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Abstract

Due to the fact that Korean is a highly agglutinative, character-rich language, previous
work on Korean morphological analysis typically employs the use of sub-character features
known as graphemes or otherwise utilizes comprehensive prior linguistic knowledge (i.e.,
a dictionary of known morphological transformation forms, or actions). These models
have been created with the assumption that character-level, dictionary-less morphological
analysis was intractable due to the number of actions required. We present, in this
study, a multi-stage action-based model that can perform morphological transformation
and part-of-speech tagging using arbitrary units of input and apply it to the case of
character-level Korean morphological analysis. Among models that do not employ prior
linguistic knowledge, we achieve state-of-the-art word and sentence-level tagging accuracy
with the Sejong Korean corpus using our proposed data-driven Bi-LSTM model.

Title and Abstract in Korean

한국어형태소분석및품사부착에효과적인문자단위정보

한국어는 대표적인 교착어 중 하나이며, 문자 단위 정보의 중요도가 높다. 이에 따라
기존의한국어형태소분석연구는자소정보와같은문자단위자질을사용하거나,형태소
사전및변형규칙과같은다량의언어학적지식을활용하였다. 이러한접근방법은사전을
사용하지않은문자단위형태소분석은변형규칙의복잡성으로인해불가능에가깝다는
것을 전제로 하고 있다. 이러한 한계를 극복하고자, 본 연구에서는 어떠한 언어 단위도
입력으로사용할수있으며다단계변형을기반으로형태소분석및품사부착을수행하는
방법을 제안한다. 제안된 방법을 적용하여 구현된 데이터 기반 양방향 LSTM 모델의
성능을세종말뭉치를이용하여정량적으로평가한결과,언어학적지식을활용하지않은
접근방법들중가장높은단어및문장단위부착정확도를보임을확인하였다.

1 Introduction
Korean has traditionally posed a challenge for word segmentation and morphological analysis.
In addition to virtually unbounded vocabulary sizes, out-of-vocabulary (OOV) rates for models
can be high. Korean is an agglutinative, phonetic language with a SOV (Subject-Object-Verb)
syntax and a flexible word order, although certain word orders are considered to be “canonical”.
Honorifics, conditionals, imperatives, and other forms are all signified using agglutinative endings
which sometimes involve transformation of the stem to which they attach. Some endings can be
further combined or fused to other endings in a defined order, and furthermore, morphological
transformation rules also apply during this process. Transformation rules are mostly consistent
at the grapheme level and can be represented by a handful of spelling rules, but many irregular
forms do exist.
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# Morphemes
1 나(na)/VV + 는(neun)/ETM
2 날(nal)/VV + 는(neun)/ETM
3 나(na)/NP + 는(neun)/JX
4 나(na)/NNP + 는(neun)/JX
5 나(na)/VX + 는(neun)/ETM

Table 1: Ambiguous parses of Eojeol
“na-neun”

# Eojeol Morphemes

(3) 나는
na-neun 나(na)/NP + 는(neun)/JX

하늘에
ha-neul-e 하늘(ha-neul)/NNG + 에(e)/JKB

(2) 나는
na-neun 날(nal)/VV + 는(neun)/ETM

새를
sae-leul 새(sae)/NNG + 를(leul)/JKO

보았다
bo-ass-da.

보(bo)/VV + 았(ass)/EP
+ 다(da)/EF + ./SF

Table 2: Correct transformation and tag sequence for
sample sentence containing ambiguous Eojeol “na-
neun”. # corresponds to correct parse sequence in
Table 1, only labeled here for “na-neun”.

In Unicode, Hangul (Korean alphabet) characters are allocated 11,140 codepoints. Each
character contains an initial consonant, vowel, and final consonant represented in C+V+C,
C+V, or V+C form. In Unicode, the form is always assumed to be C+V+C and the initial or
final consonants are set to null according to the desired target form. Consonants and vowels
are considered to be sub-character units called graphemes. Each character is represented using
a combination of 19 initial consonants (including null), 21 vowels, and 27 final consonants
(including null), and there is a mathematical formula that can be used to combine graphemes
to generate the codepoint of a Hangul character. The character “김” (gim) can be represented
in C+V+C form as follows.

