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Abstract

In the popular sequence to sequence (seq2seq) neural machine translation (NMT), there exist
many weighted sum models (WSMs), each of which takes a set of input and generates one output.
However, the weights in a WSM are independent of each other and fixed for all inputs, suggesting
that by ignoring different needs of inputs, the WSM lacks effective control on the influence of
each input. In this paper, we propose adaptive weighting for WSMs to control the contribution
of each input. Specifically, we apply adaptive weighting for both GRU and the output state
in NMT. Experimentation on Chinese-to-English translation and English-to-German translation
demonstrates that the proposed adaptive weighting is able to much improve translation accuracy
by achieving significant improvement of 1.49 and 0.92 BLEU points for the two translation tasks.
Moreover, we discuss in-depth on what type of information is encoded in the encoder and how
information influences the generation of target words in the decoder.

1 Introduction

Recent advances in neural machine translation (NMT) have achieved remarkable success over the state-
of-the-art of statistical machine translation (SMT) on various language pairs (Bahdanau et al., 2015;
Jean et al., 2015; Luong et al., 2015; Wu et al., 2016; Vaswani et al., 2017). In the neural networks of
seq2seq models, either RNN-based (Bahdanau et al., 2015), CNN-based (Gehring et al., 2017), or full
attention-based (Vaswani et al., 2017), there exist many scenarios in both encoder and decoder where a
weighted sum model (WSM) takes a set of inputs and generate one output. As shown in Eq. 1, the WSM
first combines k inputs (x1, · · · , xk) with k respective weights (w1, · · · , wk) and then non-linearizes it
through an activation function f , such as tanh, sigmoid function, ReLU , and so on. In this paper we
omit bias terms to make the equations less cluttered.

o = f

(
k∑

i=1

wixi

)
(1)

Note that the above weights (w1, · · · , wk) are independent of each other and once the model is tuned,
the weights are fixed for all inputs, suggesting that by ignoring different needs of the inputs, the WSM
lacks effective control on the influence of each input.

Let us take a concrete scenario in seq2seq model as an example. Figure 1(a) shows a typical illustration
of generation of t-th target word where the decoder takes three inputs, i.e., source context ct, previous
target word yt−1 and current target state st while generating one output yt via output state ot. However,
the study in Tu et al. (2017) suggests that different target words require inconsistent contributions from
source context (ct) and target context (i.e., yt−1 and st). For example, to generate translation Xinhua
News Agency , Hong Kong, the first word y1 xinhua is highly related to its source context c1 while the
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Figure 1: Illustration of generation of t-th translation word.
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Figure 2: NMT model with attention mechanism.

second and third words y2 news and y3 agency are mainly influenced by target context due to the well-
formed saying Xinhua News Agency. Similarly, y5 Hong and y6 Kong are mainly influenced by source
context and target context, respectively.

In this paper, we propose adaptive weighting to dynamically control the contribution of each input
in a WSM that has a set of inputs. Unlike the conventional weights that are independent of each other,
adaptive weights are learned to be dependent on each other and more importantly be able to dynamically
select the amount of input information. Specifically, we use gate mechanism to incorporate adaptive
weights in GRU and in computing the output states. Experimentation on both Chinese-to-English and
English-to-German translation tasks demonstrates that NMT systems with adaptive weighting are able
to much improve the translation accuracy. Moreover, through adaptive weights we discuss in-depth on
what type of information encoded in the encoder and how information influences the generation of a
target word.

