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Abstract 

Dealing with ‘open-vocabulary’ slots has been among the challenges in the natural language 

area. While recent studies on attention-based recurrent neural network (RNN) models have 

performed well in completing several language related tasks such as spoken language under-

standing and dialogue systems, there has been a lack of attempts to address filling slots that 

take on values from a virtually unlimited set. In this paper, we propose a new RNN model that 

can capture the vital concept: Understanding the role of a word may vary according to how 

long a reader focuses on a particular part of a sentence. The proposed model utilizes a long-

term aware attention structure, positional encoding primarily considering the relative distance 

between words, and multi-task learning of a character-based language model and an intent de-

tection model. We show that the model outperforms the existing RNN models with respect to 

discovering ‘open-vocabulary’ slots without any external information, such as a named entity 

database or knowledge base. In particular, we confirm that it performs better with a greater 

number of slots in a dataset, including unknown words, by evaluating the models on a dataset 

of several domains. In addition, the proposed model also demonstrates superior performance 

with regard to intent detection. 

1 Introduction 

In spoken dialogue systems and goal-oriented dialogue systems, slot filling and intent detection are 

primarily involved in a process of understanding user utterances based on pre-designed semantic 

frames. Slot filling is to identify a sequence of tokens and extract semantic constituents from the ut-

terances, and intent detection is to classify the intent of the utterances. Two examples relevant to these 

problems are shown in Figure 1 for the domains of flight and message. 

In recent years, a significant amount of interest has built up around slot filling and intent detection 

due in part to the competition among commercial artificial intelligence assistants, such as Samsung 

Bixby, Apple Siri, Google Assistant, Microsoft Cortana, and Amazon Alexa. As a result, a multitude of 

studies regarding recurrent neural network (RNN) models for slot filling and intent detection has been 

completed and has resulted in outcomes that generally outperform most other past approaches. In par-

ticular, there have been various attempts to improve the performance of RNNs for spoken dialogue 

systems such as label sampling (Liu and Lane, 2015), the hybrid type of Elman and Jordan (Mesnil et 

al,. 2015), Deep LSTM (Yao et al., 2014), external memory (Peng et al., 2015), bidirectional LSTM 

(Hakkani-Tur et al., 2016), encoder-labeler and Deep LSTM (Kurata et al., 2016), attention (Liu and 

Lane, 2016), bidirectional LSTM and CRF (Huang et al., 2015), word hashing (Ravuri and Stolcke, 

2015a; Ravuri and Stolcke, 2015b) CNN and bidirectional LSTM (Chiu and Nichols, 2015), external 

word embeddings (Kim et al., 2016), multi-task learning of a word-based language model (Shi et al., 

2015), and multi-task learning of intent and domains (Shi et al., 2015; Hakkani-Tur et al., 2016; Bapna 

et al., 2017).  
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Sentence find flights to new york tomorrow 

Slots O O O B-toloc I-toloc B-date 

Intent find_flight 

Sentence text to mary that sad puppy Noise 

Slots O O B-recipient O B-text I-text I-text 

Intent send_message 
 

Figure 1: Two examples of a flight domain and a message domain with intent and slot annotation, fol-

lowing the IOB (in-out-begin) slot representation 

 

Although most previous studies that exploited RNN and attention methods (Liu and Lane, 2016; 

Vaswani et al., 2017) were able to achieve state-of-the-art performance across a wide range of natural 

language research areas, they failed to deal with ‘open-vocabulary’ slots, which is one of the most im-

portant problems in the context of end-user experience using voice assistant. ‘Open-vocabulary’ slots 

signify a slot type that can take on values from a virtually unlimited set, such as file name, album 

name, text body, or schedule title. Therefore, words that are not seen in the training set or are em-

ployed differently from the meaning inherent in them can be included in sentences because of the fact 

that they have no constraints on the length and specific patterns of content. For slot filling of ‘open-

vocabulary’ slots with such characteristics, the goal of this study was to capture the vital concept in 

which the meaning or role of words could vary according to how long a reader focuses on a particular 

part of a sentence. For example, in the utterance “Send how about dinner tonight to him” in the mes-

sage domain, if a reader focuses on ‘how about dinner tonight,’ the word ‘tonight’ signifies time. 

However, it should rather focus on the entire utterance that starts with “Send how …” and recognize 

the word ‘tonight’ as a part of the text body. Thus, it is necessary to understand the holistic semantics 

at the level of the whole sentence, not only the vicinity of a word.  

Our model embodies the above concept by introducing a long-term aware attention structure and 

positional encoding primarily intended for the relative distance between words. Long-term aware at-

tention structure utilizes and stacks two layers of an RNN and treats them as a pair of short-term and 

long-term meanings. The lower layer denotes short-term or relatively local information corresponding 

to the vicinity of a word, and the upper layer denotes long-term or relatively global information corre-

sponding to the whole sentence. A novel positional encoding, called the light-house encoding, consid-

ers the relative distance between current word and the word being compared in relation to the current 

word. In addition, it is completely based on characters rather than words, which is adequate for un-

known words of ‘open-vocabulary’ slots. It is also trained with multi-task learning of a character-based 

language model and an intent detection model to improve the stability and utility of character-based 

representation and to obtain additional sentence-level information. The language model serves as a 

regularizer, and the intent detection model is beneficial in the presence of ‘open-vocabulary’ slots be-

cause it allows the proposed model to refer to the global information of a sentence. Lastly, to focus on 

the effectiveness of modeling, this study only uses the lexical input of language without the help of 

any external information, such as a named-entity or knowledge base. 