Initial
Consonant Vowel Final

Consonant
ㄱ(g) ㅣ(i) ㅁ(m)

The Korean language has “fusion” spelling rules that apply across character boundaries (within
an agglutinative unit), which implies that morphological transformation may occur among ad-
jacent graphemes. When the final consonant of one character meets the initial consonant of the
next character during verb inflection, there may be a change in the resulting combined character.
This presents character-level embeddings with a unique challenge that is not present in most
other languages.

In order to avoid confusion of terminology, we must define the precise meaning of morpho-
logical analysis in the context of Korean. For most languages, morphological analysis refers
to a word-level tag that describes the aspect, tense, plurality, and other features of the word,
whereas part-of-speech (POS) tagging serves to classify the word as a noun, verb, etc. The POS
tag is sometimes concatenated to the morphological tag string as in the POSMORPH annotation
employed by Heigold, et al (2016a).

In Korean, morphological analysis refers to the segmentation and restoration of morphemes
within a “word” unit called an Eojeol and the POS tagging of each constituent morpheme.
An Eojeol encodes not only lexical information but also grammatical information due to the
agglutinative nature of the Korean language. The recovered morpheme segments often include a
stem and other morphemes which indicate tense or other linguistic features. Traditional Korean
morphological analysis algorithms operate at the Eojeol level and yield all ambiguous parses
(Table 1) that lead to that particular Eojeol, including the morpheme transformations and tags.
However, the model1 proposed in this paper receives input at the sentence level and attempts to

1Model source code is made available at https://github.com/xtknight/rich-morphological-tagger
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produce the one correct sequence of transformations and tags for all Eojeol within the sentence
according to the context (Table 2).

2 Related Work
Morphological analysis of the Korean language has traditionally been performed in several ways,
including separation of Korean characters into graphemes by using linguistic knowledge, lattice
tree lookup (Park et al., 2010), application of regular and irregular inflection rules (Kang and
Kim, 1992), morphosyntactic rule sets, and by using a pre-computed dictionary (Shim and Yang,
2004). However, we investigate whether morphological analysis of Korean is feasible without
the use of any of these techniques and without a dictionary by making the assumption that
common transformations and their underlying grapheme modifications can be easily recognized
and learned with a Bi-LSTM model.

Bi-LSTM-CRFs have been used for sequential tagging with BIO annotation (Sang and Veen-
stra, 1999). Huang, et al (2015) show their effectiveness for POS tagging, chunking, named
entity recognition (NER). These models show state-of-the-art accuracy at several tasks.

Similar models have also been proposed in universal morphological analysis. Heigold, et
al (2016b) show how a nested LSTM architecture can be applied to word-level morphological
tagging for a wide variety of languages. At the lower level, an LSTM network is used for
character-level embedding to reduce OOV errors. However, this work does not investigate how
such a model would operate for the most widely used Korean Sejong Corpus.

Sub-character tagging has also been attempted. Dong, et al (2016) demonstrate how radical-
level features incorporated at the character-level for named entity recognition achieve state-of-
the-art accuracy for Chinese. The most convincing attempt to tag Korean at the morpheme
level is by Choi, et al (2016) who achieve state-of-the-art (dictionary-less) performance by using
a multi-stage Bi-LSTM-CRF model that involves the splitting of Korean character input into
constituent graphemes. However, the implicit assumption that Korean characters must first
be split into graphemes to achieve optimal performance for morphological analysis is not well
supported, and we should consider the splitting of characters into graphemes to be employing
linguistic knowledge specific to Korean.

In our paper, we seek to answer the question of whether Korean morphemes can be tagged
without grapheme-level splitting, rules specific to the language, or a dictionary. Although we
initially considered Bi-LSTM-CRF for our model architecture, we show that the performance
benefit by adding CRF is minimal and practically unnecessary compared to a standard Bi-
LSTM model. Furthermore, CRF adds training and inference computational complexity due to
the Viterbi algorithm.