2 NMT with Attention Mechanism

In this section, we review NMT model with attention mechanism. Encoder-decoder model with attention
mechanism is one of the most popular frameworks for NMT (Bahdanau et al., 2015), which consists of
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an encoder and a decoder, as shown in Figure 2. In the following, m refers to the embedding size of both
source and target sides, and n the hidden state size of the two sides. Exj returns the word embedding for
source word xj while e(yt) returns the word embedding for target word yt.
Encoder: Given a source sentence x = (x1, · · · , xJ), the encoder first converts each word xj into a real-
valued m-dimensional vector Exj via the embedding matrix E ∈ Rm×|Vs|, where Vs is the source-side
vocabulary. Then the encoder uses bidirectional RNN: the forward RNN reads the input sequence from
left to right and outputs a forward sequence of hidden states (

−→
h1, · · · ,

−→
hJ) by

−→
hj = RNN(

−−→
hj−1, Exj );

likewise the backward RNN operates from right to left and outputs a backward sequence (
←−
h1, · · · ,

←−
hJ).

Each source word xj is represented as hj (also referred to as word annotation vector): the concatenation
of hidden states

−→
hj and

←−
hj . Such bidirectional RNN encodes not only the word itself but also its left and

right context, which can provide important evidence for its translation.
Decoder: The decoder is also an RNN that predicts a target sequence y = (y1, · · · , yT ). It defines a
probability over the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =

T∏
t=1

p(yt|y1, · · · , yt−1,x) (2)

p(yt|y1, · · · , yt−1, x) = softmax (Wof(ot)) (3)

where Wo ∈ R|Vt|×m is a weight matrix, and Vt is the target-side vocabulary. ot is the output state,
defined as:

ot = Uost + Voe(yt−1) + Coct (4)

st = RNN(st−1, e(yt−1), ct) (5)

where Uo ∈ Rn×n, Vo ∈ Rn×m, Co ∈ Rn×2n are weight matrices. st is the hidden state of the decoder.
ct is the context vector, which is calculated as the summation vector weighted by atj :

ct =
J∑

j=1

atjhj (6)

where atj is the weight of hj , defined as

atj =
exp(etj)∑J
k=1 exp(etk)

(7)

where etj = a(st−1, hj) is an alignment model, measuring the degree of matching between the j-th
source hidden unit hj and the t-th target hidden unit st.
Training: The whole model is jointly trained to maximize the conditional log-likelihood of the training
data containing I sentence pairs.

L(Θ) = max
Θ

1

I

I∑
i=1

log pΘ(yi|xi) (8)

where Θ is the set of all parameters, and (xi,yi) is the i-th sentence pair in the training set.

3 Adaptive Weighting for NMT

In this section, we propose adaptive weighting for NMT. Our goal is to enable a WSM dynamically
selects the amount of input information when there exist two or more inputs. Specifically, we apply the
above idea into the attention-based seq2seq model from two perspectives: (1) adaptive weighting for
GRU; and (2) adaptive weighting for the output state ot as in Figure 1.
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3.1 Gated Recurrent Unit

Gated recurrent unit (GRU) (Cho et al., 2014a; Cho et al., 2014b) is a type of hidden unit of RNN which
makes each recurrent unit to adaptively capture dependencies of different time scales. A GRU has two
gates called reset gate rt and update gate zt, which control the amount of information will “flow through”
the network. rt and zt are computed as follows:

rt = σ(WrExt + Urht−1) (9)

zt = σ(WzExt + Uzht−1) (10)

where σ(·) is a logistic sigmoid function. Ext and ht−1 are the input and the previous hidden state.
Wr,Wz ∈ Rn×m, Ur,Uz ∈ Rn×n are model parameters which are learned. The new hidden unit ht is
computed by

h̃t = tanh(WExt + U(rt ◦ ht−1)) (11)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (12)

where tanh(·) is a hyperbolic tangent activation function, and ◦ is an element-wise multiplication. W ∈
Rn×m, U ∈ Rn×n are model parameters.

