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Abstract 

Question-Answer (QA) matching is a fundamental task in the Natural Language Processing 

community. In this paper, we first build a novel QA matching corpus with informal text which 

is collected from a product reviewing website. Then, we propose a novel QA matching approach, 

namely One vs. Many Matching, which aims to address the novel scenario where one question 

sentence often has an answer with multiple sentences. Furthermore, we improve our matching 

approach by employing both word-level and sentence-level attentions for solving the noisy 

problem in the informal text. Empirical studies demonstrate the effectiveness of the proposed 

approach to question-answer matching. 

1 Introduction 

Question answer (QA) matching is a task to determine whether an answer is answering a given ques-

tion. For instance, in Figure 1, the question “Where is dear john filmed at?” in E1 has two candidate 

answers “The movie was filmed in 2009 in Charleston.” and “The file was released on May 25, 2010 

on DVD.” The first answer is determined with the “Matching” category since it answers the question 

while the second answer is “Non-matching” since it could not answer the question. The past five years 

have witnessed a huge exploding interest in the research on QA matching, due to its widely applica-

tions, such as question answering (Yang et al., 2015; Tan et al., 2016; Wang et al., 2017) and reading 

comprehension (Trischler et al., 2016; Dhingra et al., 2017).  

However, all existing QA matching studies only focus on formal text. In real applications, there 

exists many scenarios where the QA text is informal. For instance, E2 is a question-answer pair ext- 
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Q2:Where is dear john filmed at? A2: The film was released on May 25,  2010 on DVD.
Label: Non-matching

E2: Three QA pairs in informal text

Q: Will the response time slow after updating os? What  
     about the battery? What about the screen?

A: The response time is not a spark of slow, it has 4G 
     RAM. But you must use it carefully, my phone's 
     secreen has broke down.

Q2: What about the battery?

Q3: What about the screen? A3: The response ...... broke down.

A2: The response ...... broke down.

Label: Non-matching

Label: Matching

E1: Two QA pairs in formal text

Q1: Where is dear john filmed at? A1: The movie was filmed in 2009 in Charleston.
Label: Matching

Q1: Will the response time slow after updating os? A1: The response ...... broke down.
Label: Matching

 
Figure 1: Some QA examples with their matching labels 
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racted from the product reviewing platform “Asking All” in Taobao1. The QA text is informal where 

the question “Will the response time slow after updating os? What about the battery? What about the 

screen?” has more than one question and the answer contains multiple sentences which answer the 

first and the third sub-questions, leaving the second question un-solved. For simplicity, we split the 

question into three questions and generate three question-answer pairs, as shown in Figure1. In prin-

ciple, for QA matching in the formal text, there are two main challenges: 

First, for a particular sub-question, the answer contains multiple sentences, some of which do not 

answer this sub-question but other sub-questions. For instance, in E2, for the first question “Will the 

response time slow after updating os?”, only the first sentence answers this question and the fourth 

sentence answers the third question “What about the screen?”. 

Second, the answer even might contain many uncorrelated sentences. For instance, in E2, the sen-

tence “It has 4G RAM” and “But you must use it carefully” are uncorrelated with all three sub-ques-

tions. That is to say, there exits noisy information in some answers in informal text. 

In this paper, we focus the research on QA matching with informal text. First of all, we build a 

novel QA matching corpus with informal text which contains many question-answer pairs from a 

product reviewing website. Then, we attempt to propose a novel QA matching approach for informal 

text. To deal with the first challenge above, we propose a novel matching approach, namely, One vs. 

Many Matching, to learn the matching measurement with one question sentence and multiple answer 

sentences. Specifically, we first adopt the BIMPM (Wang et al., 2017) to implement the matching 

measurement with one question sentence and one answer sentence, namely One vs. One Matching. 

Then, we learn the One vs. Many Matching representation by integrating all One vs. One Matching 

representations.  

Furthermore, to deal with the second challenge, we introduce both the word-level and sentence-

level attention mechanisms. Specifically, the word-level attention is applied in the One vs. One Match-

ing learning process while the sentence-level attention is applied in the One vs. Many Matching learn-

ing process.  