We evaluated our model on slot filling and intent detection with the ATIS corpus (Hemphill et al., 

1990) and five in-house domains. For the ATIS corpus, the proposed model achieved a state-of-the-art 

result on intent detection and a result comparable to the state-of-the-art result on slot filling. The pro-

posed model also outperformed the existing RNN models for both tasks on the dataset of five do-

mains. In particular, we demonstrate that our model has outstanding performance on ‘open-

vocabulary’ slots and its efficacy is increased as more data in a domain contain ‘open-vocabulary’ slots 

including unknown words. 

The main contribution of this study is a new RNN-based model that captures global information of 

words for discovering ‘open-vocabulary’ slots. To achieve this, we propose a long-term aware atten-

tion structure and a novel positional encoding with help from character-based modeling and multi-task 

learning. 

2 Slot Filling and Intent Detection 

Slot filling is a sequence labeling problem and intent detection can be treated as a classification prob-

lem that has multiple output labels. In the example in Figure 1, the flight domain may contain 

find_flight, find_airfare, and find_distance as intent list and toloc, fromloc, date, and flight_number as 
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(a) (b) (c) 

Figure 2. Structures of our proposed model (a) Structure of our language model (b) Structure of our 

slot filling model (c) Structure of our intent detection model 

the slot list. The task of slot filling is to find an explicit alignment between slots and a given user que-

ry, and the task of intent detection is to instantiate one or more intents from the intent list for a given 

user query. 

 More formally, we want to learn two functions for the 𝑓slot ∶ Χ → Υ  and 𝑓intent ∶ Χ → Υ′ that maps 

an input sequence X = 𝑥1, 𝑥2, … , 𝑥𝑇𝑥
 to the corresponding label sequence Υ = 𝑦1, 𝑦2, … , 𝑦𝑇𝑥

 and intent 

labels Υ′ = 𝑦1
′ , … , 𝑦𝑛

′  where 𝑇𝑥 is the length of the input sequence and 𝑛 is the number of intents. The 

sequence of slots is in the form of IOB labels that have three outputs corresponding to ‘B’ as the be-

ginning of a slot, ‘I’ as the continuation of a slot, and ‘O’ as the absence of a slot.  

3 Model Description 

The structure of our proposed model is shown in Figure 2. The input of the network is a sequence of 

characters 𝑥𝑖
𝑗
 where 𝑖 is a word index and 𝑗 is a character index inside a word. Our model includes task 

models that include both the slot filling model (SFM) in (b) of Figure 2 and the intent detection model 

(IDM) in (c) of Figure 2, as well as language model (LM) in (a) of Figure 2. All three models share 

character embedding and a word-related layer to build word representation 𝑥𝑖, and task models (SFM 

and IDM) share two encoding layers as well to build sentence-level representations which are ℎ𝑖
1 as 

the output of the 1
st
 encoding layer and ℎ𝑖

2 as the output of the 2
nd

 encoding layer. The encoding layer 

of LM is defined separately as ℎ𝑖
𝑙 because it is an independent encoding layer only for LM, which is 

unlike ℎ𝑖
1 and ℎ𝑖

2 which are shared between SFM and IDM. In addition, the slot filling model utilizes 

sequential outputs as input of the next decoder in the shape of a slot label embedding 𝑜𝑖. 

Basically, we use a bi-directional GRU (bGRU) as the RNN of the encoder and decoder in all mod-

els (Chung et al., 2014). The locations of dropout (Srivastava et al., 2014) and batch normalization 

(Ioffe and Szegedy, 2015), selection of the activation function, connection between representations of 

the encoder and inputs of the decoder, and choices of summation and concatenation are obtained from 

extensive experiments. 

3.1 Character-based Word Representation 

A layer of bGRU to build word representation 𝑥𝑖, depicted in the bottommost layer of Figure 2, en-

codes word information into hidden representations from character inputs. Word representation 𝑥𝑖 is 

the sum of two final hidden states of the bGRU. The first one is a vector concatenating forward pass 

and backward pass at the first time step of characters. The other one is the same type vector at the last 

time step of characters. All parameters including character embeddings in the bGRU are shared in 

SFM, IDM, and LM. 
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We chose character-based embeddings without word-based embeddings for two reasons. Firstly, for 

large vocabulary tasks, the size of the word embeddings overwhelms the number of other parameters if 

word embedding is used. Secondly, the character-based approach could give us better robustness in 

terms of unknown and rare words than the word-based approach, which is an important aspect for 

‘open-vocabulary’ slots. The larger the number of words we model, the more the sparseness problem is 

exacerbated. Furthermore, Kim et al., (2015) said that word representation based on character embed-

ding is able to better detect orthographic forms and semantic features and better learn to differentiate 

between morphemes, such as prefixes and suffixes, than word embedding. Moreover, Verwimp et al. 

(2017) claimed that it is possible to reveal structural similarities between words and be used when a 

word is out-of-vocabulary, unknown and infrequent.  

3.2 Long-term Aware Attention Structure 

Basically, the existing attention mechanism in alignment-based RNN models has the following form 

(Mnih et al., 2014; Bahdanau et al., 2015; Firat et al., 2016). 

