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Abstract

Multilingual topic models enable crosslingual tasks by extracting consistent topics from multi-
lingual corpora. Most models require parallel or comparable training corpora, which limits their
ability to generalize. In this paper, we first demystify the knowledge transfer mechanism behind
multilingual topic models by defining an alternative but equivalent formulation. Based on this
analysis, we then relax the assumption of training data required by most existing models, creating
a model that only requires a dictionary for training. Experiments show that our new method ef-
fectively learns coherent multilingual topics from partially and fully incomparable corpora with
limited amounts of dictionary resources.

1 Introduction

Multilingual topic models provide an overview of document structures in multilingual corpora, by learn-
ing language-specific versions of each topic (Figure 1). Their simplicity, efficiency and interpretability
make models from this family popular for various crosslingual tasks, e.g., feature extraction (Liu et
al., 2015), cultural difference discovery (Shutova et al., 2017; Gutiérrez et al., 2016), translation detec-
tion (Krstovski et al., 2016; Krstovski and Smith, 2016), and others (Barrett et al., 2016; Agić et al.,
2016; Hintz and Biemann, 2016).

Typical probabilistic multilingual topic models are based on Latent Dirichlet Allocation (LDA, Blei et
al. (2003)), adding supervision on connections between languages. Most models achieve this by making
strong assumptions on the training data—they either require a parallel corpus that has sentence-aligned
documents in different languages (e.g., EuroParl, Koehn (2005)), or a comparable corpus that has docu-
ments of similar content (e.g., Wikipedia articles paired across languages). These training requirements
limit the usage of such models: an adequately large parallel corpus is difficult to obtain, particularly for
low-resource languages. For example, only 300 languages are available on Wikipedia,1 and only 250
languages have more than 1,000 articles. Another common choice for parallel corpus in multilingual
research, the Bible, is available in 2,530 languages (Agić et al., 2015).2 However, studies show that its
archaic themes and small corpus size (1,189 chapters) can limit performance (Hao et al., 2018; Moritz
and Büchler, 2017). Therefore, the requirement of parallel/comparable corpora for multilingual topic
models limits their usage in many situations.

Another line of research focuses on using multilingual dictionaries as supervision (Ma and Nasukawa,
2017; Gutiérrez et al., 2016; Liu et al., 2015; Jagarlamudi and Daumé III, 2010; Boyd-Graber and
Blei, 2009). In contrast to parallel corpora, dictionaries are widely available and often easy to obtain.
PANLEX, a free online dictionary database, for example, covers 5,700 languages and more than one
billion dictionary entries (Kamholz et al., 2014; Baldwin et al., 2010).3 Thus, a multilingual topic model
built on a dictionary rather than a parallel corpus is potentially applicable to more languages.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1https://meta.wikimedia.org/wiki/List_of_Wikipedias
2Reported by United Bible Societies at https://www.unitedbiblesocieties.org/
3https://panlex.org/
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Biology is the natural science 
that involves the study of life 
and living organisms, 
including their physical struct

Biologi eller biovetenskap är 
den naturvetenskap som berör 
läran om livet, levande 
organismer och livets processer

English

Swedish

biology, cells, blood …

biologi (biology), celler (cells), blod (blood) ...

Bilingual corpus
Topic 3 (English)

Topic distribution

politics, moral, science …

mänskliga rättigheter (human rights), etisk (ethic), …

Topic 5 (English)

Topic 3 (Swedish)

Topic 5 (Swedish)

Figure 1: Multilingual topic models produce topics where each language has its own version.

A dictionary also allows for training on incomparable corpora—documents in different languages that
are from different sources without direct connections—which have had less research on learning consis-
tent topics. With a dictionary, a natural question is how to efficiently utilize the semantic information it
carries so that a topic model can produce multilingually coherent topics. This work considers an alterna-
tive formulation of a dictionary-based topic model, one that borrows the structure of models used with
comparable corpora, but uses a dictionary-based metric to learn connections between documents, instead
of explicit connections from a comparable corpus. The main contributions of this work are:

• We summarize existing related work in Section 2 and propose a new formulation of multilingual
topic models based on crosslingual transfer learning in Section 3. This new formulation explicitly
shows the knowledge transfer mechanism during the generative process.
• Based on this new formulation, in Section 4 we generalize existing multilingual topic models and

relax the assumptions of parallel/comparable datasets. Our approach requires only a dictionary, and
is empirically shown to perform well even with only limited amounts of available entries.
• We evaluate our new model on five languages from different language families in Section 5. Our

proposed model learns multilingually coherent topics and yields around a 25% relative improvement
in crosslingual classification performance.

2 Multilingual Topic Models

Multilingual topic models generate K topics from a corpus consisting of multiple languages; each topic
has a version specific to each language in the corpus (Figure 1). From a human’s view, a coherent multi-
lingual topic should talk about the same thing regardless of the language; from a machine’s view, the suc-
cess of multilingual topic models depends on the inferred topics being consistent across languages. For
example, given an English-Swedish bilingual topic φ(EN,SV)

k , the probability of an English word island and

that of its translation in Swedish, ö, should be similar, i.e., Pr
(
islandEN|φ(EN,SV)

k

)
≈ Pr

(
öSV|φ(EN,SV)

k

)
.