The remainder of this paper is organized as follows. Section 2 discusses the related work on QA 

matching. Section 3 presents data collection and annotation. Section 4 proposes our approach to QA 

matching. Section 5 reports the experimental results. Finally, section 6 gives the conclusion and our 

future work. 

2 Related Work 

2.1 Corpus construction 

In previous studies for researching QA matching, there are mainly two corpora, namely TREC-QA 

and WikiQA. Specifically, TREC-QA is proposed by Wang et al. (2007) where the questions are a 

mixture of questions from both query logs and human editors, and the answers are selected from 

documents returned by past participating teams in TREC-QA tracks. Each question has at least one 

answer. WikiQA is proposed by Yang et al (2015). where the questions are sampled from real queries 

of Bing without editorial revision and the answers are from the summary section of a Wikipedia page 

of the topic. Different from TREC-QA, WikiQA has two-thirds questions with no matching answers. 

Unlike these two corpora, this paper proposes a novel corpus for QA matching research where the 

question-answer pairs are real ones from “Asking People” in Taobao. Moreover, different from the 

above corpora, the question-answer pairs in our corpus are informal text. 

2.2 Matching methods  

Generally speaking, QA matching methods could be split into two categories: shallow learning meth-

ods and deep learning methods. 

In shallow learning methods, some shallow learning algorithms, such as CRF, SVM and MaxEnt,   

are employed to train the learning models (Wang et al., 2010). Besides the learning algorithms, the 

related studies on shallow learning methods mainly focus on feature engineering, using linguistic tools 

and using external resources, such as lexical semantic resources (Yih et al., 2013), tree edit distance 

(Yao and Durme, 2013) and named entities (Severyn and Moschitti, 2013). 

                                                           
1 https://www.taobao.com/ 
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In deep learning methods, some neural network algorithms are employed to train learning models. 

Briefly, these methods could be categorized into three categories, i.e., siamense networks, attentive 

networks and compare-aggregate networks. In siamense networks, related studies use classic neural 

networks, such as LSTM and CNN, to get the representations separately and then concatenate them 

to classify. (Feng et al., 2015; Yang et al., 2015; Bowman et al., 2015). In attentive networks, instead 

of using the final time step of LSTM to represent a sentence, related studies use the attention strategy 

to get the weight of overall time steps and then use the weight to represent the sentence. (Tan et al., 

2016; Hermann et al., 2015, Yin et al., 2015). In compare-aggregate networks, related studies use 

different matching strategy to get relationships within words. (He and Lin, 2016; Wang et al., 2017; 

Wang and Jiang, 2016; Trischler et al., 2016; Parikn et al., 2016.). 

However, all above approaches are similar to our One vs. One Matching model which deals with 

the matching measurement between one sentence (or one piece of text) and another sentence (or an-

other piece of text). In contrast, our approach is a One vs. Many Matching model which deals with 

the matching measurement between one sentence (or one piece of text) and multiple sentences (or 

multiple pieces of text). 

3 Data Collection and Annotation 

We collect 4,060 question-answer pairs from “Asking All” in Taobao, which is the most famous and 

biggest electronic business platform in China. The question-answer pairs are mainly from the elec-

tronic domain. Note that if a question contains multiple sub-questions, we split the question into sev-

eral sub-questions and each sub-question and the whole answer is considered as a question-answer 

pair. For instance, as shown in Figure 1, the question in Example 2 contains three sub-questions, and 

we split it into three question-answer pairs. 

To guarantee a high annotation agreement, we propose some annotation guidelines after several 

times of annotation processes on a limited size of data. Then, we ask more people to annotate the 

whole data set according to these annotation guidelines. 

Generally, the two categories, “Matching” and “Non-matching” has following cases. 

1) About the “Matching” category 

(a) The answer directly answers the question. E3 is an example of this case. 

E3: Q: Is the response time slow? 

A: Slow. 

(b) The answer indirectly answers the question. E4 is an example of this case. 

E4: Q: Is the response time slow? 

