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Abstract

K -fold cross validation (CV) is a popular method for estimating the true performance of machine
learning models, allowing model selection and parameter tuning. However, the very process
of CV requires random partitioning of the data and so our performance estimates are in fact
stochastic, with variability that can be substantial for natural language processing tasks. We
demonstrate that these unstable estimates cannot be relied upon for effective parameter tuning.
The resulting tuned parameters are highly sensitive to how our data is partitioned, meaning that
we often select sub-optimal parameter choices and have serious reproducibility issues.

Instead, we propose to use the less variable JJ-K-fold CV, in which J independent K -fold cross
validations are used to assess performance. Our main contributions are extending J-K-fold CV
from performance estimation to parameter tuning and investigating how to choose J and K.
We argue that variability is more important than bias for effective tuning and so advocate lower
choices of K than are typically seen in the NLP literature, instead use the saved computation to
increase JJ. To demonstrate the generality of our recommendations we investigate a wide range of
case-studies: sentiment classification (both general and target-specific), part-of-speech tagging
and document classification.

1 Motivation

In recent years, the main focus of the machine learning community has been on model performance.
We cannot, however, hope to improve our model’s predictive strength without being able to confidently
identify small (but genuine) improvements in performance. We require an accurate measurement of
how well our model will perform once in practical use, known as prediction or generalisation error; the
model’s ability to generalise from its training set (see Friedman et al (2001) for an in depth discussion).
The accurate estimation of model performance is crucial for selecting between models and choosing
optimal model parameters (tuning).

Estimating prediction error on the same data used to train a model can lead to severe under-estimation
of the prediction error and is unwise. Simple alternatives use a random splitting of data into training and
testing sets, or training, validation and testing sets, with the model trained using the training set, tuned on
the validation set and performance on the testing set used to report the quality of the fitted model. More
sophisticated approaches are based on re-sampling and make more efficient use of the data; including
bootstrapping (Efron and Tibshirani, 1994) and K-fold cross validation (CV) (Kohavi, 1995). Since
bootstrapping has prohibitive computational cost and is prone to underestimating prediction error, the
machine learning community have coalesced around CV as the default method of estimating prediction
error. For a snapshot into prediction error techniques currently used in NLP, we look at the proceedings
from COLING 2016, focusing on papers that include estimation of model performance. While some
submissions use the more sophisticated K -fold CV, the majority use a single data split. Between those
that use K -fold CV, 19 use 10-fold, 14 use 5-fold and a further 2 use 3-fold.
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Figure 1: The substantial variability in performance estimates for IMDB sentiment classification. The
horizontal line represents the true performance of the model. Each box-plot summarises 1,000 estima-
tions of prediction error based on a different random shuffle of our 1, 000 reviews.

Each of these estimation methods involves making one or more random partitions of the data. This
partitioning means the estimated prediction error is a random quantity, even when conditioned on the data
available to the algorithm. This random splitting of the data leads to variation in our prediction estimates,
which we define as internal variability. Although this internal variability has been discussed before (Jiang
and Wang, 2017; Rodriguez et al., 2010; Bengio and Grandvalet, 2004), it is poorly understood for
which datasets and models this is a problem. Note that we are referring to variation between separate
estimations by K-fold CV and not variability between the K prediction error estimates that make up
a single round of K -fold CV. The estimates are also biased (with their expected value not equal to the
truth). Since the model is only trained on a subset it cannot achieve as high performance as if it had access
to all the data. Zhang and Yang (2015) argue that evaluating performance, model selection and parameter
tuning have distinct requirements in terms of the bias and variance of our estimators. In particular, as
long as bias is approximately constant across different models/parameters, it will have little effect on
the selected model. However, variability is critical. If our estimates have variance that swamps the real
differences in model performance, we cannot tell the difference between genuinely superior parameters
and noise. Reducing the internal variance of cross-validation is the main focus of this paper.