3.2 Adaptive Weighting for GRU

As shown in Section 3.1, recurrent unit is critical in GRU. Both the reset gate rt and the update gate zt
control the amount of previous state ht−1 and current input Ext being carried over to the current hidden
state ht. However, the gate itself either rt or zt, is uniformly set via fixed weights Wr (or Wz) and Ur

(or Uz) for all inputs of Ext and all previous states of ht−1. To dynamically select the amount of Ext
and ht−1, we define a hyper-gate gt to control the flow of information between Ext and ht−1 explicitly,
as shown in Eq. 13.

gt = σ(WgExt + Ught−1) (13)

where Wg ∈ Rn×m and Ug ∈ Rn×n are parameters to be learned. Then we add gt to the standard GRU
to control how much information from previous hidden state is preserved at current time step explicitly.
Accordingly, we update Eq. 9 ∼ 12 with the following equations.

rt = σ((1− gt) ◦WrExt + gt ◦Urht−1) (14)

zt = σ((1− gt) ◦WzExt + gt ◦Uzht−1) (15)

h̃t = tanh((1− gt) ◦WExt + gt ◦U(rt ◦ ht−1)) (16)

ht = gt ◦ zt ◦ ht−1 + (1− zt) ◦ h̃t (17)

As shown in Eq.14, for example, the input Ext and the previous state ht−1 are now controlled by
weights (1−gt)◦Wr and gt◦Ur, respectively, which are dependent on each other and further controlled
by the hyper-gate gt.

Note that the NMT model adopts GRU in both encoder and decoder to generate the source side hidden
states (i.e., ht) and the target side hidden states (i.e., st), respectively. Therefore, we incorporate adaptive
weights for GRUs in both encoder and decoder.

3.3 Adaptive Weighting for Output State

As shown in Figure 1 (b), the decoder iteratively takes three inputs, i.e., source context ct, previous target
word yt−1 and current target state st and generates one output yt via intermediate state ot. In order to
dynamically select the amount of ct, yt−1, and st, we update Eq. 4 with the following:

ot = αs ◦Uost + αy ◦Voe(yt−1) + αc ◦Coct (18)
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where αs, αy, αc can be either scalars or vectors. Together with Uo, Vo and Co, they control the amount
of st, yt−1 and ct being carried forward, respectively. In this work, we define them as vectors, and αs,
for example, is computed as:

αs =
exp(es)

exp(es) + exp(ey) + exp(ec)
(19)

es = f(õt, st) (20)

õt = Ucst + Vce(yt−1) + Ccct (21)

where f is a feed-forward neural network. Uc ∈ Rn×n, Vc ∈ Rn×m, and Cc ∈ Rn×2n are parameters
to be learned. Similarly, ey and ec can be computed, and consequently αy and αc.

4 Experiments

To test our approach, we carry out experiments on the tasks of Chinese-to-English (ZH-EN) and English-
to-German (EN-DE) machine translations. All source code is available on github. 1

4.1 Dataset and Evaluation Metrics
ZH-EN Translation. Our training data for ZH-EN translation consists of 1.25M sentence pairs extracted
from LDC corpora, with 27.9M Chinese words and 34.5M English words respectively. NIST MT 06
(1664 sentence pairs) is chosen as the development set while NIST MT 02, 03, 04, 05, and 08 datasets
(878, 919, 1788, 1082 and 1357 sentence pairs, respectively) are used as our test sets. We use the case-
insensitive 4-gram NIST BLEU score (Papineni et al., 2002) for validation and evaluation, measured by
mteval-v11b.pl script.
EN-DE Translation. The EN-DE training data is provided by the standard benchmark ACL WMT
2017 2, which consists of 5.85M sentence pairs with 141.42M English words and 134.83M German
words respectively. We combine news-test-2012 and news-test-2013 as development set (6003 sentence
pairs), and use news-test-2014 (News14), news-test-2015 (News15) and news-test-2016 (News16) as
test sets (3003, 2169, and 2999 sentence pairs, respectively). Following Barone et al. (2017), we use
the validation cross-entropy to choose the best model on the development set and use the case-sensitive
4-gram BLEU score for evaluation on test sets, measured by multi-bleu.perl script.