Most multilingual topic models extend LDA with one or both of two types of “link” information: docu-
ment translations and word translations.

Document Links. The polylingual topic model (Mimno et al., 2009; Ni et al., 2009) assumes that
during the generative process, a topic distribution θd generates a tuple of comparable documents in
different languages, i.e., d =

(
d(`1), . . . , d(`L)

)
and each language ` has its own topic-word distributions,

φ
(`)
k . This model has been widely used (Vulić et al., 2013; Platt et al., 2010; Smet and Moens, 2009), but

it requires a parallel/comparable corpus in order to link documents.

Vocabulary Links. Another type of model uses word translations (Jagarlamudi and Daumé III, 2010;
Boyd-Graber and Blei, 2009) rather than linking documents. A multilingual dictionary is used to con-
struct a tree structure where each internal node contains word translations, and applies hyper-Dirichlet
type I distributions to generate words (Andrzejewski et al., 2009; Minka, 1999; Dennis III, 1991). For
each topic k, a distribution from root r to all the internal nodes i is drawn by φk,r ∼ Dir(βr), and then

a distribution from i to a leaf node is drawn by φ(`)
k,i ∼ Dir

(
β

(`)
i

)
. A word w(`) in language ` is drawn

from a product of the two multinomial distributions by w(`) ∼ Mult
(
φk,r · φ(`)

k,i

)
.
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Variations. Many variations of these ideas have been proposed to deal with non-parallel corpus. Hey-
man et al. (2016) proposed C-BILDA, which distinguishes between shared and non-shared topics across
languages, based on a document links model. The model, however, requires a comparable dataset that
provides document links between languages. A variation proposed by Ma and Nasukawa (2017) deals
with non-parallel corpora. This model is essentially a modified version of Jagarlamudi and Daumé III
(2010) and Boyd-Graber and Blei (2009), so we consider this work to be another vocabulary links model.
Other models have been proposed for very specific situations that needs additional supervision. For ex-
ample, Krstovski et al. (2016) requires scientific article section alignments, and Gutiérrez et al. (2016)
requires Part-of-Speech (POS) taggers, which are not always available for all languages. Without POS

taggers, this model is equivalent to vocabulary links. In our work, we focus on the standard document
links and vocabulary links models, which are the most generalizable models.

3 Document Links: A Crosslingual Transfer Perspective

Before we introduce our new approach, we first present an alternative understanding of the document
links model from the perspective of crosslingual transfer learning. In multilingual topic models, “knowl-
edge” refers to word distributions for a topic in a language `, and we study how multilingual topic models
transfer this knowledge from one language to another so that the model provides semantically coherent
topics that are consistent across languages.

In the standard document links model, a “link” between a document d`1 in language `1 and d`2 in `2
indicates that they are translations or closely comparable. In this model, the topic assignments for both
documents are independently generated from the same distribution, θd`1,d`2 . Thus, the joint likelihood of
document links model is:

Pr (wd`1 , zd`1 ,wd`2 , zd`2 |α, β) , (1)

where wd` and zd` are the word tokens and topic assignments of document d`. We refer this formulation
as the joint generative model, since the topics and words of d`1 and d`2 are generated simultaneously.

The simultaneousness of this model formulation, in which both languages generate topics jointly,
masks the knowledge transfer process. To highlight this process, and to help us generalize the model in
the next section, we define an alternative formulation in which d`1 and d`2 are generated sequentially.

Assume the topics of d`1 have already been generated from θd`1 ∼ Dir(α), and nd`1 ∈ NK is a vector
of topic counts in d`1 . In our alternative formulation, the generation of topics of d`2 depends on d`1 by
θd`2 ∼ Dir(α + nd`1), where the prior α + nd`1 encourages the distribution θd`2 to be similar to θd`1 .
This formulation can go the other way, i.e., generating d`2 first, and then d`1 . The combined likelihood
of this formulation is:

Pr (wd`1 , zd`1 |wd`2 , zd`2 , α, β) · Pr (wd`2 , zd`2 |wd`1 , zd`1 , α, β) , (2)

and we refer to this formulation as the conditional generative model.
This alternative formulation explicitly shows the knowledge transfer process across languages by shap-

ing the topic parameters for `2 to be similar to that of the other language `1, and vice versa. In this for-
mulation, the likelihood of the conditional generative model is different from the joint generative model.
In fact, this is an instance of pseudolikelihood (Besag, 1975; Leppä-aho et al., 2017), where the joint
likelihood of the two documents is approximated as the product of each document’s conditional likeli-
hood given the other, i.e., Pr(d`1 , d`2) ≈ Pr(d`1 |d`2) ·Pr(d`2 |d`1). As Leppä-aho et al. (2017) suggests,
pseudolikelihood is not a numerically accurate approximation to the joint likelihood; Theorem 1 below,
however, states that this formulation yields exactly the same posterior estimations of θ and φ.