To motivate the need for the paper and demonstrate the typical size of this variability, we now in-
troduce a simple NLP task; classifying the sentiment of IMDB movie reviews using a random forest
(described in detail in Section 2). Figure 1 shows that for K-fold CV and, to an even greater extent sin-
gle train-test splits, the prediction error estimates have variability substantially larger than performance
differences (less than 1% accuracy improvements between models) identified using the same prediction
error estimation methods at COLING 2016. Without analysing the variability of each prediction error
estimate it is impossible to say whether we have a genuinely improved model or are just looking at noise.
Just because one model outperforms another by a small amount on a particular data-split there is no
guarantee that it is genuinely superior and, by changing the partitioning, we may in fact see the opposite.
Despite the potentially large variability of the performance estimate, it is common to ignore the stochas-
ticity and just use the results from a single partitioning. The following arguments and experiments are
all with respect to the internal variability of K-fold CV. However, as single train-test splits produce less
stable prediction error estimates, our arguments are still valid for single data-splits but to an even greater
degree.

In the machine learning literature the usual method for reducing the internal variability of prediction
error estimates is stratification (Kohavi, 1995), used five times at COLING 2016. This keeps the propor-
tions of classes constant across partitioning and so forces each partition to be more representative of the
whole data. Stratification reduces variability due to unbalanced classes. However, as demonstrated in

2979



Figure 1, NLP tasks still suffer from large variability even when the classification classes are perfectly
balanced. For natural language, representativity is a much more complicated concept than just matching
class proportions. Although having been discussed in the corpus linguistics literature (Biber, 1993), rep-
resentativity remains a sufficiently abstract task to not have a clear definition that can be used in NLP.
We wish to split our data in a way that avoids under-representing the diversity and variability seen in the
whole data, however, complicated structural properties like discourse and syntactic rules make it very
difficult to measure this variability.

We present, to the best of the authors’ knowledge, the first investigation into prediction error variabil-
ity specifically for NLP and the first in the machine learning literature to investigate the effect of this
variability on parameter tuning, questioning both reproducibility and the ability to reliably select the best
parameter value. We argue that variability in our prediction error estimates is often significantly larger
than the small performance gains searched for by the NLP community, so these estimates are unsuitable
for model selection and parameter tuning (Section 2). We instead propose using repeated K -fold CV
(Kohavi, 1995) to reduce this variability (Section 3). This is not a new idea, yet has failed to be taken up
by the NLP community. Repeated CV was used only twice at COLING 2016 and both times only used
for improving the stability of prediction error estimates for a chosen model: 10 repetitions of 10-fold CV
by Bhatia (2016) and 2 repetitions of 5-fold CV by Collel (2016). Our main contribution is to extend this
method to parameter tuning, alongside investigating guidelines for choosing the number of repetitions
and K. Finally, we demonstrate that stable prediction error estimates lead to more effective parameter
tuning across a wide range of typical NLP tasks (Section 4).

2 Current Practice: Tuning by K -fold CV

K-fold CV consists of averaging the prediction estimates of K train-test splits, specifically chosen such
that each data point is only used in a single test set (for more information see Kohavi (1995)). The data
is randomly split into K folds of roughly equal size (known as partitioning the data) before each fold
is held out to evaluate a model trained on the remaining K — 1 folds. Increasing K improves stability
by averaging over more models. However, each evaluation is performed on a smaller subset of the
available data and so the evaluations themselves become less stable. The combination of these competing
variabilities makes up the total internal variance which, as confirmed by Figure 1, is nevertheless smaller
than with single train-test splits. If we have enough data that using 1/K'" of the data still provides
stable evaluations then we can see a reduction in internal variability as we increase /. However, this
is not a general statement (Bengio and Grandvalet, 2004), as we will demonstrate in Section 4. It is
common to choose K = 5 or K = 10, based on a study by Kohavi (1995) where empirical evidence is
presented for these choices producing a reasonable trade-off between bias and variance for some specific
statistical examples. We will see that the optimal choice of K is problem-specific so there is no guarantee
that Kohavi’s studies are comparable to modern NLP tasks. As K-fold CV requires the training of K
models, there is a clear incentive to choose the smallest suitable value of K. This idea is developed in
Section 3.

