also have reported a study of the performance of state of the art QE approaches on NMT
output. Neural QE solutions are more efficient for imbalanced QE data, especially high-quality NMT. To
our knowledge, this is the first time that results of QE on a large range of NMT data are reported.

In the future, we plan to reproduce our study for other document-level QE scores and text types. We
also plan to adapt our light-weight neural architecture for other QE levels (e.g., phrase, paragraph levels).
To support future work on these and other directions, we have made deepQuest open-source and freely
available: https://github.com/sheffieldnlp/deepQuest.
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André Martins, Marcin Junczys-Dowmunt, Fabio Kepler, Ramón Astudillo, Chris Hokamp, and Roman Grund-
kiewicz. 2017a. Pushing the limits of translation quality estimation. Transactions of the Association for
Computational Linguistics, 5:205–218.



3157
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