4.2 Training Details and Systems
We train each model with sentences of length up to 50 words for ZH-EN and 60 words (tokens) for
EN-DE. The source and target word embedding dimension is 620. The size of the hidden layer is 1000.
We use Adam (Kingma and Ba, 2014) to optimize model parameters with a learning rate of 0.0002, and
the mini-batch size of 80.

For efficient training the neural networks, in ZH-EN translation we limit the source and target vocab-
ularies to the most frequent 30K words, covering approximately 97.7% and 99.3% of the data in the two
languages respectively. All out of vocabulary words are mapped to a special token UNK. For EN-DE
translation, we apply byte-pair encoding (BPE) 3 (Sennrich et al., 2016) for better handling unknown
words and set the vocabulary size as 30K.

We compare the performance of the following NMT systems:

• baseNMT: We use the open source toolkit dl4mt as our baseline attention-based NMT system (Bah-
danau et al., 2015) 4 with most default parameter settings kept the same. For translation, a beam
search with size 10 is employed.

• +Adaptive GRU: On baseNMT, we leverage adaptive weighting for GRU, as described in Sec-
tion 3.2.

1https://github.com/liyc7711/weighted-nmt
2http://data.statmt.org/wmt17/translation-task/preprocessed/de-en/
3https://github.com/rsennrich/subword-nmt
4https://github.com/nyu-dl/dl4mt-tutorial
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• +Adaptive Output: On baseNMT, we leverage adaptive weighting for the output state, as described
in Section 3.3.

• +Both: On baseNMT, we leverage adaptive weighting for both GRU and the output state.

System MT06 MT02 MT03 MT04 MT05 MT08 All Params (M)
baseNMT 35.29 39.28 36.69 38.68 36.13 25.69 35.46 89.7
+Adaptive GRU 36.29‡ 40.14† 36.99 39.96‡ 36.91† 27.15‡ 36.62‡ 97.5
+Adaptive Output 35.72 40.38‡ 37.29 39.31† 36.47 25.98 35.93‡ 93.1
+Both 36.52‡ 40.87‡ 38.04‡ 40.41‡ 37.42‡ 27.07‡ 36.95‡ 100.9

Table 1: BLEU scores of ZH-EN translation. †/‡: significant over baseline at 0.05/ 0.01, tested by
bootstrap resampling (Koehn, 2004).

4.3 Experimental Results: ZH-EN Translation
Table 1 shows the performance of ZH-EN translation measured in BLEU score. From the table, we have
the following observations.

• NMT models are benefited from adaptive weighting for either GRU or the output state. Moreover,
the system of Adaptive GRU outperforms the system of Adaptive Output (i.e., 36.62 vs. 35.93 on
all test sets).

• Fortunately, the improvements from adaptive weighting for GRU and the output state have little
overlap. Combining the two types of adaptive weighting leads to more improvement on all test sets
with the only exception of MT 08. Compared to baseNMT, the system +Both yields significant
improvement of 1.49 BLEU scores, suggesting the positive effect of dynamically controlling the
amount of input information being carried forward.

4.4 Experimental Results: EN-DE Translation
The results on English-German translation are presented in Table 2. It shows that leveraging adaptive
weighting for GRU and the output state leads to significant improvement of 0.92 BLEU scores over all
test sets. Overall, the performance trend over the proposed systems is consistent with that of ZH-EN
translation.

System News14 News15 News16 All
baseNMT 23.61 25.22 28.79 25.97
+Adaptive GRU 24.26‡ 25.71† 29.63‡ 26.53 ‡
+Adaptive Output 23.65 25.33 29.34† 26.11
+Both 24.26‡ 26.15‡ 29.98‡ 26.89‡

Table 2: BLEU scores of EN-DE translation.

4.5 Parameters and Training Speed
As shown in Table 1, the proposed models introduce new parameters in different ways. 5 The baseline
system has 89.8M parameters. The Adaptive GRU system introduces additional 7.8M parameters. The
Adaptive output system introduces additional 3.4M parameters.