Theorem 1. The conditional generative model with document links yields the same posterior estimator
to the joint generative model using collapsed Gibbs sampling.

Proof. See Appendix.
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D(`1)

�d`2
= [0, 1, 0] �d`2

= [0.1, 0.6, 0.3]

✓d`2
⇠ Dirichlet

⇣
↵ + �d`2

· N(`1)
⌘

softlinkhardlink

n1,`1 n2,`1 n3,`1
✓d`2

⇠ Dirichlet (↵ + n2,`1)

Figure 2: An illustration of how topic knowledge is transferred across languages through HARDLINK and
SOFTLINK. To generate observations in d`2 , both models uses topics in `1 as prior knowledge to shape
the Dirichlet prior for d`2 . This transfer happens in HARDLINK by aligned documents in a comparable
corpus, while SOFTLINK uses a generalized transfer distribution δ.

4 Generalizing Document Links

Obtaining parallel corpora for training the document links model is very demanding, particularly for
low-resource languages. Therefore, as the second major contribution in this paper, we generalize the
document links model using the formulation described above to require only a bilingual dictionary.

4.1 From Hard Links to Soft Links

Following the above discussion, we introduce our method assuming the directionality from language `1
to `2. We generalize the model above by rewriting the generation of the distribution θd`2 :

θd`2 ∼ Dirichlet
(
α+ δd`2 ·N(`1)

)
, (3)

where N(`1) ∈ N|D(`1)|×K is the matrix of topic counts per document with K topics in the corpus D(`1)

of language `1. This is equivalent to the above document links model when δd`2 ∈ R|D(`1)| is an indicator
vector that has value 1 for the corresponding parallel document d`1 ∈ D(`1) and 0 elsewhere. We refer
this as hard links (HARDLINK), where each document d`2 ∈ D(`2) is informed by exactly one document
d`1 , and this link is known a priori from a parallel corpus.

We create soft links (SOFTLINK) by relaxing the assumption that δd`2 is an indicator vector, instead
allowing δd`2 to be any distribution over documents in D(`1), a mixture of potentially multiple docu-
ments in language `1 to inform parameters for a document d`2 in language `2. We refer this distribution
as the transfer distribution. The Dirichlet prior for document d`2 contains topic knowledge N(`1) trans-
ferred from corpus D(`1), encouraging θd`2 to be proportionally similar to documents in D(`1). Figure 2
illustrates this process.

4.2 Defining the Transfer Distribution

The transfer distribution of document d`2 indicates how much knowledge should be transferred from
every document d`1 ∈ D(`1). Intuitively, if d`1 and d`2 have a large amount of overlapping word transla-
tions, their topics should be similar as well. Therefore, we define the values of δ based on the similarity
of document pairs using a bilingual dictionary. Specifically, for a document d`2 ∈ D(`2) , the transfer
distribution of d`2 , denoted as δd`2 , is a normalized vector of size |D(`1)|, i.e., the size of corpus D(`1).
Each cell in δd`2 corresponds to a document d`1 ∈ D(`1), defined as:

(δd`2)d`1 ∝ | {w`1} ∩ {w`2} |
| {w`1} ∪ {w`2} |

, ∀ w`1 ∈ d`1 and w`2 ∈ d`2 , (4)

where {w`} contains all the word types that appear in document d`, and {w`1} ∩ {w`2} indicates all
word pairs (w`1 , w`2) that can be found in a dictionary as translations. In other words, (δd`2)d`1 is the
proportion of words in the document pair (d`1 , d`2) that are translations of each other.

In practice, a dense transfer distribution is computationally inefficient and is less meaningful than a
sparse distribution, as it becomes approximately uniform due to the large size of the corpus. The transfer
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Figure 3: Plate notation of a multilingual topic model using soft links and vocabulary links.

distribution should be more heavily concentrated on documents with higher word-level translation prob-
abilities, while reducing the noise negatively transferred from those with low probabilities. To this end,
we propose two approaches to help transfer distributions more efficiently focus on specific documents.

4.2.1 Static Focusing: a Threshold Method
The first method is to focus the distribution on the highest values such that values below a threshold are
set to 0, while the remaining values are renormalized to sum to 1. The modified distribution is thus:

(
δ̃d`2

)
d`1

∝ 1

{
(δd`2)d`1 > π ·max (δ)

}
· (δd`2)d`1 (5)

where 1 is an indicator function, and π ∈ [0, 1] is the focal threshold, a fixed parameter that adjusts the
threshold. The threshold is defined with respect to the maximum value of δ. A corpus-wise threshold
chooses max(δ) from all the δd`2 in D(`2) globally, while we also consider a document-wise threshold
for each document, π ·max (δd`2). We refer these two manners as the selection scope.