In this paper, we consider an exhaustive method used to tune parameters; grid search. Here we calcu-
late K -fold CV performance estimation across a set of possible parameter values (our grid) and select the
value that gives us the best estimated performance. Other popular tuning procedures from the machine
learning literature include random search (Bergstra and Bengio, 2012) and Bayesian optimisation (Snoek
et al., 2012). Grid search is often not the most efficient approach as it scales poorly with dimensional-
ity. However, its simplicity and interpretability means that it is the standard tuner in NLP and a simple
scenario for clearly demonstrating the impact of internal variability on the effectiveness of parameter
tuning. Note that all tuning procedures rely on individual prediction error estimates, so our analysis of
the problems of grid search is indicative of similar problems with more sophisticated tuning procedures.

To demonstrate the unsuitability of K-fold CV for tuning a typical NLP task, we train a sentiment
classifier on a bag-of-word features model using a random forest (Breiman, 2001), a common set-up in
the NLP literature (Gokulakrishnan et al., 2012; Da Silva et al., 2014; Fang and Zhan, 2015). We use a
large corpus of 25, 000 positive and 25, 000 negative IMDB movie reviews (originally used to train word
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embeddings (Maas et al., 2011)) and randomly choose a fixed 1, 000 to act as our training set (on which
we need to train and tune our model). The purpose of this contrived task is simply to demonstrate the
variability that can result from the random partitioning in K-fold CV. Thus “true performance”, consists
of the global score on the held-out reviews. We acknowledge that the exact scores depend on which
1,000 reviews are used for training, so should not be taken as the ground truth. They do, however, allow
us to roughly quantify the sub-optimality of our tuned parameters and so measure the effectiveness of
different tuning procedures. Even without these scores, the variability of the tuned parameter values
raises concerns regarding reproducibility (as decisions cannot be reproduced without exact knowledge
of the partitioning).

Using Python’s ! random forest implementation, we consider tuning the maximum proportion of fea-
tures (max_features) considered at a single time by our model; a parameter whose accurate tuning is
crucial to prevent over-fitting. We initially focus on K = 5, as Figure 1 shows a lack of significantly
improved bias or variance for the increased computational cost of higher K. For each of 1,000 random
5-fold partitions of our training set, we estimate the performance for each parameter value in the set
{0.01,0.02, ...,0.5} and choose the value that gives us the best performance estimate. Aside from max-
imum depth and number of trees, which we set to 4 and 100 respectively, we keep all other parameters
as their SKLEARN defaults. We limit ourselves to the 300 features with the highest tf-idf score (Salton
and Buckley, 1988). Note that random forests are stochastic, with a sub-sampling step used to fit the
individual tree classifiers. However, as this additional variation cannot be fixed between successive per-
formance estimates (with the sampling being dependent on how our data is partitioned) this should be
considered as part of the internal variability.

Figure 2(a) shows that partitioning can have a large effect on the chosen parameter, leading to choices
of max_features across the wide range of 0.03 to 0.4 (almost covering the whole search space). This
variability means that our tuning procedure is often failing to choose the parameter that gives the best
global performance and so produces sub-optimal models. Depending on the initial partitioning, our tun-
ing procedure can lead to tuned models with global performance varying from 71% to 73.5% accuracy.
In Section 4, we will see that the variability is even larger when tuning multiple parameters at once.

035

0.35

(=1
[
=

0.30

(=1
]
w

0.25

=
~i
e}

=]
5]
=]
(=1
[N
=

Freguency
[=]
o
n
=
1
Tue Accurac
Freguency
(=1
o
n
—
=
Tue Accuracy

(=]
=3
-}
(=]
(=1}
-}

010

=2
i
=]

=
[=2]
=]

005

[=]
=]
o

=]

[=2]

-

T T T 0.00 - T
030 035 040 005 010 015

[=]
=
(=]

020 025 030 035 040

005 010 015 020 025
Chosen Value of max_features Chosen Value of max_features
(a) Tuning of maz_features by 5-fold CV. (b) Tuning of max_features by 10-5-fold CV.

Figure 2: Distribution of our chosen max_features across 1,000 random data partitions. We compare
the industry standard (a) with our proposed solution (b). The global performance of a model for a
given value of max_features is superimposed in red, with the global optimal choice represented by the
vertical line.