3 Lemma and Form Alignment

고(go) 통(tong) 스(seu) 런(reon)
B-KEEP I-KEEP B-KEEP I-MOD-럽, B-MOD-ㄴ
고통(go-tong) 스럽(seu-reob) ㄴ(n)

Figure 1: Gold morphological transformation actions
given by alignment oracle, including the resulting
morphemes after running the BIO actions (Sejong
corpus)

고통(go-tong) 스럽(seu-reob) ㄴ(n)
NNG XSA ETM

Figure 2: Gold tagging actions (Sejong
corpus)

In the Sejong corpus, Eojeol are annotated with their corresponding POS-tagged morpheme
constituents, exactly as shown in Table 2. As mentioned earlier, morpheme spelling transforma-
tions may occur, and therefore the morpheme constituents may have slightly different graphemes
than what is present in the original Eojeol form. To generate our training data, we must align the
Eojeol form and its constituent morphemes at the character level, as we forbid using linguistic
knowledge such as sub-character elements (graphemes) in our model. Like most agglutinative
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languages, the Eojeol form and lemmas (morphemic elements in the Sejong corpus) often share
overlapping characters at the beginning or end, and we utilize this assumption in our algorithm.

Gold Action Count
B-KEEP 23,725,534
I-KEEP 8,650,166

B-MOD-하(ha), B-MOD-ㄴ(n) 153,130
NOOP 131,016

B-MOD:하(ha), B-MOD-았(ass) 61,592
B-MOD:이(i), B-MOD-ㄴ(n) 58,093

B-MOD:하(ha), B-MOD-아(a) 57,515
I-MOD:하(ha), B-MOD-아(a) 48,987

B-MOD:되(doe), B-MOD-ㄴ(n) 41,335
B-MOD:하(ha), B-MOD-ㄹ(l) 36,419

Table 3: Top 10 morphing actions

We present an action-based algorithm (called an “alignment oracle”) to align two arbitrary
strings. Our oracle attempts to generate a 1:1 character-level mapping between the morphologi-
cal form and the lemmas of an Eojeol by searching for a prefix, suffix, and modified inner string
portion. Three primary actions are defined: KEEP (no modification to character), NOOP (drop
character), and MOD (modify character). In the case of Korean, morphological transformations
happen at the end of a form, so there is rarely a common suffix unless no transformation occurs
at all. These primary actions are then augmented with B- and I- actions to facilitate morpheme
segmentation. It is important to note that our algorithm is not specific in any way to the Sejong
corpus or Korean itself.

The full process is demonstrated in Figure 1 starting from the source form. The gold untagged
segmented lemma form is shown in the bottom row, and the actions generated by the oracle to
generate the lemma are given in the middle row. The first three characters (go-tong-seu) are
preserved with KEEP actions and the last character is considered the “modified inner string”. In
this case, the number of actions (5) exceeds the number of full input characters (4), and therefore
two actions are assigned to the last character which split the “reon” syllable into “reob” and “n”.
The output after morpheme segmentation can be seen in the bottom row. In Figure 2, these
output morphemes are then placed through a standard sequential tagger to assign part-of-speech
tags.

Figure 3: Actions for transformation with output segmentation

For Korean, the task is considerably more complicated. Rather than merely character-level
transformation, new morpheme boundaries based on the results of those transformations are also
required. A segmentation module adds B-/I- (beginning and inside) annotations to the KEEP
and MOD actions. These actions allow morpheme segmentation to take place even amidst the
modified character output sequence. This is detailed in Figure 1, where the final consonant
sub-character unit (“n”) of the last character of input (“reon”) is transformed to “b” and the
resulting fused full character is appended to the previous output morpheme, whereas the “n”
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Figure 4: Partial example of two-stage tagging process for Korean phrase “to point out the sea”

sub-character unit becomes separated and represented as an entirely new morpheme itself. The
top 10 resulting actions for the Sejong corpus on the form and lemma alignment stage are shown
in Table 3.