When running on a single GPU GeForce GTX 1080, the baseline model speeds 1.1 second per batch
with 150K updates for ZH-EN, and 600K updates for EN-DE tasks, while the improved system (+Both)
only increases the training time by about 12%.

5The parameters of the systems for EN-DE translation tasks are same as those for ZH-EN.
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Figure 3: BLEU scores of translation with respect to the lengths of the input sentences.

5 Discussion

In this section, we further look at the +Both system and the baseNMT system to explore more on how
adaptive weighting help in ZH-EN translation.

5.1 Analysis on Word Alignment

In the encoder, the Adaptive GRU uses adaptive weights to control the information flow of previous state
and the current input. Thus, it has a direct impact on word representation vectors (i.e., hidden states)
of source words. We conjecture that better word representation will help the decoder be able to attend
to appropriate source words in decoding. To test this hypothesis, we carry out experiments of the word
alignment task on the evaluation dataset from Liu and Sun (2015), which contains 900 manually aligned
Chinese-English sentence pairs. We force the decoder to output reference translations, as to get automatic
alignments between input sentences and their reference translations. To evaluate alignment performance,
we report the alignment error rate (AER) (Och and Ney, 2003) and the soft AER (SAER) (Tu et al., 2016)
in Table 3. It shows that adaptive weighting improves the attention model.

System AER SAER
baseNMT 43.0 55.7
+Both 40.9 54.6

Table 3: Evaluation of word alignment for ZH-EN translation. The lower the AER or SAER, the better
the alignment quality.

5.2 Effects on Long Sentences

Following Bahdanau et al. (2015), we group sentences of similar lengths together and compute BLEU
scores. Figure 3 presents the BLEU scores over different lengths of input sentences. It shows that systems
with adaptive weighting consistently outperform baseNMT on all sentence lengths. It also shows that the
performance drops substantially when the length of input sentences increases from 20. This performance
trend over the length is consistent with the translation output in (Wang et al., 2017; Tu et al., 2016; Li et
al., 2017).

5.3 Quantitative Analysis

Due to the continuous representations and non-linearity of neural networks. It is difficult to interpret the
internal workings of NMT model (Ding et al., 2017). Fortunately, adaptive weights provide a mechanism
to analyze what inputs of a WSM are more important than others. Next, we make insights on what type of
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information encoded in the encoder and what types of information has a greater impact on the generation
of a target word.

Chinese POS Frequency gt F (%) gt B (%)
All 38,349 41.09 50.20

Content words

verb 8,176 37.84 46.96
adjective 1,345 38.28 51.50
adverb 2,104 38.40 50.93
geographical name 1,537 36.14 50.70
temporal noun 891 36.85 45.47
general noun 7,636 39.15 45.57
person name 587 39.90 44.56

Function words

preposition 1,553 43.59 53.84
punctuation 4,956 47.91 52.07
pronoun 1,449 43.01 54.55
conjunction 1,015 46.27 43.20
auxiliary 2,891 52.13 57.28

Table 4: Average gt values groped by part of speech (POS) tags on development set MT06. gt F and
gt B indicate the average gt values in the forward GRU and the backward GRU, respectively.

Words αs (%) αc (%) αy(%)
All 60.61 29.06 10.34
EOS 72.02 22.40 5.58
. 72.10 20.20 7.7
, 70.00 22.84 7.16
of 66.34 21.34 12.32
to 65.45 22.58 11.96
on 65.72 23.02 11.25
is 71.67 22.32 6.00
has 68.05 26.12 5.84
US 55.42 36.08 8.50
China 56.36 35.01 8.63
president 57.00 34.49 8.52
Kong 42.94 19.30 37.77
York 42.14 26.55 31.31
agency 54.11 11.10 34.79

Table 5: Averaged αs, αc and αy scores in computing the intermediate state ot for different target words.