𝑐𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
𝑇𝑥
𝑗=1        (1) 

𝛼𝑖𝑗 =
exp⁡(𝑒𝑖𝑗)

∑ exp⁡(𝑒𝑖𝑘)
𝑇𝑥
𝑘=1

      (2) 

𝑒𝑖𝑗 = 𝑓(𝑠𝑖−1, ℎ𝑗)      (3) 

where 𝑗 is the sequential index of a word, 𝑠𝑖−1 is the decoder state at step 𝑖 − 1, 𝑐𝑖 is a corresponding 

attention vector, 𝛼𝑖𝑗 is position-wise weights related to 𝑠𝑖−1 which is obtained by the function 𝑓. 

In this formula, the query of attention is the previous decoder state 𝑠𝑖−1, and the keys and values of 

attention are each encoding information ℎ𝑗. An attention weight 𝛼𝑖𝑗 is obtained from some operations 

including softmax and neural network 𝑓 based on query and keys, and final attention vector 𝑐𝑖 is made 

by weighted sum of attention weights and values. 

To address the challenge presented at the beginning of the paper, we took two ideas which embody 

the concept where the meaning or role of words can vary according to how long a reader focuses on a 

particular part of a sentence. The first idea is to build multiple RNNs hierarchically and each upper 

layer uses final forward and backward hidden states of a layer right below it as initial hidden states in 

opposite directions. For example, SFM and IDM in our model share two layers of the bGRU as a sen-

tence-level encoder as follows: 

ℎ𝑖
1⃗⃗⃗⃗ = GRU1 (ℎ𝑖−1

1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑥𝑖) , ℎ𝑖−1
1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = GRU1 (ℎ𝑖

1⃖⃗ ⃗⃗⃗, 𝑥𝑖) , 𝑖 = 1,… , 𝑇𝑥   (4) 

ℎ0
1⃗⃗⃗⃗ = 0𝑑 , ℎ𝑇𝑥+1

1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0𝑑      (5) 

ℎ𝑖
1 = [ℎ𝑖

1⃗⃗⃗⃗ ; ℎ𝑖
1⃖⃗ ⃗⃗⃗]       (6) 

ℎ𝑖
2⃗⃗⃗⃗ = GRU2 (ℎ𝑖−1

2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑖
1) , ℎ𝑖−1

2⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗ = GRU2 (ℎ𝑖
2⃖⃗ ⃗⃗⃗, ℎ𝑖

1) , 𝑖 = 1,… , 𝑇𝑥   (7) 

ℎ0
2⃗⃗⃗⃗ = ℎ1

1⃖⃗ ⃗⃗⃗, ℎ𝑇𝑥+1
2⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = ℎ𝑇𝑥

1       (8) 

ℎ𝑖
2 = [ℎ𝑖

2⃗⃗⃗⃗ ; ℎ𝑖
2⃖⃗ ⃗⃗⃗]      (9) 

where ⃗⃗  ⃗ and  ⃖⃗ ⃗⃗  are the forward pass and backward pass of the bGRU, ℎ0
1⃗⃗⃗⃗  and ℎ0

2⃗⃗⃗⃗  are the initial hid-

den states of the forward pass for the 1
st
 layer and the 2

nd
 layer, ℎ𝑇𝑥+1

1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and ℎ𝑇𝑥+1
2⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  are the initial hidden 

states of the backward pass for the 1
st
 layer and the 2

nd
 layer, and [;] is the concatenation operator. 

The intuition behind equation (8) is that each pass in an upper bGRU layer provides more global in-

formation than a lower one and updates the states of each word time step to redeem correlations be-

tween distant words with the help of sentence-level information in the opposite direction of lower 

bGRU layer. In other words, we stack two layers of the bGRU and treat them as a pair of short-term 

and long-term meanings. The first layer output ℎ𝑖
1 of two bGRU layers denotes short-term or relatively 

local information and the second layer output ℎ𝑖
2 denotes long-term or relatively global information. 

The second idea is that, in the attention mechanism of the decoder, the output ℎ𝑖
1 of the lower layer 

is used as both a value and a key and output ℎ𝑖
2 of the upper layer is used only as a key. We intended 

that the model would keep short-term information for the concrete meaning of a word, and combine it 
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using additional sentence-level information for actual meaning or role in a sentence learned from train-

ing data. More formally, 

𝐿𝐴𝑖 = ∑ 𝛼𝑖𝑗ℎ𝑗
1𝑇𝑥

𝑗=1       (10) 

𝛼𝑖𝑗 =
exp⁡(𝑒𝑖𝑗)

∑ exp⁡(𝑒𝑖𝑘)
𝑇𝑥
𝑘=1

      (11) 

𝑒𝑖𝑗 = 𝑓(𝑠𝑖−1, ℎ𝑗
1, ℎ𝑗

2)      (12) 

where 𝐿𝐴𝑖 is an attention vector at each decoding step 𝑖, ℎ𝑗
1 is a hidden state of the 1

st
 bGRU layer at 

word index 𝑗, ℎ𝑗
2 is the hidden states of the 2

nd
 bGRU layer at word index 𝑗. 

We expect these simple changes allow the model to compensate for missing points or defects at the 

level of the whole sentence, and also disentangle the local and global requisite information as appro-

priate for the tasks. The key features of the ideas above are the ability to avoid insufficient tackling of 

long range dependencies and the ability to offer assistance in learning the actual meaning or role with-

in a sentence. Although the LSTM (Gers and Schmidhuber, 2000) and GRU are well designed to solve 

the problem of long range dependencies that results in the model becoming unable to capture correla-

tions between words separated by many time steps as a distance between the current word and the rel-

evant word grows, the long range dependencies may still be a lingering issue, especially for ‘open-

vocabulary’ slots, from an approximated learning method like truncated backpropagation through time 

(truncated BPTT), noisy and meaningless interim inputs, and ambiguity.  