4 The Model

Our model makes the assumption that in order to support morphological analysis for languages
like Korean, two stages are required, which we call morphing and tagging. For tasks such as
morphological transformation, word-level morphological analysis, or morpheme segmentation,
only one stage is strictly necessary. To obtain tags for morphemes following morphological
transformation, as in Korean, both stages are necessary, with tagging following morphing. The
stages have no fundamental difference from each other: the second stage simply acts on the result
of applying actions output by the first stage. Each stage outputs a single action for a single input
unit. A single action could be as simple as a tag or as complicated as information resulting in
advanced multi-character transformation along with the specification of the morphemic segments
of those resulting characters. Model parameters are trained independently for each stage unless
otherwise specified.

The model presented in this paper is inspired by word-level morphological analysis work by
Heigold, et al (2016a) with the goal of allowing analysis at arbitrary units of input at each stage.
Because we do not specify whether the input unit should be a word, morpheme, character, or
even a unit at the sub-character level (such as graphemes in Korean or radicals in Chinese), we
theoretically have the flexibility to tag a variety of languages at any level.

We employ a bidirectional Long Short-Term Memory (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005) network in our model and also experiment with optimization
to a conditional random field (CRF) objective (Lafferty et al., 2001). In theory, CRF allows
us to consider the likelihood of neighboring outputs and therefore jointly decode the highest
probable chain of output labels for a given set of inputs. Although we posit that CRF is not
strictly necessary, the overall architecture of our model is otherwise identical to a standard
Bi-LSTM-CRF sequence tagging model (Huang et al., 2015) used for POS tagging and NER.
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An overview of the architecture is shown in Figure 4. The input unit is embedded as a multi-
dimensional vector. At the input level, an auxiliary attribute may be concatenated with the
input unit to include auxiliary information for the unit, such as word break-level information,
although empirical findings indicate our model performs best when using only the input unit.
Nested embeddings as in (2016a) may also be appended at the input level.

All embeddings are concatenated to form a combined embedding which is then passed to
the primary Bi-LSTM-CRF network and trained against a set of output actions. Whitespace
delimiting Eojeols is represented as a reserved spacing token in the input unit.

Although each stage is independent and can accept an arbitrary unit of input suitable for
any language, the following sections describe how this model pertains to our primary task of
morpheme-level morphological analysis for the Korean language.

4.1 Morphing
The first stage of the model operates at the character level and is responsible for morphological
transformation of the input form into the desired output lemma(s). During training, each input
character is assigned one of three primary types by the alignment oracle as described in Section
3. Morpheme segmentation actions are also generated and augmented to the transformation
actions at this stage for proper morpheme boundary identification. During inference, instead
of using the alignment oracle, one action (including transformation and B-/I- tags) is predicted
for each character based on trained parameters. At this point, tags are not yet assigned to each
output morpheme.

4.2 Tagging
After the necessary morphological transformation and segmentation, tagging occurs at the mor-
pheme level and acts on output produced by actions in the first stage of the model. An example
of this is shown in Figure 2. In this stage, the action is simply to assign a POS tag to the
morpheme, which is the input unit.

5 Experiments

5.1 Datasets
We conduct experiments using the full Sejong Korean Balanced Corpus dataset. The experiments
are coded in Python using the TensorFlow library. The Sejong Corpus has been preprocessed
to resolve punctuation inconsistencies and other surface-level errors. All datasets are converted
at the sentence-level to a simple two-column format with each line containing an input unit and
target action.

For all experiments, we follow an 85/10/5 cross-validation split for training, testing, and
validation sets respectively. All data is randomly shuffled prior to splitting. Actions are inferred
from the dataset by using lemma and form alignment. For evaluation, output from predicted
actions in the first stage is used as input to the subsequent stage.
UniTagger represents the model proposed in this paper. The following number (for example,

500) represents the maximum action count for the morphing stage. The tagging stage only has
as many actions as possible POS tags (45 in the Sejong corpus, including the reserved space
token). Action pruning is performed at the training level, which removes from the training set
the least common morphological transformation actions generated by the alignment oracle. For
fair evaluation, actions are not removed from validation or test sets. All accuracy figures in this
paper are reported based on a held-out test set.