4.2.2 Dynamic Focusing: an Annealing Method
Static focusing treats transfer distributions δ as fixed parameters during sampling, and it is difficult to
decide how sparse a transfer distribution should be to achieve optimal performance. Therefore, we
propose dynamic focusing, where we avoid choosing a specific focal threshold and selection scope.
Specifically, we adjust the transfer distribution during inference dynamically, beginning with a dense
transfer distribution and iteratively sharpening the distribution using deterministic annealing (Ueda and
Nakano, 1994; Smith and Eisner, 2006; Paul and Dredze, 2015).

Assume at iteration t, the transfer distribution for a document d`2 is denoted as δ(t)
d`2

. Then at iteration

t′, we anneal its transfer distribution by
(
δ

(t′)
d`2

)
d`1
∝
(
δ

(t)
d`2

)1/τ

d`1
where τ is a fixed temperature, which

we set to 0.9 in our experiments. We start with non-focused transfer distributions, and apply annealing
at scheduling intervals during Gibbs sampling.

Designing an effective annealing schedule is critical. We propose two schedules below.

Fixed Schedule. The simplest schedule is to apply annealing for all transfer distributions every I iter-
ations. In our experiments, we set I = 10 (i.e., t′ = t + 10) and stop annealing after 400 iterations. A
potential problem with fixed schedule is that it can “over-anneal” the transfer distributions, i.e., all the
mass converges to only one document.

Adaptive Schedule. A robust multilingual topic model should produce similar distributions over topics
for a pair of word translations c = (w`1 , w`2), where we call c a concept. In other words, given a topic k,
the probability of expressing a concept i in language `1 should be similar to language `2. Thus, during
iteration t, we calculate ϕ(`,t)

c , the distribution over K topics for each concept c for each language `.
Using ϕ(`,t)

c as features and its language ` as labels, we perform five-fold cross-validation by logistic
regression for all concepts c. We define the average classification accuracy over the five folds as the
language identification score (LIS). The lower the LIS, the better the model, since a high LIS means the
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inferred distributions are inconsistent enough to discriminate between languages. This idea is related to
adversarial training between languages (Chen et al., 2016).

During Gibbs sampling, we calculate LIS after each iteration, and average LIS every I iterations. We
anneal all transfer distributions at iteration t only if LISt−I:t > LISt−2I:t−I . That is, if the average LIS

score during iteration t − I and t has been increasing since iteration t − 2I to t − I , we treat this as a
warning sign of increased LIS and thus anneal the transfer distributions. As we sharpen δ by annealing,
knowledge transfer between languages becomes more specific.

4.3 Modularity of Models
Multilingual topic models can include the different types of information we described in Section 2:
document links, vocabulary links, or both (Hu et al., 2014), while a model with neither is equivalent to
LDA. Document links can be either hard or soft, or a mix of both, as the only distinction is whether
the transfer distribution is an indicator vector. A complete model with both soft document links and
vocabulary links is shown in Figure 3. In Section 5, we experiment with a combination of SOFTLINK

and VOCLINK.

5 Experiments

5.1 Data
We use five corpora in five languages from different language groups: Arabic (AR, Semitic), Spanish
(ES, Romance), Farsi (FA, Indo-Iranian), Russian (RU, Slavic), and Chinese (ZH, Sinitic). Each language
is paired with English (EN, Germanic), and we train multilingual topic models on these language pairs
individually. All the corpora listed below are available at http://opus.nlpl.eu/. For preprocess-
ing, we use stemmers to lemmatize and segment Chinese documents, and then remove stop words and
the most frequent 100 word types for each language. Refer to the appendix for additional details.

Training corpora. As in many multilingual studies (Ruder et al., 2017), we use Wikipedia as our
training corpus for multilingual topic models, and create two corpora, WIKI-INCO and WIKI-PACO for
each language pair (EN, `). For WIKI-INCO, we randomly select 2, 000 documents in each language
without any connections, so that no documents are translations of each other (an incomparable corpus).
We also create a partially comparable corpus, WIKI-PACO, which contains around 30% comparable
document pairs for each language pair.

Test corpora. We create two test corpora for each language pair (EN, `) from TED Talks 2013 (TED)
and Global Voices (GV), which provide categories for each document that can be used as classification
labels. The first one, TED+TED, contains documents from TED in both languages, while the second one,
TED+GV contains English documents from TED and non-English documents from GV. After training a
topic model, we use φ(EN) and φ(`) to infer topics from both languages. For TED+TED, we choose the
five most frequent labels in TED as the label set (technology, culture, science, global issues, and design);
for TED+GV, we replace global issues and design with business and politics, since the label set from GV

does not include global issues and design.

Dictionary. We use Wiktionary to extract word translations for VOCLINK and to calculate transfer
distribution values δ for SOFTLINK. The dictionary is available at https://dumps.wikimedia.
org/enwiktionary/.

5.2 Inference Settings
For each compared model, we set the number of topics K = 25. We run the Gibbs samplers for 1, 000
training iterations and 500 iterations to infer topic distributions on test corpora. We set Dirichlet priors
α = 0.1 and β = 0.01 for HARDLINK and SOFTLINK. For VOCLINK, we set βr = 0.01 for priors from
root to internal nodes, and βi = 100 from internal nodes i to leaves, following Hu et al. (2014).