In practice, we constitute the function 𝑓 in (12) used for computing weights by fully connected neu-

ral networks. 

𝑓(𝑠𝑖−1, ℎ𝑗
1, ℎ𝑗

2) = 𝑣𝑎
𝑇 (𝑇𝑎𝑛ℎ(𝐹𝐶(𝑠𝑖−1)) + 𝑇𝑎𝑛ℎ (𝐹𝐶(ℎ𝑗

1)) + 𝑇𝑎𝑛ℎ (𝐹𝐶(ℎ𝑗
2)))  (13) 

where 𝐹𝐶 is a fully connected neural network with a linear matrix and a bias vector to be projected 

into attention dimension 𝑑𝑎 and 𝑣𝑎 ∈ 𝑅𝑑𝑎 is a vector to compute one scalar weight logit for each de-

coding step 𝑖 in the decoder and word index 𝑗 of hidden states in the encoder. 

3.3 Light-house Positional Encoding 

Positional encoding conveys positional information in a form of vectors, which is related to where 

words are located within a sentence. To appropriately impose the second idea of the long-term aware 

attention structure on our model, positional encoding in the attention mechanism of the decoder is nec-

essary because the encoder is able to focus more on the meaning in a sentence as intended by the fact 

that applying it to the attention mechanism separately conveys interactions depending on the distance 

between words to the decoder.  

We introduce a novel positional encoding, called light-house positional encoding, which considers 

the relative distance between the current word and the word being compared in relation to the current 

word. Our scheme has two differences from the previous positional encodings (Sukhbaatar et al., 

2015; Vaswani et al., 2017; Gehring et al., 2016; Gehring et al., 2017). One is that it defines only one 

trained embedding, which is unlike position-wise encoding and fixed encoding, and the other is that it 

is not placed in the inputs of the encoder and decoder but on the inside of attention computation. The 

formula is as follows: 

𝑝𝑖
𝑏 = 𝛽 ∗ |𝑏 − 𝑖| ∗ 𝐷      (14) 

where 𝑖 is a word index, 𝑏 is the current word index as a basis, 𝐷 ∈ 𝑅𝑑  is the distance embedding 

which has positional dimension 𝑑, 𝛽 is a parameter which controls the norm of the encoding increased 

by the distance. 

The existing positional encodings are mostly fixed encoding like sinusoid type or learned position-

wise encoding which is set up per each word independently. However, light-house positional encoding 

defines only one distance embedding 𝐷 with respect to one time step between words. It configures posi-

tional encodings 𝑝𝑖
𝑏 for each word index 𝑖 according to time step distance |𝑏 − 𝑖| from the current word 

index 𝑏 multiplied by a parameter 𝛽. Thus, it has fewer position-related parameters than the position-

wise encoding. Additionally, the further the distance between words being compared, the larger the 

norm of positional encoding it has, which makes deeper layers easily notice distance-related infor-

mation from positive and negative values of encoding and weights. In our experiments, the distance 

embeddings of models for several domains have positive and negative values in a 50/50 ratio on aver-
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age. In practice, although we are able to deal with 𝛽 as a learned parameter, we treat it as a hyper-

parameter, which is closely connected to the average length of sentences. 𝛽 = 1 showed stable results 

in our experiments. 

As for placement, we place it only inside of the attention computation function 𝑓 of (13) as follows: 

𝑓(𝑠𝑖−1, ℎ𝑗
1, ℎ𝑗

2) = 𝑣𝑎
𝑇 (𝑇𝑎𝑛ℎ(𝐹𝐶(𝑠𝑖−1)) + 𝑇𝑎𝑛ℎ (𝐹𝐶([ℎ𝑗

1; 𝑝𝑗
𝑖])) + 𝑇𝑎𝑛ℎ (𝐹𝐶([ℎ𝑗

2; 𝑝𝑗
𝑖]))) (15) 

where [;] is concatenation operator and 𝑝𝑗
𝑖  is the positional encodings for each word index 𝑗 of hidden 

states in the encoder based on each decoding step 𝑖 in the decoder. 

The reason for this placement is also for the sake of using positional encoding only where it is abso-

lutely necessary because the other layers are composed of the bGRU and it exhibits dynamic temporal 

behavior.  

3.4 Configuration for Models and Multi-task Learning 

The SFM in (b) of Figure 2 is composed of a layer of the bGRU to build word representation 𝑥𝑖, two 

layers of the bGRU in the encoder, and a layer of the bGRU including the attention mechanism in de-

coder. The encoder and decoder of the SFM are based on the long-term attention structure and light-

house positional encoding that we explained above. In addition, we utilize both ends of the hidden 

states of the 2
nd

 encoder layer, ℎ1
2 and ℎ𝑇𝑥

2 , to make an initial state of decoder 𝑠0 by concatenating them 

and using a layer of the fully connected neural network with a hyperbolic tangent ‘tanh’. That means 

that the initial state of the decoder is built from states with the broadest information in the encoder. 

The IDM in (c) of Figure 2 is composed of encoder layers shared with the SFM and two layers of 

the fully connected neural network in the decoder. It is also based on the long-term attention structure 

and light-house positional encoding. The difference with the STM in relation to using two ideas is that 

there is only one attention vector 𝐿𝐴𝑖𝑛𝑡𝑒𝑛𝑡, its positional encoding is computed by treating the last 

word time step as the current word index 𝑏 in (14), and a query of attention is made by a layer of the 

fully connected neural network with a rectified linear unit ‘ReLU’, not ‘tanh’. 