5.2 Training
Optimization is performed using Adam (Kingma and Ba, 2014) with a learning rate of 0.001 and
decay of 0.9. In the case of multi-stage models, model parameters are optimized independently
for each stage. We use identical hyperparameters for all morphing and tagging models. Input
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unit embedding size was set to 300 (for character and morpheme input). The final Bi-LSTM
concatenating all embeddings before an optional CRF layer was used with an LSTM unit size of
300. Batch size was set to 64 for all experiments, except for the CRF experiment where it was
set to 16. The maximum LSTM input length was set at a per-batch level which yielded optimal
performance, and the maximum number of input units (whether characters or morphemes)
was limited to 400 in both stages. A dropout of 10% was used for the reported model with
best performance. Dropout is only applied at the unit embedding layer. Epoch count was set
to 100 with early-stopping after 3 epochs with no improvement in validation set performance.
Experiments were performed on GTX 1080 Ti 11GB GPUs. Average total training duration was
around 5 hours for the entire Sejong dataset on a GTX 1080 Ti. In TensorFlow, the NVIDIA
CuDNN-optimized LSTM was used (Appleyard et al., 2016).

5.3 Results
In Table 4, we show Eojeol-level morphological analysis accuracy for Korean. Note here that an
Eojeol is considered correctly tagged only if all its constituent morphemes have been transformed,
segmented, and tagged properly. Table 5 measures sentence-level tagging performance, which is
the accuracy of all morphemes being transformed and tagged properly.

Model Accuracy
Lee, et al. (2005) 92.96
Ahn, et al. (2007) 93.12
Lee, et al. (2009) 92.95
Choi, et al. (2016) 94.89
UniTagger-500 96.20

Table 4: End-to-end Eojeol-level accuracy
for morphological analysis of Korean (Se-
jong Corpus)

Model Model Type Acc
Choi, et al. (2016) Bi-LSTM-CRF 61.00
UniTagger-500 Bi-LSTM 70.83

Table 5: End-to-end sentence-level accu-
racy for morphological analysis of Korean
(Sejong Corpus)

Form Gold Action
났(nass) B-나 + B-았
샀(sass) B-사 + B-았
잤(jass) B-자 + B-았
팠(pass) B-파 + B-았
됐(daess) B-되 + B-었
했(haess) B-하 + B-았
녔(nyeoss) B-니 + B-었
렸(ryeoss) B-리 + B-었
셨(syeoss) B-시 + B-었
졌(jieoss) B-지 + B-었
겼(gyeoss) B-기 + B-었
왔(oass) B-오 + B-았
놨(noass) B-놓 + B-았
췄(chuweoss) B-추 + B-었

Table 6: Past tense morphing actions
shown in embedding and gold actions from
Sejong corpus

Model Model Type Acc
Choi, et al. (2016) Bi-LSTM-CRF 67.25
UniTagger-500 Bi-LSTM 79.49

Table 7: Eojeol-level OOV accuracy

5.4 Analysis and Discussion
Our results show that our model can outperform previous state-of-the-art performance for Eojeol
and sentence-level morphological analysis of Korean without linguistic knowledge.

When the dropout factor is adjusted, all metrics follow a similar trend as seen in Figure 5.
Sentence accuracy is most sensitive to dropout factor adjustment. Best performance is achieved
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with a dropout rate of 10%, and increasing the dropout rate further does not increase Eojeol-
level OOV accuracy. This is a positive finding, as it indicates the model is not considerably
overfitting to the training data beyond approximately the 10% level.