5.3 Evaluation Metrics
We evaluate each model in two ways. Experimental results below are averaged across all language pairs.
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5.3.1 Intrinsic Evaluation: Multilingual Topic Coherence
Typical topic model evaluations include intrinsic and extrinsic measurements. Intrinsic evaluation fo-
cuses on topic quality or coherence of the trained topics. The most widely-used metric for measuring
monolingual topic coherence is normalized pointwise mutual information (Lau et al., 2014; Newman et
al., 2010). Hao et al. (2018) proposed crosslingual normalized pointwise mutual information (CNPMI)
by extending this idea to multilingual settings, which correlates well with bilingual speakers’ judgments
on topic quality.

Given a bilingual topic k in languages `1 and `2, and a parallel reference corpus R(`1,`2), the CNPMI

of topic k is calculated as:

CNPMI(`1, `2, k) =
1

C2

C∑

i,j

1

log Pr
(
w

(`1)
i , w

(`2)
j

) · log
Pr
(
w

(`1)
i , w

(`2)
j

)

Pr
(
w

(`1)
i

)
Pr
(
w

(`2)
j

) (6)

where C is the cardinality of a topic, i.e., the C most probable words in the topic-word distribution φ(`)
k .

The co-occurrence probability of two words, Pr
(
w

(`1)
i , w

(`2)
j

)
, is defined as the proportion of document

pairs where both words appear. In the results below, we set C = 20, and average the CNPMI scores over
K = 25 topics for each model output.

To calculate CNPMI scores, we use 10, 000 document pairs from a held-out portion of Wikipedia.
CNPMI is an intrinsic evaluation, so it is only available for the training sets, WIKI-PACO and WIKI-INCO.

5.3.2 Extrinsic Evaluation: Crosslingual Classification
A successful multilingual topic model should provide informative features for crosslingual tasks. To
show that our model is beneficial to downstream applications, we use crosslingual document classifi-
cation to evaluate topic model performance. A high classification accuracy when testing on a different
language from training indicates topic consistency across languages (Hermann and Blunsom, 2014; Kle-
mentiev et al., 2012; Smet et al., 2011).

As in other studies on multilingual topic models, we first train topic models on a bilingual corpus
D(`1,`2), and then use topic-word distributions φ(`1) and φ(`2) to infer document-topic distributions on
unseen documentsD′(`1) andD′(`2). Thus, a classifier is trained on θd`1 with corresponding labels where
d`1 ∈ D′(`1), and tested on θd`2 where d`2 ∈ D′(`2), and vice versa. In our experiments, we use WIKI-
PACO and WIKI-INCO to train topic models first, and then perform inference on either TED+TED (both
English and non-English documents from TED) or TED+GV (English documents from TED and non-
English from GV). For each language pair, we train multi-label classifiers using support vector machines
(SVM) with five-fold cross-validation on documents in one language and test on the other. The F-1
scores reported below are micro-averaged over all labels.

5.4 Baseline Comparison
We first compare SOFTLINK with other models: HARDLINK, which is expected to do well on the partially
comparable corpus (WIKI-PACO) but poorly on the incomparable corpus (WIKI-INCO), and VOCLINK.
We additionally combine SOFTLINK+VOCLINK.

Figure 4 shows the performance (both intrinsic and extrinsic) of all models. For the SOFTLINK models,
we used the optimal hyperparameter settings, but we compare other settings in Section 5.5.

When the training corpus is partially comparable (WIKI-PACO), all models can learn comparably co-
herent topics based on CNPMI scores, though the CNPMI of HARDLINK is lower than all other models.
When the data is completely incomparable (WIKI-INCO), HARDLINK loses all connections between lan-
guages, so as expected its topics are least coherent. Similarly, when measuring classification perfor-
mance, HARDLINK is comparable to VOCLINK on WIKI-PACO, but much worse on WIKI-INCO, where it
loses all information. When the test set contains mostly parallel documents (TED+TED), the F-1 scores
are higher, but when the test domain changes across languages (TED+GV), the performance drops.

On the other hand, SOFTLINK consistently outperforms other models regardless of training and test
sets. It seems that SOFTLINK benefits from learning new connections between documents, even when
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Figure 4: SOFTLINK consistently outperforms other models on both topic quality evaluation (CNPMI)
and classification performance (F-1).
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Figure 5: CNPMI scores and F-1 scores of crosslingual classification under different focal thresholds and
selection scope of the transfer distribution for SOFTLINK and SOFTLINK+VOCLINK (Section 4.2).

part of the corpus contains direct links for training HARDLINK. It is also interesting that SOFTLINK uses
the same dictionary resource as VOCLINK, but has a relative performance increase around 25%. It seems
SOFTLINK can more efficiently utilize lexical information in a dictionary. We explore this relationship
more in Section 5.6.