3 Proposed Approach: Tuning By Repeated /- K -fold Cross Validation

Unfortunately, only considering a single partitioning cannot give us information about the amount of
variability present in our performance estimates. To produce Figure 2, we had to look at the tuned model
resulting from 1, 000 different partition choices. This observation motivates the use of repeated K-fold

"http://scikit-learn.org/stable/index.html
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CV, also known as J-K-fold CV; averaging the K-fold CV estimate from J different partition choices.
It has been shown empirically that repeated CV reduces internal variability and so stabilises prediction
error (Chen et al., 2012; Vanwinckelen and Blockeel, 2015; Jiang and Wang, 2017), especially for smaller
datasets (Rodriguez et al., 2010). These authors, however, only investigate the use of J-K-fold CV to
reduce the variability of individual performance estimates and do not consider its use for tuning.

We propose the following novel extension to grid search, which extends the improved stability of J-K -
fold CV to parameter tuning. For each of J random partitionings, we calculate a K -fold CV estimate for
every parameter choice on our grid. The average over these partitions produces performance estimates
for each parameter choice and we choose the parameter value that maximises these stable estimates of
prediction error. For the rest of the paper we will refer to this procedure as tuning by J-K-fold CV. We
believe that using J-K-fold CV will also improve the effectiveness of the more sophisticated parameter
tuning procedures, however, this requires further investigation.

Returning to our IMDB example, Figure 2(b) shows that using information from multiple partitioning
choices greatly reduces variability in the chosen parameter value, with standard deviation dropping from
0.0427 to 0.0221 when tuning by 10-5-fold CV (Figure 2(b)) instead of vanilla 5-fold CV (Figure 2(a)).
This corresponds to the worse performing tuned model over 1,000 random partition choices improving
from 71.3% to 72.1% accuracy. We also see a significant reduction in the standard deviation of our
performance estimate of the tuned model from 0.700% to 0.233%, greatly improving our ability to
discern between closely performing models.
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Figure 3: Diminishing reductions in variance as we increase the number of repetitions J for tuning by .J-
5-fold CV. As before, for each value of J we retune our model over 1, 000 different random partitioning.

SD of chosen Range of chosen SD of the accuracy
max_features value maz_features value estimate of tuned model
1-10-fold CV  0.0396 0.03-0.38 0.550 %
2-5-fold CV  0.0307 0.04-0.25 0.528 %
“1-20foldCV  0.0337 003024 0483%
2-10-fold CV  0.0301 0.03-0.23 0.400 %
4-5-fold CV  0.0278 0.03-0.21 0.367 %

Table 1: Standard deviation (SD) performance of J-K-fold tuning on the IMDB dataset over 1,000
different partitions (3 s.f).

We now discuss how to choose the values of J and K in terms of computational cost and effective
tuning, a concept we define as selecting near-optimal parameter values irrespective of how the data is
partitioned. At a first approximation the cost of J-K-fold CV is proportional to J * K (the number of
models trained and evaluated). If, as is the case for sophisticated models, training and evaluation costs
are more than linear in the amount of data, then the computational cost grows faster in K, but are still
linear in J. So for fixed computational resources we have a trade-off between increasing either J or K.
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First, consider increasing K. As previously mentioned there is no clear general relationship between
K and the internal variability of K-fold CV. As long as K > 3 (to guarantee overlapping training sets),
we can have comparable variance across K (see Section 4). This means that the only reliable reason
to increase K is to reduce bias, however, there is no clear argument for how the bias of each individual
performance estimate relates directly to bias in our tuning procedure (the difference between the expected
value of our tuned parameter and the true optimal parameter choice). As long as the bias of the estimate
for each parameter choice is roughly constant across the parameter grid, then we would expect this bias
to have a limited effect on our tuned parameter value (as is assumed for tuning by vanilla K-fold CV). A
further research interest is to investigate exactly when this assumption is violated and the effect that this
can have on the effectiveness of parameter tuning.

In contrast, increasing J has no effect on bias but does significantly reduce the internal variability. For
fixed data, the estimations from each repetition are independent and identically distributed, so prediction
error estimates from vanilla K -fold CV have J times as much variability as J-K -fold CV but the same
bias. Figure 3 demonstrates that we see similar variance reduction returns in the choice from tuning and
also the performance estimate of the tuned model as we increase J. This means we can access the largest
drops in variability within the first few repetitions (Kim, 2009).