A: Smooth. 

(c) The answer conditionally answers the question. E5 is an example of this case. 

E5: Q: How long can the battery take? 

     A: If you don’t play games, it can last two days. 

2) About the “Non-matching” category 

(d) The answer is irrelevant with answer. E6 is an example of this case. 

E6: Q: Is the microphone clear?  

      A: The battery life is decent. I like it. 

(e) The answer is about the product but doesn’t talk about the aspect in the question. E7 is 

an example of this case. 

E7: Q: Is the screen clear? 

     A: The quality of the screen is very good. It is a good cell phone. 

(f) The answer is an unknown response. E8 is an example of this case. 

E8: Q: What about the performance of the phone? 

      A: I don’t know, I bought it for my dad. 

For each question-answer pair, we assign two annota-

tors to annotate the category, and the Kappa consistency 

check value of the annotation is 0.83. To deal with the 

question-answer pairs which are inconsistently annotated 

by two annotators, an expert is assigned to check them, 

Category Number 

Matching 2505 

Non-matching 1555 
 

Table 1: Category distribution of the  

annotated data 
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ensuring the quality of data annotation. Table 1 shows the category distribution of the corpus. 

4 Our Approach 

In this section, we propose our approach to QA matching in two steps. First, we propose the One vs. 

One Matching model which measures the matching between one sentence of the question text and one 

sentence in the answer text. Second, we propose the One vs. Many Matching model which measures 

the matching between one sentence of the question text and all sentences in the answer text. 

4.1 One vs. One Matching Model 

Figure 2 shows the overall architecture of our One vs. One Matching approach to QA matching. The 

involved layers are introduced in detail as following.  

Word Encoding Layer. This layer has two inputs: the whole question sentence and one answer 

sentence. We represent the two sentences with d-dimensional vectors which is pre-trained with 

word2vec2. Then we utilize two bi-directional LSTM to encode the both of the sequences into con-

textual embeddings for each time step of the question and the sub answer sentence.  

 
1 2 1 2[ , ,..., ] ([ , ,..., ])N N

q q q q q qh h h LSTM w w w   (1) 

 
1 2 1 2[ , ,..., ] ([ , ,..., ])M M

a a a a a ah h h LSTM w w w   (2) 

 
1 2 1 2[ , ,..., ] ([ , ,..., ])N N

q q q q q qh h h LSTM w w w   (3) 

 
1 2 1 2[ , ,..., ] ([ , ,..., ])M M

a a a a a ah h h LSTM w w w   (4) 

Matching Layer. This is the core layer in our One vs. One matching model. The goal of this layer is  

to compare the final contextual embedding (in the final time step of LSTM) of the sentence in the ques-

tion against all contextual embeddings (in all time steps of LSTM) of one sentence in the answer. As 

                                                           
2 https://code.google.com/archive/p/word2vec/ 

Word Encoding 

Layer

Matching Layer

Word-level 

Attention Layer

···

A

Sentence Vector
Attention Weights

···

Q

··· ··· ··· ···

 
Figure 2: One vs. One Matching model with word-level attention 
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shown in Figure 2, we match two sentences Q and A in two directions.  

Formally, we use cosine function to calculate the similarity between two vectors, i.e., 

 ,( )
N i

N i

q a q acosine h hs     (5) 

Inspired by Wang et al. (2017), we use the multi-perspective full matching strategy therein, i.e.,  

 (  ,  )
N i

k k N k i

q a q as cosine W h W h    (6) 

where  is the element-wise multiplication, and 

kW  is the k-th row of W , which controls the k-th per-

spective and assigns different weights to different dimensions of the dimension space. 

Then, we obtain the similarity matrix 

P M

Q AM R 

  , i.e., 

 

1

1

1 1

N N M

N N M

q a q a

Q A

P P

q a q a

s s

M

s s

 



 

 
 
 
 
  

  (7) 

where P means the number of perspectives.  

Similarly, we get the matrices Q AM  , A QM  and A QM  . 

Word-level Attention Layer. The goal of this layer is to assign weights to the similarity matrix and 

then get the most informative representation of the question sentence and one answer sentence. 