Analysis on encoder. In GRU, gt in Eq. 14 ∼ 16 indicates that the importance of ht−1. The lower gt is,
the more important the word content itself xt and the less important the previous state ht−1. To obtain
word representation vectors, the encoder uses a forward GRU and a backward GRU to read an input
sentence in two directions. Table 4 presents the average gt values in the forward GRU and the backward
GRU. Interestingly, as shown in the table, the two GRUs behave differently in choosing amount of input
word xt and previous hidden state ht−1. There also exists a consistent trend in the two GRUs that as
expected, content words usually have lower gt than function words, indicating that the encoder focuses
more on the words themselves while encoding content words.
Analysis on decoder. In the output states, we assign αs to control the current hidden state st, αy to the
previously generated word yt−1 and αc to the source context ct. Table 5 lists their average values for a
few typical target words in the development set MT06. From it, we observe that:
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• Generally speaking, the decoder pays more attention to the current hidden states st than either
source context ct or previous target word yt−1.

• As expected, the decoder works differently in selecting how much source context to generate differ-
ent types of target words. For example, comma, period and the end of sentence token EOS have the
lowest αc scores in that they are mainly decided by the translation content itself and less influenced
by source context. This explains why it is surprising that target side EOS aligns to source side EOS
in low frequency (e.g., 20%).

• Similarly, function words, including prepositions (e.g., of, to, on) and auxiliary words (e.g., is, has)
have low αc scores too, indicating that their generation is less decided by source context.

• Compared to function words, content words (e.g., US, China, president) are opt to have higher αc

scores, suggesting the decoder considers more on source context to generate target side content
words.

• However, there are also scenarios that some target content words are less influenced by source
context. In 1-to-many translation where a source content word aligns to multiple target content
words (i.e.,新华社/Xinhua News Agency,香港/Hong Kong, and纽约/New York), the first target
content word usually has higher αc score while the others have lower αc scores. Figure 4 illustrates
the changes of αs, αc, and αy in a real translation Xinhua News Agency, Hong Kong. Apart from
αs, it shows a very obvious trend that Xinhua and Hong have higher αc scores while News, Agency,
and Kong have lower ones.

Xinhua News Agency , Hong Kong

0

0.2

0.4

0.6

0.8 αs

αy

αc

Figure 4: αs, αy and αc scores in a real translation “新华社香港 / Xinhua News Agency , Hong Kong”.
In it, there exist two 1-to-many correspondences, i.e., 新华社/Xinhua News Agency, and 香港/Hong
Kong.

6 Related Work

We describe related work from two perspectives.
Gate mechanism. Our work is partially inspired by studies of gate mechanism for neural networks.
Following the success of LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014a; Cho
et al., 2014b), the gate mechanism has become standard components in RNN. Recently, Srivastava et al.
(2015) employ gate units to regulate information flow, called highway networks. The most relevant work
to ours is Tu et al. (2017), in which they propose context gate to control the ratios of the source context
(i.e., ct) and target context (i.e., yt−1 and st−1) for computing next target state st. On the contrary, we use
gate units to regulate information flow in computing the output state ot. Moreover, we propose adaptive
weighting for GRU through gate units.
Interpretation for neural networks. Attention mechanism (Bahdanau et al., 2015; Lin et al., 2017;
Vaswani et al., 2017) offers a way of understanding the contribution of every source words to the gen-
eration of a target word. Ding et al. (2017) propose to use layer-wise relevance propagation (LRP) to
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interpret the internal workings of NMT and analyze translation errors. Moreover, Karpathy et al. (2015)
and Li et al. (2016) propose to visualize and understand RNNs for natural language processing. In this
work, we use the proposed gates in both encoder and decoder to analyze what types of information
encoded in the encoder and what types of information influences the generation of a target word.

7 Conclusion

In this paper, we present an approach to regulate the information flow in neural machine translation
model explicitly. This is done by employing adaptive weights through gate units. We apply adaptive
weighting for both GRU and the output intermediate state. Experimental results on Chinese-to-English
and English-to-Germany translation tasks show that the proposed approach achieves better translation
performance and alignment quality over baseline NMT system.
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