We can therefore consider our choices of K and J in isolation. K is increased to reduce bias whereas
J reduces the internal variability. We commented earlier that effective parameter tuning is more sensitive
to variance than bias. This is confirmed by our IMDB task, where we see that although the tuned value
from 5-fold CV has a mean close to the best performing parameter choice (calculated for our held-out
49, 000 reviews), the tuned value has significant variability. Sub-optimal tuning is a consequence of this
large variance, which overshadows any potential problems from the bias. Therefore we first need to
reduce internal variability before our tuning can benefit from reduced bias.

Table 1 summarises the tuning performance of five different J and K choices. We see that between
1-10-fold CV and 2-5-fold CV, and between 2-10-fold, 4-5-fold and 1-20-fold (choices of equivalent
computational cost), we have the least variability when reducing K and using the saved computation for
increasing J. Note that the naive approach of using all available computation to increase K (1-20-fold
CV) produces a wider range of parameter choices than 2-10-fold and 4-5-fold CV. This is despite any
bias reductions from choosing a higher K and so we do not recommend 1-J * K-fold CV. This analysis
questions the rule of thumb selection of K = 10 common in NLP, as 2-5 CV seems to produce superior
tuning at the same cost, a hypothesis we now test across a range of NLP tasks.

4 Case Studies

We now widen our investigation into the suitability of K-fold CV by analysing three further NLP tasks,
chosen to cover a wide range of typical models and datasets. Note that we are not trying to improve
the modelling of these standard models, just showing that ineffective tuning due internal variability is a
general issue across NLP. We look at a simple part-of-speech tagger using logistic regression, document
classification with support vector machines, and target-dependent sentiment classification with an LSTM.
Each task is treated the same as our IMDB example; comparing the performances of tuning by 1-10-fold
CV (the industry standard) against the computationally equivalent 2-5-fold CV. We also investigate the
situation where we have two and four times the computational budget by comparing 2-10-fold with 4-
5-fold and 4-10-fold with 8-5-fold. Our first task shows a case where tuning by vanilla K-fold is still
reasonably effective. For task two we tune multiple parameters at once, seeing substantial variation in
our tuning and so a real need for J-K-fold CV. Our final example shows that our criticisms still hold for
more sophisticated models, where it can be necessary to have even more than 8 repetitions for reliable
tuning. All code is available 2.

Before investigating tuning the different models, we use these examples to provide empirical evidence
for our recommendation of using lower K than the common choice of ten. We argued that increasing
K has no clear effect on the internal variance of individual performance estimates from K-fold CV
and diminishing bias reduction returns. These are presented in Figure 4. Note that although our POS

nhttps://github.com/henrymoss/COLING2018
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tagger and topic classifier do in fact become less variable for larger K, this is not a general rule, with
our LSTM providing a counter-example (with comparable variance for choices of K above three). Even
when we do see reductions in variability when increasing K beyond five, the following experiments
show that reductions in internal variability from increasing J dominate those gained from higher K,
failing to provide justification for choosing K as large as ten. Note also that the accuracy estimates for
all three tasks show significant variation and so predictions by vanilla K-fold CV are unsuitable for the
comparison of even relatively closely performing models.

N bbb

e

2 3 4 5 5 7 8 9 WL B2 1B W 33 5 6 7 8 9 11N 1B W 2 3 4 5 6 7 B 9 W 1 13 1M
Number of Folds (K} Number of Folds (K) Number of Folds (K)

(a) K-fold CV for logistic regression part- (b) K-fold CV for support vector ma- (c) K-fold CV for LSTM target-
of-speech tagger. chine topic classifier dependent sentiment classification.

Figure 4: Prediction error estimates based on K -fold CV. The variation is calculated across 1000 random
partitionings for (a) and (b)) and 100 for (c).

4.1 Part-of-speech tagger

For our first task we are not directly recreating a method from a particular paper, just demonstrat-
ing that J-K-fold CV can improve the tuning of even the most common NLP models. To find such
a task we consulted Jurafsky and Martin (2000), choosing logistic regression and part-of-speech tag-
ging. We train and evaluate our model on a fixed 10,000 word subset of the Brown Corpus (as avail-
able in Python’s NLTK package (Bird, 2006)). As with our IMDB example, we use the remaining
90,000 words as an independent global test set to check the validity of our parameter tuning. We
classify with respect to the Penn Treebank tagging guidelines (Santorini, 1990) based on simple in-
tuitive features including information about prefixes, suffixes, capital letters, position in sentence and
adjacent words. We tune the amount of 12 regularisation (described by C in SKLEARN) on the grid
{0.001, 0.005,0.01,0.05,0.1,0.5,1, 5,10, 50, 100}.