The LM in (a) of Figure 2 is composed of a layer of the bGRU for word representation 𝑥𝑖 shared 

with the SFM and IDM, a separate layer of the bGRU in the encoder, and a layer of the fully connect-

ed neural network in the decoder. It adopts a conventional attention structure like (1) to (3) and light-

house positional encoding, and it also has only one attention vector called ‘Positional attention’ like 

the IDM. The LM was trained by randomly removing a word in a sentence, inserting other words 

within window 10 (±5) of the removed word as an input, and using the removed word as an output. 

Thus, positional encoding in the LM treats the index of the removed word as the current word index 

b = 5 in (14), and its 10 indexes of input are 0,… ,4,6,… ,10. Finally, the formula of the decoder is as 

follows: 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙⁡𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = ∑ 𝛼𝑗ℎ𝑗
𝑙

𝑗 , 𝑗 = 0,… ,4,6,… ,10   (16) 

𝛼𝑗 =
exp⁡(𝑒𝑗)

∑ exp⁡(𝑒𝑘)𝑘
, 𝑘 = 0,… ,4,6,… ,10     (17) 

𝑒𝑗 = 𝑓(𝑠, ℎ𝑗
𝑙)        (18) 

𝑓(𝑠, ℎ𝑗
𝑙) = 𝑣𝑎

𝑇 (𝑇𝑎𝑛ℎ(𝐹𝐶(𝑠)) + 𝑇𝑎𝑛ℎ (𝐹𝐶([ℎ𝑗
𝑙; 𝑝𝑗

5])))  (19) 

s = 𝑇𝑎𝑛ℎ (𝐹𝐶([ℎ0
𝑙 ; ℎ10

𝑙 ]))      (20) 

where ℎ𝑗
𝑙 is the outputs of a separate encoding layer for 𝑗 = 0,… ,4,6, … ,10, s is a query of attention, 

𝐹𝐶 is a fully connected neural network with a linear matrix and a bias vector to be projected into atten-

tion dimension 𝑑𝑎 and 𝑣𝑎 ∈ 𝑅𝑑𝑎 is a vector to compute one scalar weight logit for each word index 𝑗 

of hidden states in the encoder, 𝑝𝑗
𝑏 is a positional encoding for each word index 𝑗 of the hidden states in 

the encoder based on the word index 5 corresponding to the removed word. 

In the LM, the decoder formulates one representation from ‘Positional attention’ via a layer of the 

fully connected neural network with ‘tanh’ and we use the dot product between the word representa-

tion for each word candidate and the final output to compute the final probability, which indicates how 

well each word fits into the position of the removed word. In addition, the LM utilizes infrequent nor-

malization softmax approximation, combining the strengths of Noise Contrastive Estimation (NCE) 

and self-normalization, which results in a higher speed-up factor (Andreas and Klein, 2015).  
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Domains # of train # of test # of slot labels # of intent types 

Calculator 3401 680 10 2 

Calendar 9062 1812 70 24 

Camera 9425 1885 63 61 

Gallery 61885 12377 54 197 

Message 18571 3714 49 74 

Table 1. The number of training sets, test sets, slot labels, and intent types in 5 Samsung Bixby do-
mains 

 ATIS Gallery Calendar Message 

Ratio of “open vocabulary slots” to “close vocabulary slots” 

in the test set 

59.58% 

(1689/2835) 

15.13% 

(5305/35045) 

34.56% 

(1064/3079) 

79.44% 

(3655/4601) 

Ratio of “open vocabulary slots including unknown words” 

to “the other open vocabulary slots” in the test set 

2.42% 

(41/1689) 

4.79% 

(254/5305) 

13.82% 

(147/1064) 

45.42% 

(1660/3655) 

Table 2. Percentages of ‘open-vocabulary’ slots, including unknown words in the test set for each do-

main 

In practice, all words existing in a training batch are treated as a result of down-sampling for approxi-

mating the normalization term.  

We institute multi-task learning for the above three models with two types called ‘Slot only’ and 

‘Joint’. The first one is a combination of the SFM and the LM and the other is a combination of all 

three models. It also follows that joint learning of intent detection has a positive effect on performance 

of slot filling as in Liu and Lane (2016). A final cost function to be maximized is as follows: 

ℒ = log(𝑝(Υ|Χ)) + log(𝑝(𝛶′|𝛸)) + λ(log(𝑝(𝑥𝑏|𝛸 ∖ 𝑥𝑏)) + ∑ ∥ 𝑤𝑖 ∥2
2

𝑤𝑖∖𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 ) (21) 

𝑝(Υ|Χ) = ∏ 𝑝(𝑦𝑡|𝑥1, … , 𝑥𝑇𝑥
, 𝑦1, … , 𝑦𝑡−1)

𝑇𝑥
𝑡=1    (22) 

𝑝(𝛶′|𝛸) = ∏ 𝑝(𝑦𝑘
′ |𝑥1, … , 𝑥𝑇𝑥

)𝑛
𝑘=1     (23) 

where λ is a weight-decay hyper-parameter for the LM and l2-norm, 𝑇𝑥 is the length of the input se-

quence, 𝑛 is the number of intents, and 𝑤𝑖 is all the parameters learned from training data. Thus, the 

LM is used for stability and utility of character-based word representation and can be construed as a 

regularizer for the SFM and IDM. 