Finally, we observe that combining SOFTLINK+VOCLINK provides a performance boost over SOFT-
LINK in all cases, though the increase is small.

5.5 Comparison of Focusing Methods

We have shown that, when optimized, SOFTLINK can better utilize dictionary resources and outperform
other models. We now focus on different training configurations for SOFTLINK, specifically, different
methods of focusing the transfer distribution (Section 4.2).

Figure 5 shows how F-1 and CNPMI scores change with different static focusing methods. We vary
the focal threshold and selection scope (i.e., doc-wise or corpus-wise) for transfer distributions. As
we increase the focal threshold π, more documents are zeroed out in the transfer distributions. When
π = 0.6 or 0.8, the transfer distributions are very sparse, and we notice that document-wise selection
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F-1 scores (TED+TED) F-1 scores (TED+GV) CNPMI
LIS Fixed LIS Fixed LIS Fixed

WIKI-PACO 0.627 0.638 0.551 0.534 0.256 0.258
WIKI-INCO 0.551 0.526 0.475 0.470 0.220 0.217

(a) Training SOFTLINK model.
F-1 scores (TED+TED) F-1 scores (TED+GV) CNPMI

LIS Fixed LIS Fixed LIS Fixed
WIKI-PACO 0.640 0.647 0.557 0.543 0.261 0.266
WIKI-INCO 0.546 0.517 0.459 0.465 0.242 0.233

(b) Training SOFTLINK with VOCLINK.

Table 1: Dynamically focusing transfer distributions in SOFTLINK yields competitive results on classifi-
cation and topic quality evaluation. There is no significant difference between Fixed and LIS schedules.

achieves the best performance. In the extreme case that π = 1, the transfer distributions are all zero,
so SOFTLINK loses its connections between `1 and `2, and thus degrades to monolingual LDA. When
training SOFTLINK with VOCLINK, the change of CNPMI and F-1 scores are less obvious as we increase
focal threshold, since increasing focal threshold only has an impact on the SOFTLINK component of the
model. When the focal threshold is higher, fewer soft links are active, so the model is closer to a plain
VOCLINK model.

Interestingly, when focal threshold π changes from 0.2 to 0.4, F-1 scores of corpus-wise selection
scope trained on SOFTLINK drops drastically, in contrast to document-wise. This is because using corpus-
wise selection could set a large portion of transfer distributions to zero, and only a small number of
documents have non-zero transfer distributions. Since corpus-wise selection relies on the entire training
corpus, it must be used with caution.

We find that using annealing to dynamically focus the distributions works well and is competitive
with static focusing (Table 1). Annealing does better than the majority of settings of static focusing,
though is worse than optimally-tuned focusing. We do not observe a significant difference between the
two annealing schedules. When combining SOFTLINK and VOCLINK, the patterns are similar to that of
SOFTLINK only.

5.6 Sensitivity to Dictionary Size

Both VOCLINK and SOFTLINK use the same dictionary resource, yet SOFTLINK produces better features
for downstream tasks. To understand this behavior better, we experiment with different dictionary sizes
to understand how well the models are utilizing the resource.

In Figure 6, we use different proportions (20%, 40%, . . ., 80%) of the dictionary to train SOFTLINK

and VOCLINK.4 We observe that the performance of VOCLINK (both F-1 and CNPMI) increases almost
linearly with the dictionary size. In contrast, SOFTLINK is already at its best performance with only 20%
of the available dictionary entries. This is further confirmation that SOFTLINK is using this resource in a
more efficient way.

In VOCLINK, knowledge transfer happens through internal nodes of the word distribution priors, i.e.,
word translations pairs, and words without translations are directly connected to the Dirichlet tree’s root.
If the dictionary cannot cover all the word types appeared in the training set, VOCLINK will have a set
of word types in `1 that cannot transfer enough topic knowledge to `2 and vice versa. The fewer entries
the dictionary provides, the more VOCLINK degrades to monolingual LDA. In contrast, SOFTLINK can
potentially transfer knowledge from the whole corpus. For SOFTLINK, the dictionary is not used directly
for modeling, rather it is only used for linking documents. Thus, knowledge transfer does not heavily
rely on the number of entries in the dictionary.

4We use document-wise selection scope and focal threshold π = 0.6 for training SOFTLINK; same as in Section 5.4.
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Figure 6: Performance of VOCLINK continues increasing when more dictionary entries are added, while
SOFTLINK performance mostly stabilizes after using only 20% of available dictionary entries.

5.7 Discussion

The sensitivity to dictionary size is an important factor to be considered in practice. For low-resource
languages, a dictionary is easier to obtain than a large parallel corpus (Section 1). Models that rely on
dictionaries such as VOCLINK and SOFTLINK are therefore more applicable to low-resource languages
than HARDLINK. However, there are also large variations in dictionary size among languages. For
example, in Wiktionary, 57 languages have fewer than 1,000 entries, while 77 languages have more
than 100,000 entries. For truly low-resource languages, dictionary size could be a limiting factor. Since
SOFTLINK can outperform VOCLINK with only a limited amount of lexical information, it may be able
to transfer knowledge to low-resource languages more effectively than other approaches.