First, we concatenate the Q A  and A Q  similarity matrix as the question-answer matrix. 

 Q A Q A A Q A QM M M M M         (8) 

Second, we calculate the word attention weights Worda  with the following formula, i.e., 

 ( )Word Word Worda tanh W M b    (9) 

Multi-matching 

Encoding Layer

Sentence-level 

Attention Layer

Fully Connected

Layer

Attention Weights

QA Vector 

Bidirectional

LSTM

One vs. One 

Matching Model

···

···

·········

Q A1 A2 AL  
 

Figure 3: One vs. Many Matching model with sentence-level attention 
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where WordW  is an intermediate matrix, Wordb  is an offset value. 

Third, we use a softmax function to normalize Worda , i.e., 

 ( )Word Worda softmax a   (10) 

Finally, we multiply Worda  with 

TM , and get the matching vector v , i.e., 

 
T

Wordv a M   (11) 

The matching vector v  is the most informative representation of the question sentence and one an-

swer sentence. 

4.2 One vs. Many Matching Model 

Figure 3 shows the overall architecture of our One vs. Many Matching approach to QA matching. The 

involved layers are introduced in detail as following. 

One vs. One Matching Model. The purpose of this model is to use the question sentence and one 

answer sentence to calculate the most informative representation iv . Suppose the answer contains L 

sentences, then we obtain the matching vectors between the question and answer, i.e., 1 2[ , ,..., ]LV v v v . 

Multi-matching Encoding Layer. In this layer, we treat the above matching vectors as a sequence 

and employ a Bi-directional LSTM to learn a new representation, i.e.,  

 ( ) ( )H LSTM V LSTM V    (12) 

Sentence-level Attention Layer. The goal of this layer is to get the most informative representation 

of the representation H . 

First, we calculate the sentence attention weights .Sena , i.e., 

 . . .( )Sen Sen Sena tanh W H b    (13) 

where .SenW  is an intermediate matrix. .Senb  is an offset value. 

Second, we use a softmax function to normalize .Sena , i.e., 

 . .( )Sen Sena softmax a   (14) 

Finally, we multiply .Sena  with 

TH , and get the matching vector z , i.e., 

 .

T

Senz a H   (15) 

The matching vector z  is the final representation for representing the matching measurement be-

tween the question and the whole answer. 

Fully Connected Layer. The goal of this layer is to use the matching vector z  to perform classifica-

tion. Formally, we feed z to a softmax classifier, i.e., 

 l lo W z b    (16) 

where 

Ko R  is the output, lW  is the weight matrix and lb  is the bias. K  is the number of categories. 

Then the probability of the category  1,k K  is computed by: 

 

1

( )

( )

k

K

tt

exp o
p

exp o







  (17) 

where   denotes all parameters. Finally, the label with the highest probability stands for the predict label 

of the question-answer pair. 

4.3 Model training 

We use cross-entropy loss function to train our model end-to-end given a set of training data ,t tx y , 

where tx  is the t -th question-answer pair to be predicted, and ty  is one-hot representation of the true 

category for tx . We present this model as black-box function ( )x  whose output is a vector representing 

the probability of categories. The goal of training is to minimize the loss function as following, 
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    
'

2

2
1 1

 log
2

N K
k

t t

t k

l
J y x  

 

      (18) 

where N  is the number of training samples and 
'l  is a L2 regularization to bias parameters. 

We take Adam (Kingma and Ba, 2014) as the optimizing algorithm, and all the matrix and vector 

parameters are initialized with a uniform distribution in 6 / ( ), 6 / ( )r c r c   
 

, where r and c are 

the rows and columns of the matrix (Glorot and Bengio, 2010). 

5. Experiment 

In this section, we systematically evaluate the performance of our approach to QA matching. 

5.1 Experiment settings 

Data Settings: As introduced in Section 3, the data contains 4,060 question-answer pairs and we 

randomly split the data into a training set (80% in each category), and a test set (the remaining 20% 

in each category). We also aside 10% data from training data as development data which is used to 

tune the parameters in each learning algorithm. 