4 Experiments 

4.1 Data 

The ATIS corpus (Hemphill et al., 1990) is the most commonly used dataset for the research on spoken 

language understanding. In this study, we used the ATIS corpus from Hakkani-Tur et al. (2016).
1
 

The dataset consists of sentences of people making flight reservations. The training set contains 

4978 utterances from the ATIS-2 and ATIS-3 corpora, and the test set contains 893 utterances from the 

ATIS-3 NOV93 and DEC94 datasets. There are in total 127 distinct slot labels and 18 different intent 

types.  

For this study we collected English in-house real data of five different Bixby domains. We adopted 

domains and corresponding intent types to show the performance of our model in terms of various lev-

els of difficulty. Table 1 describes the number of training sets, test sets, slot labels, and intent types in 

the five domains. The calculator and camera domains have no ‘open-vocabulary’ slots, and ‘open-

vocabulary’ slots of the others, including the ATIS corpus, are shown in Table 5 of Appendix B. We 

did not utilize any external information, such as a named entity database or knowledge base with enti-

ties like city, airport, person, etc., to focus on the performance only using the lexical input of language. 

Thus, we treated named entity slots as ‘open-vocabulary’ slots. Additionally, we defined the difficulty 

of each domain associated with ‘open-vocabulary’ slots on the basis of how many values of ‘open-

vocabulary’ slots in each domain included unknown words in the test set. Table 2 shows that ATIS, 

gallery, calendar, and message had a high level of difficulty in an increasing order. 

For the five Bixby domains, we compared our model to three previous models: the hybrid RNN 

(Mesnil et al., 2015), the encoder-labeler deep LSTM (Kurata et al., 2016), and the attention biRNN 

for both ‘Slot only’ and ‘Joint’ (Liu and Lane, 2016). 

 

                                                      
1 https://github.com/yvchen/JointSLU/tree/master/data 
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Model Best F1 score 

(Slot filling) 

Best error rate 

(Intent detection) 

RNN with Label Sampling (Liu and Lane, 2015) 94.89 - 

Hybrid RNN (Mesnil et al., 2015) 95.06 - 

Deep LSTM (Yao et al., 2014) 95.08 - 

RNN-EM (Peng et al., 2015) 95.25 - 

bLSTM (Hakkani-Tur et al, 2016) 95.48 - 

Encoder-labeler Deep LSTM (Kurata et al., 2016) 95.66 - 

Word embeddings updated and bLSTM (Kim et al., 2016) - 2.69 

LSTM (Ravuri and Stolcke, 2015a) - 2.45 

Attention Encoder-Decoder NN (Slot only) (Liu and Lane, 2016) 95.78  

Attention BiRNN (Slot only) (Liu and Lane, 2016) 95.75  

Attention Encoder-Decoder NN (Joint) (Liu and Lane, 2016) 95.87 1.57 

Attention BiRNN (Joint) (Liu and Lane, 2016) 95.98 1.79 

Proposed model (Slot only) 95.93 - 

Proposed model (Joint) 95.93 1.46 

Table 3. Best F1 score of slot filling and best error rate of intent detection for ATIS in comparison with 

previous approaches 

Table 4. Best F1-score of slot filling and best error rate of intent detection for five Bixby domains in 

comparison with previous approaches 

4.2  Training details 

For the training of our model, we used a mini-batch stochastic descent method named Adadelta 

(Zeiler, 2012), a method with a relatively simple configuration, and set its momentum related parame-

ter to a value of 0.95, but we used default settings and methods specified in published codes and pa-

pers for the comparison models.
2
 We also utilized l2-norm regularization for parameters and gradient 

clipping for stable training.  

For tuning hyper-parameters, we split the training set into 90% training and 10% development. Af-

ter choosing the hyper-parameters, we re-trained the model with all of the training data. For evalua-

tion, we evaluated the performance on slot filling using an F1 score and the performance on intent de-

tection using the classification error rate, and each result was recorded from the best one among 10 

different initializations. 

We did not utilize any kind of pre-training or external data for any of the experiments. Details of the 

preprocessing procedures and the finally determined model parameters are given in Appendix A. 

4.3 Results 

 For the ATIS corpus, Table 3 shows that our models for both ‘Joint’ and ‘Slot only’ achieved com-

parable results to the state-of-the-art result of slot filling. In particular, our ‘Slot only’ model provided 

improvement from 95.78 to 95.93 in comparison to the previous best ‘Slot only’ model. For intent de-

tection, Table 3 also shows that we provided the state-of-the-art performance with a 1.46 error rate 

using the ‘Joint’ model. In addition, learning with additional intent information in our model had no 

positive effect on the performance of slot filling. 