In summary, SOFTLINK relaxes and generalizes HARDLINK to be adaptable to more situations, while
using dictionary information more efficiently than VOCLINK.

6 Conclusions and Future Work

We have described a new formulation for multilingual topic models which explicitly shows the knowl-
edge transfer process across languages. Based on this analysis, we proposed a new multilingual topic
model that can learn multilingually coherent topics and provide consistent topic features for crosslingual
tasks. Unlike existing models, our approach is flexible and adaptable to incomparable corpora with only
a dictionary, which is beneficial in many situations, in particular low-resource settings.

There are many possible directions following this work. First, our formulation of the knowledge
transfer process enables future work focusing on how to develop more efficient algorithms that transfer
knowledge with minimal supervision. Second, for SOFTLINK we plan to explore more about character-
istics of languages that can lead to better formulations and learning of the transfer distributions.
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Jagadeesh Jagarlamudi and Hal Daumé III. 2010. Extracting Multilingual Topics from Unaligned Comparable
Corpora. In Advances in Information Retrieval, 32nd European Conference on IR Research, ECIR 2010, Milton
Keynes, UK, March 28-31, 2010. Proceedings, pages 444–456.

David Kamholz, Jonathan Pool, and Susan M. Colowick. 2014. PanLex: Building a Resource for Panlingual Lex-
ical Translation. In Proceedings of the Ninth International Conference on Language Resources and Evaluation,
LREC 2014, Reykjavik, Iceland, May 26-31, 2014., pages 3145–3150.

Alexandre Klementiev, Ivan Titov, and Binod Bhattarai. 2012. Inducing Crosslingual Distributed Representations
of Words. In COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the
Conference: Technical Papers, 8-15 December 2012, Mumbai, India, pages 1459–1474.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. MT Summit.

Kriste Krstovski and David A. Smith. 2016. Bootstrapping Translation Detection and Sentence Extraction from
Comparable Corpora. In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17,
2016, pages 1127–1132.



2606

Kriste Krstovski, David A. Smith, and Michael J. Kurtz. 2016. Online Multilingual Topic Models with Multi-
Level Hyperpriors. In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17,
2016, pages 454–459.

Jey Han Lau, David Newman, and Timothy Baldwin. 2014. Machine Reading Tea Leaves: Automatically Evaluat-
ing Topic Coherence and Topic Model Quality. In Proceedings of the 14th Conference of the European Chapter
of the Association for Computational Linguistics, EACL 2014, April 26-30, 2014, Gothenburg, Sweden, pages
530–539.

Janne Leppä-aho, Johan Pensar, Teemu Roos, and Jukka Corander. 2017. Learning Gaussian Graphical Models
with Fractional Marginal Pseudo-Likelihood. International Journal of Approximate Reasoning, 83:21–42.

Xiaodong Liu, Kevin Duh, and Yuji Matsumoto. 2015. Multilingual Topic Models for Bilingual Dictionary
Extraction. ACM Transactions on Asian & Low-Resource Langanguage Information Processing., 14(3):11:1–
11:22.

Tengfei Ma and Tetsuya Nasukawa. 2017. Inverted Bilingual Topic Models for Lexicon Extraction from Non-
parallel Data. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages 4075–4081.

David M. Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith, and Andrew McCallum. 2009. Polylin-
gual Topic Models. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2009, 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL,
pages 880–889.

Thomas Minka. 1999. The Dirichlet-tree Distribution.
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Appendix A Pseudolikelihood

Theorem 1. The conditional generative model with document links yields the same posterior estimator
to the joint generative model using collapsed Gibbs sampling.

Proof. Suppose the document links model is sampling topic of the m-th token in document d`2 . The
sampler calculates the conditional topic distribution, and then draw a topic assignment. Using collapsed
Gibbs sampling, we calculate the conditional probability of a topic k:

Pr (zd`2,m = k|zd`2,−,wd`2 ;nd`1 , α, β) =
Pr (zd`2,m = k, zd`2,−,wd`2 ;nd`1 , α, β)

Pr (zd`2,−,wd`2 ;nd`1 , α, β)

=
Pr (zd`2,m = k, zd`2,−,wd`2 ;nd`1 , α)

Pr (zd`2,−;nd`1 , α)
· Pr (wd`2 |zd`2,n = k, zd`2,−;β)

Pr (wd`2 |zd`2,−, β)

=

∏
k′ 6=k Γ

(
nk′|d`2
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′+α

)
·Γ(nk|d`2+nd`1,k

+α+1)
Γ(n·|d+nd`1

+α+1)∏
k Γ(nk|d`2+nd`1,k

+α)
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+Kα)

·

∏
w 6=wd`2,m

Γ(nw|k+β)·Γ
(
nwd`2,m

|k+β+1
)

Γ(n·|k+V (`2)β+1)∏
w Γ(nw|k+β)