Table 2 shows that larger choices of J with smaller K provide the most effective tuning at each
computational budget. Our most unstable tuning is by 1-10-fold CV. However when checked on the held-
out population, the tuned model with the worst true performance only loses 0.05% accuracy from the
parameter choice with best global performance. So although increasing J does reduce variability, it is not
always necessary for effective tuning, as vanilla 10-fold CV produced consistently near-optimal models.
The size of variability, however, is still a concern for reproducibility, as different random partitions can
lead to choosing C as 10, 50 or 100.

4.2 Document Classification

We now consider a task where tuning by vanilla K-fold CV is inadvisable; topic classification on the
Reuters-21578 dataset (Lewis, 2006) via support vector machines (SVM) (Cortes and Vapnik, 1995).
This exact task is well-studied in the NLP literature (Joachims, 1998; Tong and Koller, 2001; Leopold
and Kindermann, 2002) however no details are provided regarding the tuning of model parameters. Note
that SVM are still commonly used for document classification. This dataset and a specific train-test split
(known as the ApteMod version) are available in NLTK. For ease of explanation, we focus on just the
corn and wheat categories, producing a binary classification task with 334 instances. We tune two param-
eters; the flexibility of the decision boundary and the RBF kernel coefficient (denoted in SKLEARN as C
and gamma respectively). We search for C' in {1, 5, 10, 50, 100, 500, 1000, 5000, 10000} and gamma
in {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45}.
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SD of SD of the SD of SD of SD of the

chosen  accuracy estimate chosen  chosen accuracy estimate
C value of the tuned model C value gamma value of the tuned model
1-10-fold CV  34.6 0.0915 % 28.7 0.121 0.807 %
2-5-foldCV ~ 31.0 0.0874 % 30.7 0.0987 0.615 %
2-10foldCV 290  0.0653% 213 0105 0580%
4-5-foldCV 273 0.0653 % 20.4 0.0766 0.445 %
4-10foldCV 232 0.0472% 1200 00708 0407 %
8-5-foldCV 244 0.0439 % 17.5 0.0563 0.330 %

Table 2: Performance of different J-K-fold Table 3: Performance of different J-K-fold
tuning procedures for a logistic regression  tuning procedures for a support vector machine
part-of-speech tagger over 1, 000 different par-  topic-classifier (3 s.f).

titions (3 s.f).

As summarised in Table 3, this task suffers from much larger variability than the part-of-speech tagger.
Once again, at each computational cost, the most effective tuning (in terms of gamma and variability
of the performance estimate of the tuned model) is from the lower choice of K and higher J. Note
that for C variability, there is an slight increase when moving from 1-10-fold to 2-5-fold CV, however,
this corresponds to a large drop in the other variabilities and so 2-5-fold CV still provides more effective
tuning overall. Also note that we see a larger reduction in gamma variability than C variability for larger
J choices. This is explained in Figure 5, where we see substantially more variation in the tuned value of
gammea than in C' when tuning with no repetitions (Figure 5(a)). Note that effective parameter tuning
corresponds to a single predominately large bin, i.e. selecting a single parameter choice irrespective of
the partitioning. This is achieved by increasing J (Figures 5(b) and 5(c)). Also note that the accuracy
estimate for the model tuned by 1-10-fold CV is not stable enough to allow comparison with other models
of close performance. To be able to reliably distinguish between our tuned model and alternatives with
performance differing by only a couple of percentage points, we require higher choices of J.