On the other five domains of Bixby, we compared our model with three previous methods for slot 

filling and also compared it with only one previous method for intent detection. The Hybrid RNN 
                                                      
2 Attention BiRNN : https://github.com/HadoopIt/rnn-nlu and Hybrid RNN : https://github.com/mesnilgr/is13  

Model Slot filling Intent detection 

Gallery Calculator Calendar Message Camera Gallery Calculator Calendar Message Camera 

Hybrid RNN (Mesni

l et al., 2015) 
88.41 97.18 71.57 74.17 87.44 - - - - - 

Encoder-labeler 

Deep LSTM (Kurata 

et al., 2016) 
94.03 98.2 87.34 88.42 93.51 

- - - - - 

Attention BiRNN 

(Slot only) (Liu and 

Lane, 2016) 
98.48 99.73 93.94 91.07 99.44 

- - - - - 

Attention BiRNN 

(Joint) (Liu and Lan

e, 2016) 
97.31 99.82 91.98 90.50 99.34 1.35 0.00 3.20 2.53 0.53 

Proposed model 

(Slot only) 
99.19 99.83 95.34 94.70 99.58 - - - - - 

Proposed model 

(Joint) 
99.24 99.93 96.13 95.00 99.58 1.32 0.00 2.76 1.46 0.53 

https://github.com/HadoopIt/rnn-nlu
https://github.com/mesnilgr/is13
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(Mesnil et al., 2015) applied the RNN to slot filling for the first time, the Encoder-labeler Deep LSTM 

(Kurata et al., 2016) applied the encoder-decoder concept to slot filling, and the Attention BiRNN (Liu 

and Lane, 2016) applied attention and multi-task learning to slot filling and intent detection and 

achieved the state-of-the-art performance among the previous approaches for both. Thus, for slot fill-

ing, we intended to check change of the performance as additional ideas are introduced such as the 

RNN, encoder-decoder, attention, and long-term aware attention and light-house positional encoding. 

Not to our surprise, adding ideas improved the performance and our model demonstrated the best per-

formance for both slot filling and intent detection. In particular, as the difficulty of domains associated 

with ‘open-vocabulary’ slots increased, like calendar and message, a larger gap in performance 

emerged to the amount of about a 5% absolute gain for slot filling and about a 1% error rate for intent 

detection. However, multi-task learning with the intent detection model did not have much effect on 

the performance of slot filling. The results are summarized in Table 4.  

To see more detailed results in terms of ‘open-vocabulary’ slots, we divided the results of slot filling 

into an F1 score on ‘closed-vocabulary’ slots and an F1 score on ‘open-vocabulary’ slots as shown in 

Table 6 of Appendix C. We highlight some observations.  

First, results from our models of both ‘Joint’ and ‘Slot only’ had better F1 scores over the previous 

best model with respect to ‘open-vocabulary’ slots for domains having them. In accordance with the 

results of all the slots, our model experienced more benefit in the performance of ‘open-vocabulary’ 

slots as the difficulty of the domains we defined increased. Furthermore, the first three samples of Ta-

ble 7 in Appendix D and all the samples of Table 8 in Appendix D confirm that our model tends to 

draw conclusions by referring to the whole sentence as we intended. 

Second, there was a trade-off to some degree between ‘closed-vocabulary’ slots and ‘open-

vocabulary’ slots as was revealed in the ATIS corpus case. That is why the performance of our model 

could not exceed the state-of-the-art result in Table 3. If the distinction or boundary between slots is 

not clear like ‘Boston late night’ in a sentence “ground transportation that I could get in Boston late 

night”, the whole can be treated as an ‘open-vocabulary’ slot due to a shortage of training data about 

the ‘period_of_day’ slot corresponding to ‘late night’. We have to recognize it depending only on the 

content of the sentence without any information about the city name, and moreover, ‘boston late night’ 

may be construed as one of city names. In addition, our model tends to open up more possibilities for 

various conclusions. For an example of “flight ## from jfk to lax”, our model considers ‘lax’ as a 

‘city_name’ slot despite the fact that ‘airport_code’ slot consists of three letters. Samples of slot filling 

results for the ATIS corpus are in Table 7 of Appendix D. 

Third, multi-task learning of our ‘Joint’ model generally had a higher performance than our ‘Slot 

only’ model regarding ‘open-vocabulary’ slots on all datasets, including the ATIS corpus. Therefore, it 

is safe to say that the performance of ‘open-vocabulary’ slots in our approach benefits more from the 

joint training with intent detection and the help of sentence-level information. On the contrary, unlike 

the result of Liu and Lane (2016) the ‘Joint’ model of them had a lower performance than the ‘Slot 

only’ model of them for ‘closed-vocabulary’ slots as well as for ‘open-vocabulary’ slots. 

5 Conclusion and Future Work 

In this study, we presented a new modeling with RNNs and successfully dealt with ‘open-vocabulary’ 

slots. It focuses more on relatively global information within a sentence using a long-term aware atten-

tion structure and light-house positional encoding with the help of multi-task learning of a character-

based language model and intent detection model. Compelling experimental results on several do-

mains demonstrated the advantages of our model, especially for ‘open-vocabulary’ slots. 

In this study, we did not utilize additional methods for generalization, such as variational dropout 

(Gal and Ghahramani, 2016), attention weights dropout, label smoothing, and dropout in decoder 

(Vaswani et al., 2017; Merity et al., 2017; Melis et al., 2017), and we did not search extensively hyper-

parameter space and choices of optimizers extensively as in Merity et al. (2017) and Melis et al. 

(2017). These could enhance the performance of our RNN model. Furthermore, we will conduct not 

only a delicate analysis of weights of the long-term aware attention structure but also experiments us-

ing models based on architectures other than RNN and hierarchically deeper structures. 
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Appendix A. Experimental Details 

We preprocessed the datasets as follows for all datasets. To deal with unseen or unknown inputs in the 

test set, we replaced all ‘words’ with at most three occurrences in the training data by <UNK> for 

comparison models and all ‘characters’ with at most ten occurrences in the training data also by 

<UNK> for our model. We also changed all sequences of numbers to sequences of ‘#’, for example, 

‘2017’ is converted to ‘####’. For comparison models, we applied basic tokenizer before training, 

which is related to apostrophe and a combination of number and word. 