Word Segmentation and Embeddings: The Jieba3 segmentation tool is employed to segment all 

Chinese text into words and word2vec4 is employed to pretrain word embeddings using the data set 

that contains 200,000 question-answer pairs from the electronic domain. The dimensionality of the 

word vector is set to be 100 and the window size is set to be 1. 

Sentence Split: We run sentence splitting with the CoreNLP5 tool. 

Hyper-parameters: The hyper-parameters values in the model are tuned according to performance 

in the development set. The size of units of the Bi-directional LSTM in the One vs. One Matching 

model is set to be 100, and the size of units of the Bi-directional LSTM in the One vs. Many Matching 

model is set to be 50. The default number of the sentences in an answer is set to be 5. The number of 

matching perspectives is set to be 20. The batch size is set to be 64.  

Evaluation Measurement and Significance Test: The performance is evaluated using standard 

precision (P), recall (R), F-score (F) and accuracy. Furthermore, t-test is used to evaluate the signifi-

cance of performance difference between two approaches. 

5.2 Baselines 

For comparison, we implement following approaches to QA matching: 

 LSTM: A QA matching approach belonging to the siamense network, which is proposed by 

Bowman et al (2015). This approach employs a LSTM layer to encode the inputs.  

 Shallow Convolutional Neural Network (SCNN): A state-of-the-art QA matching approach 

belonging to the siamense network, which is proposed by Zhang et al (2016). for the task of 

implicit discourse relation recognition.  

 Attentive LSTM: A state-of-the-art QA matching approach belonging to an attentive network, 

which is proposed by Tan et al (2016).  

 MULT: A state-of-the-art QA-matching approach belonging to the compare-aggregate net-

work, which is proposed by Wang and Jiang (2017).  

 Bilateral Multi-Perspective Matching (BIMPM): Another state-of-the-art QA matching ap-

proach belonging to the compare-aggregate network, which is proposed by Wang et al (2017). 

We use two implements where BIMPM (Full) employs the full matching strategy and BIMPM 

(Ensemble) employs all of the four matching strategies.  

5.3 Our Approaches 

Our approaches to QA matching are implemented with four different ways, i.e., 

                                                           
3 https://pypi.python.org/pypi/jieba/ 
4 https://radimrehurek.com/gensim/models/word2vec.html 
5 https://stanfordnlp.github.io/CoreNLP/ 
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 One vs. Many Matching (OMM): This is the implementation where neither word-level at-

tention layer nor the sentence-level attention layer is employed. 

 OMM with Word-level Attention (OMM+WA): This is the implementation where only the 

word-level attention layer is employed. 

 OMM with Sentence-level Attention (OMM+SA): This is the implementation where only 

the sentence-level attention layer is employed. 

 OMM with both Word-level and Sentence-level Attention (OMM+WA+SA): This is the 

implementation where both the word-level attention layer and the sentence-level attention 

layer are employed. 

 

5.4 Results  

Table 2 and Table 3 show the overall and detailed performances of all approaches to QA matching. 

From this table, we can see that all our four approaches perform better than all baseline approaches 

and the significance test with t-test shows that the improvements are statistically significant (p-

value<0.05). From the result, we can see that our approach is extremely superior in the category of 

Non-matching. For instance, our approach OMM+WA+SA outperforms the baseline approach LSTM 

with an improvement of 0.129 in terms of F-score. Among all our four approaches, OMM+WA+SA 

performs best, which highlights the importance of employing attention strategy in QA matching. 

5.5 Visualization of Attention 

In order to get a better understanding of the attention model and validate whether this model can 

capture the key information of the answer sentences, we visualize the word-level attention layer and 

sentence-level attention layer according to the obtained attention weights  Worda  and .Sena . 