(a) Tuning SVM by vanilla 5-fold CV (b) Tuning SVM by 2-5-fold CV

o
W B 5

==

o Y]

(c) Tuning SVM by 8-5-fold CV
Figure 5: Distribution of the tuned parameter values across 1, 000 random partitionings.
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SDof  SD of the SD of SD of SD of the

chosen accuracy estimate chosen bias chosen input  accuracy estimate
widths  of the tuned model regularisation regularisation of the tuned model
1-10-fold CV  19.9 0.293 % 0.0404 0.0160 0.365 %
2-5-foldCV  19.8 0.240 % 0.0285 0.00705 0.284 %
2-10foldCV 193 0213% 10.0358 0.0166 0254 %
4-5-foldCV 184 0.205 % 0.0195 0.00995 0.206 %
4-10foldCV 173 0.169% 10.0280 0.0185 0.196%
8-5-foldCV  16.0 0.166 % 0.00815 0.000500 0.148 %

Table 4: Performance of J-K-fold tuning  Table 5: Performance of J-K-fold tuning on the
when choosing the width of the LSTM (3  IMDB dataset over 1, 000 different partitions (3 s.f).

s.f).

4.3 Target-Dependent Sentiment Classification

For our final task we consider a much more sophisticated model using LSTMs (with Python’s KERAS
3) to perform target-dependent sentiment classification (Tang et al., 2016) using twitter-specific senti-
ment word vectors (Tang et al., 2014) on the benchmark twitter dataset collected by Dong et al (2014).
Our implementation relies heavily upon the reproduction study of Moore et al (2018). Each of 6, 248
sentences are annotated with a target element and the task is to predict the sentiment regarding that
element (positive, negative or neutral). Unfortunately little information is provided about model archi-
tecture or parameter tuning. However, we can still investigate the effectiveness of tuning by J-K-fold
CV. Throughout these experiments we fix the maximum number of epochs as 100 and stop training when
we see no improvements in validation set performance for five successive epochs. For each of our J « K
models, the validation set is a random 20% of that model’s training data, and so can be thought of just
another part of the random partitioning. We use an ADAM optimiser with the default learning parameters
and a batch size of 32.

We perform two experiments: tuning the number of nodes in the LSTM layer (known as width) across
the grid {10, 20, 30, .., 90}, and separately tuning the amount of 12 regularisation on the inputs and biases
(for a fixed width of 50) each across {0.00001,0.001,0.1}]. Tables 4 and 5 provide further support for
our claim that the most effective tuning for a specified computational budget comes from lower K and
higher J. Note that, as shown in Figure 6(a), vanilla 1-10-fold CV is not at all suitable for tuning the
width of our LSTM, as it produces almost uniform values between 30 and 90. It also fails to consistently
select a single choice for the regularisation scheme (Figure 6(b)). In contrast, tuning with 8-5-fold
produces much more consistent choices, the majority of the time choosing 70 for the optimal width
(Figure 6(a)) and 0.001 for both the input and bias regularisation (Figure 6(c)). Although variability in
our chosen LSTM parameters does reduce as we increase J, it remains significantly higher than the gaps
in our parameter grid. When coupled with the relative stability of the accuracy estimates of this tuned
model, this suggests that the performance differences between the most frequent choices by 8-5-fold CV
are small. However, to consistently tune the model to this specificity we require larger choices of J than
8.

https://keras.io/
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Figure 6: Distribution of tuned LSTM values over random partitionings.

5 Discussion and Conclusions

The aim of this paper has been to demonstrate the significant variability of current performance estima-
tion techniques when applied to NLP tasks. We argue that the size of this variability is poorly understood
by practitioners, which has serious implications for both model selection and parameter tuning. We show
that the variability in estimates can often be larger than the performance improvements sought by the NLP
community; questioning conclusions regarding the comparison of techniques. For parameter tuning, the
variability can lead to unstable, irreproducible and significantly sub-optimal parameter choices.

We advocate the use of J-K-fold CV, which we extend to parameter tuning. By using information
from multiple estimations we stabilise our tuning procedure. To counteract the computational cost of
increasing J, we suggest lower choices of K, as effective tuning is more reliant on variability than bias.

Although we have shown the effectiveness of some specific choices of J and K on our NLP examples,
there is still work to be done regarding choosing their optimal configuration, which is problem dependent.
Unlike K, J can be chosen adaptively, allowing practitioners to respond to the amount of observed
variability and efficiently manage computational resources. We would also like to analyse the current
common practice of early stopping (as in our LSTM example), which requires evaluations on another
held-out set to prevent over-fitting. This is likely to suffer from the concerns outlined in this report and
it is poorly understood how best to incorporate early stopping into a wider parameter tuning framework.
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