For the training of our model, we used the Adadelta with 0.95 momentum related parameter and 5 

gradient clipping. Parameters related to batch normalization are initialized by 1, parameters related to 

the hidden of RNN are initialized by orthogonal values obtained from the singular vector decomposi-

tion and the standard normal distribution with scale 1, bias parameters are initialized by zeros, and all 

other parameters are initialized by the standard normal distribution with scale 0.01. All dimension set-

tings are simply 100 except 50 dimension of a slot label embedding oi.  

Hyper-parameters are 0.5 dropout, β = 1 hyper-parameter of the light-house positional encoding, 

0.02 noise probability of character replacement for each characters in the inputs, 0.1 weight decay for 

the l2-norm of parameters learned from the training data and the language model cost, and 5 to 12 

batch size according to the domains. 

Appendix B. Lists of ‘Open-vocabulary’ Slots 

Domains ‘Open-vocabulary’ slots 

ATIS {airport_name, airline_name, city_name, state_name, fromloc.airport_name, fromloc.city_name, from-

loc.state_name, stoploc.airport_name, stoploc.city_name, toloc.airport_name, toloc.city_name, 

toloc.country_name, toloc.state_name} 

Gallery {album_name, app_name, recipient, contact, file_name, location, poi, recipient, story_name, tag_name, 

title} 

Calendar {app_name, recipient, save_invitee, save_location, save_notes, save_title, search_keyword} 

Message {appname, blocked_phrase, search_keyword, text_body, recipient, contact} 

Table 5. List of ‘open-vocabulary’ slots for ATIS, gallery, calendar, and message. 

Appendix C. Slot Filling for ‘Open-vocabulary’ Slots 

Models Slot types ATIS Gallery Calendar Messages 

Attention BiRNN (Joint) 

(Liu and Lane, 2016) 

Closed vocabulary slots 94.64 97.91 93.71 95.07 

Open vocabulary slots 96.68 93.97 88.69 89.31 

Attention BiRNN (Slot 

only) (Liu and Lane, 2016) 

Closed vocabulary slots 95.06 98.85 94.82 95.64 

Open vocabulary slots 96.58 96.42 90.88 89.89 

Proposed model 

(Joint) 

Closed vocabulary slots 94.38 99.39 97.07 97.30 

Open vocabulary slots 96.98 98.36 94.34 94.40 

Proposed model 

(Slot only) 

Closed vocabulary slots 94.68 99.34 96.79 96.89 

Open vocabulary slots 96.77 98.38 92.57 94.13 

Table 6. F1 score on ‘open-vocabulary’ slots and ‘closed-vocabulary’ slots for ATIS, gallery, calendar, 

and message in comparison with the previous best approach. 
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Appendix D. Slot Filling Samples 

Samples Ground Truth Slot results of Attention 

BiRNN (Slot only) (Liu 

and Lane, 2016) 

Slot results of the 

proposed model 

Show me flights from montreal to orlando and 

“long beach” 

 

toloc.city_name fromloc.city_name toloc.city_name 

find me a flight from cincinnati to any airport in 

the “new york” city area 

 

toloc.city_name fromloc.city_name toloc.city_name 

please find all the flights from cincinnati to any 

airport in the “new york city” area that arrive 

next saturday before # pm 

 

toloc.city_name fromloc.city_name toloc.city_name 

and now show me ground transportation that i 

could get in “boston late night” 

city_name  

(boston)  

&   

period_of_day  

(late night) 

 

city_name  

(boston)  
&  

state_code  

(late)  

&  

period_of_day  

(night) 

 

city_name  

(Boston late night) 

list the airfare for american airlines flight ## 

from jfk to “lax” 

toloc.airport_code toloc.airport_code toloc.city_name 

Table 7. Samples of the slot filling results for the ATIS corpus. The bold and underlined letters in sam-

ples are targets for analysis. The slots in bold means that they are correct and the letters in parentheses 

are the outputs corresponding to the slots. 

 
Samples Ground Truth Slot results of Attention 

BiRNN (Slot only) (Liu 

and Lane, 2016) 

Slot results of the 

proposed model 

get rid of all the sms with ”bolt from the blue” in 

them 

search_keyword 

(bold from the blue) 

search_keyword  

(the blue) 
search_keyword 

(bolt from the 

blue) 

 

Deliver tony jones and nine six zero four a mes-

sage with ”say it til you believe it” 

text_body  

(say it til you be-

lieve it) 

 

text_body  

(it til you believe it) 
text_body  

(say it til you be-

lieve it) 

snap a selfie camera picture also share with ”ron-

nie” 

 

recipient search_keyword recipient 

Text to lou ”i just finished the last of my exams” text_body  

(I just finished the 

last of my exams) 

text_body  

(just finished)  

&  

search_keyword  

(exams) 

 

text_body  

(I just finished the 

last of my exams) 

For phone charging on 12 december invite ”kayla 

green” 

save_invitee  

(kayla green) 

search_keyword  

(kayla)  

&  

save_title  

(green) 

 

save_invitee  

(kayla green) 

i've gotta go ”guatemala city” with resendez today 

so place that a new event 

save_location  save_title  save_location  

Table 8. Samples of slot filling results for message and calendar. The bold and underlined letters in 

samples are targets for analysis. The slots in bold means that they are correct and the letters in paren-

theses are the outputs corresponding to the slots. 