Γ(n·|k+V (`2)β)

=
Γ
(
nk|d`2 + nd`1,k + α+ 1

)

Γ
(
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) ·
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)

Γ
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)
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n·|d`2 + nd`1 +Kα
·
nwd`2,m

|k + β

n·|k + V (`2)β
,

where zd`2,− is all the topic assignments in d`2 except the current one, n·|d`2 the number of tokens in
d`2 , nk|d`2 the number of tokens assigned to topic k in d`2 , n·|k the number of tokens assigned to topic
k, nw|k the number of word type w assigned to topic k, and V (`2) the vocabulary size of language `2.
The roles of `1 and `2 are interchangeable, so both languages use the same conditional distributions. The
last equation of the derivation above gives identical posterior estimation in the original model. Thus, the
alternative formulation, despite not a numerically accurate likelihood approximation, does not make a
difference for parameter estimation.

Appendix B Dataset Processing Details

B.1 Pre-Processing

For all the languages, we use existing stemmers to stem words in the corpora and the entries in Wik-
tionary. Since Chinese does not have stemmers, we loosely use “stem” to refer to “segment” Chinese
sentences into words. We also use fixed stopword lists to filter out stop words. Table 2 lists the source of
the stemmers and stopwords.

B.2 Data Source

We list the statistics in Table 3.
1http://snowball.tartarus.org;
2http://arabicstemmer.com;
3https://github.com/6/stopwords-json;
4https://github.com/sobhe/hazm;
5https://github.com/fxsjy/jieba.
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Language Family Stemmer Stopwords
EN Germanic SnowBallStemmer 1 NLTK
ES Romance SnowBallStemmer NLTK
RU Slavic SnowBallStemmer NLTK
AR Semitic Assem’s Arabic Light Stemmer 2 GitHub 3

FA Indo-Iranian Hazm 4 GitHub
ZH Sinitic Jieba 5 GitHub

Table 2: List of source of stemmers and stopwords used in experiments.

WIKI-PACO WIKI-INCO TED GV
Wikipedia

(for CNPMI) Wiktionary

AR
#docs 2,000 2,000 1,112 2,000 8,862

16,127#tokens 1,075,691 293,640 1,521,334 466,859 79,740
#types 32,843 19,900 44,982 32,468 1,533,261

ES
#docs 2,000 2,000 1,152 2,000 9,325

31,563#tokens 475,234 237,561 1,228,469 493,327 1,763,897
#types 35,069 27,465 30,247 28,471 91,428

FA
#docs 2,000 2,000 687 401 9,669

14,952#tokens 415,620 91,623 1,415,263 89,414 940,672
#types 18,316 9,987 36,670 9,447 46,995

RU
#docs 2,000 2,000 1,010 2,000 9,837

33,574#tokens 4,368,563 766,887 1,133,098 679,217 2,356,994
#types 51,740 24,341 44,577 47,395 134,424

ZH
#docs 2,000 2,000 1,123 2,000 8,222

23,276#tokens 3,095,977 303,634 1,428,532 745,307 1,338,116
#types 59,431 30,481 71,906 69,872 144,765

Table 3: Statistics of corpora and dictionary in the five languages used in the experiments.

Wikipedia (WIKI-PACO, and WIKI-INCO). For training multilingual topic models, the dataset
Wikipedia can be downloaded at http://opus.nlpl.eu/TED2013.php. For each language pair
(EN, `), we create WIKI-INCO, a completely incomparable corpus, where 2, 000 EN documents and
2, 000 non-English documents are randomly chosen but do not contain document-level translations to
each other.

We also create WIKI-PACO, a partially comparable corpus. Each language has different proportions of
comparable document pairs. See Table 4.

TED Talks 2013 (TED). TED Talks 2013 contains mostly parallel documents, and can be obtained
from OPUS: http://opus.nlpl.eu/TED2013.php. Note that not all English documents have
translations to another language, which is slightly different from the original assumptions in polylingual
topic models.

The classification labels can be obtained from the documents. Each document has several “categories”
that can be regarded as labels. Thus, we retrieve those labels, and choose the most frequent five labels
for classification: technology, culture, science, global issues, and design.

Global Voices (GV). Global Voices can be obtained from OPUS as well: http://opus.nlpl.
eu/GlobalVoices.php. Global Voices corpus has a large number of documents, so for efficiency,
we randomly choose a sample of at most 2,000 documents for each language.

There’s no label information from the corpus itself. However, the labels can be retrieved from the
webpage of each document, at https://globalvoices.org. To make sure Global Voices have

Languages AR ES FA RU ZH

Proportion 12.2% 9.35 % 50.85 % 50.20 % 17.90 %

Table 4: Proportions of linked document pairs in corpus WIKI-PACO.
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the same label set to TED Talks, we changed the label set to: technology, culture, science, business, and
politics.

Wiktionary. We use English Wiktionary to create bilingual dictionaries, which can be downloaded at
https://dumps.wikimedia.org/enwiktionary/.