 Matching Non-matching 

P R F P R F 

LSTM  0.647 0.864 0.740 0.656 0.356 0.461 

SCNN 0.666 0.854 0.748 0.602 0.341 0.435 

Attentive LSTM 0.722 0.863 0.786 0.611 0.394 0.479 

MULT 0.720 0.824 0.769 0.618 0.471 0.534 

BIMPM(Full) 0.712 0.860 0.779 0.663 0.442 0.531 

BIMPM(Ensemble) 0.715 0.864 0.783 0.673 0.449 0.538 

OMM 0.716 0.870 0.786 0.685 0.450 0.543 

OMM+WA 0.709 0.883 0.786 0.725 0.460 0.563 

OMM+SA 0.718 0.874 0.789 0.708 0.470 0.565 

OMM+WA+SA 0.712 0.883 0.788 0.744 0.488 0.590 

 

Table 3: Performances of different approaches to QA matching in each category 

 Macro-F Accuracy 

LSTM  0.600 0.649 

SCNN 0.591 0.651 

Attentive LSTM 0.632 0.697 

MULT 0.651 0.691 

BIMPM(Full) 0.654 0.700 

BIMPM(Ensemble) 0.660 0.704 

OMM 0.664 0.708 

OMM+WA 0.674 0.713 

OMM+SA 0.676 0.716 

OMM+WA+SA 0.689 0.721 

Table 2: Overall performances of different approaches to QA matching 
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Figure 4 shows the attention visualizations for a question-answer pair. We normalize the word 

weight by the sentence weight to make sure that only informative words in informative sentences 

corresponding to the question are emphasized. In Figure 4, each line contains one sentence in an 

answer. Red denotes the sentence weight and blue denotes the word weight. The color depth indicates 

the importance degree of the attention weight for the question.  

From the figure, we can see that the sentence-level attention function can select the informative 

sentences corresponding to the question, such as the first and the second sentences. In addition, the 

word-level attention function can select both the words and multi-word phrases carrying strong match-

ing signals corresponding to the question, such as “response time”, “not a spark of”, and “4G”. 

5.6 Error Analysis  

Through analyzing the classification results of our approach, we find that QA matching is still challeng-

ing and some kinds of errors are discussed as following.  

First, the question and the answer share the same aspect of the product but the concerned contents of 

the aspect are different. For instance, in Figure 5 and E9, the question and the answer both have the 

word “screen”. However, the question asks the clearness about the screen while the answer talks about 

the quality of the screen. Second, some words in the answer text have spelling mistakes. For instance, 

in Figure 5 and E10, the answer contains the word “煤油 (Kerosene)” is a spelling mistake. It should 

actually be the word “No”, although their pronunciations in Chinese are similar. Third, some question-

answer pairs contain the answer sentence which is too short, like E11 in Figure 5. 

6. Conclusion 

In this paper, we propose a new corpus for the research on QA matching in informal text. Moreover, 

we propose a novel approach to QA matching, namely One vs. Many Matching, to handle the difficulty 

in which the answer contains multiple sentences. Furthermore, we employ both the word-level and 

sentence-level attentions in our approach to further improve the matching performance. Empirical 

studies show that the proposed approach performs significantly better than several strong baseline 

approaches. 

In our future work, we would like to enlarge the scale of the corpus by annotating some data in 

other domains. Furthermore, we would like to evaluate the effectiveness of our approach to QA match-

ing in some other domains or some other languages. 
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Q : Will the response time slow after updating os?

Answer:  A1  :The   response time   is not a spark of    slow  ,response time slownot a spark of

        A2  : It has 4G       RAM .4G RAM

    A3  : But you must use      it   carefully  ,use carefully

A4  : my phone’s  screen has   broke down   .broke down

 

Q: 屏幕清晰吗？

   （Is the screen clear?）

A: 屏幕质量很好。是个好手机。
    （The quality of the screen is good. It is a good phone.）

E9: Gold Label: Non-matching

E10: Gold Label: Matching

Q: 有蓝牙吗？

 （Does it have bluetooth?）
A: 煤油，不要买。

（Kerosene. Don’t buy it.）

E11: Gold Label: Matching

Q: 系统是多少位的？

（How many bits are there in the system?）

A: 64.
 

Figure 4: The attention visualization for a 

question answer pair 
 

Figure 5: Error Analysis 
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