In Figure 6, a 300-dimensional unit embedding layer of the morphing stage is visualized using
2-component t-SNE. The corresponding gold actions are shown in Table 6, where all past tense
morphemes end with final consonant “ㅆ” (ss). The model is able to infer that most of the forms
shown in the graph represent the past tense and that they share a similar transformation pattern
at the final consonant grapheme level. This shows that our model is able to correlate similar
sub-character level morphological transformations even when operating at the character level.
Furthermore, it is worth noting that Chinese characters still occur rarely in the Korean language
in certain contexts. We can see Chinese characters grouped in a cluster, which shows that
the model is able to distinguish one character-rich language (Korean) from another (Chinese).
Other characters, such as punctuation, are also grouped by type in largely distinct clusters with
occasional overlap.

Joint training of both stages was also attempted, though an initial investigation suggests that
performance is not significantly different from training each stage’s parameters independently.

0 10 20 30 40 50 60
58
62
66
70
74
78
82
86
90
94
98

Dropout [%]

A
cc

ur
ac

y
[%

]

Correct Eojeol Correct OOV Eojeol
Correct Sentences

Figure 5: Impact of dropout on end-to-end tagging performance

The use of using an auxiliary binary break level attribute to represent whitespace was also
investigated, but significantly higher accuracy was achieved by using a reserved spacing token
instead. Despite the auxiliary break level attribute embedding, both stages of the model have
a tendency to learn ambiguous morpheme transformations for adjacent Eojeol. In other words,
even though the morpheme transformation and tags are correct, the Eojeol boundaries were
incorrectly identified. With the reserved spacing token, this issue was extremely rare.

6 Conclusion and Future Work
In this work, we address the commonly held notion that Korean can not be tagged with compet-
itive performance at the character level without prior linguistic knowledge. Our model architec-
ture is not novel compared to previous work. The novelty of our morphological analyzer is its
striking simplicity compared to previous approaches for character-rich languages such as Korean.
The alignment oracle does not require any cost value for alignment operations such as in the
Needleman–Wunsch algorithm (Needleman and Wunsch, 1970). The Bi-LSTM model is able to
learn and utilize alignments that are purely arbitrary and apply them to unseen test data. Even
when significantly limiting the number of actions in the training data, we show that by using
the most common morphological transformation actions in an agglutinative language, we can
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Figure 6: Deep embeddings of characters at the morphing stage (t-SNE)

exceed the performance of a model that uses linguistic knowledge such as sub-character features.
We also show that the widely used CRF layer may in fact be unnecessary for high performance
and add unnecessary computational complexity. This exceeded our own expectations and raises
the possibility that a single architecture can handle tagging universally with only two simple
Bi-LSTM stages. We contribute the necessary source code to replicate the experiments and to
attempt alignment and training for any other language, assuming a corpus exists. Nevertheless,
there are several points that future work should address.

Out-of-vocabulary morphemes generated by the morphing stage can also result in errors at
the tagging stage, as the tagging stage was trained on the assumption of gold morphemes. We
would like to experiment with including possible morpheme transformation errors at the tagging
stage to determine if tagging performance can be improved.

We attempted joint training but found that end-to-end accuracy was marginally lower. We
suspect this is because optimization of each individual stage is hindered by attempting to find
optimal parameters for both stages. Future work should attempt joint training of an end-to-end
model with the preinitialized parameters from optimizing each stage independently, which has
been shown to be ideal in sequential models (Tang et al., 2016).

Lastly, although we are unaware of a language more character-rich and more morphologically
complex than Korean, we would like to see our model applied to other morphologically complex
languages to prove its universality. At the time of writing, we lacked sufficient baseline figures
and methodology for generating training data for analyzing other languages at the morpheme
level using the Universal Dependencies corpus, and the morphological tags were often conflated
with part-of-speech tags. The baselines we found did not specify whether or not morpheme
segmentation was taken into account. Without this information, it would be difficult to prove the
performance of our model for other languages and we decided to leave training other languages
as future work. That being said, our model does not employ any linguistic knowledge specific to
Korean, and we therefore have no reason to believe it cannot be trained on any other arbitrary
corpus with minor modifications at the preprocessing level.
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