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Abstract

In this paper, we first utilize the word embedding that focuses on sub-word units to the Mon-
golian Phrase Break (PB) prediction task by using Long Short-Term Memory (LSTM) model.
Mongolian is an agglutinative language. Each root can be followed by several suffixes to form
probably millions of words, but the existing Mongolian corpus is not enough to build a robust en-
tire word embedding, thus it suffers a serious data sparse problem and brings a great difficulty for
Mongolian PB prediction. To solve this problem, we look at sub-word units in Mongolian word,
and encode their information to a meaningful representation, then fed it to LSTM to decode the
best corresponding PB label. Experimental results show that the proposed model significantly
outperforms traditional CRF model using manually features and obtains 7.49% F-Measure gain.

1 Introduction

A Text-to-Speech (TTS) system converts the input text into synthetic speech with high naturalness and
intelligibility. Naturalness is mainly influenced by the prosody modeling, especially by the Phrase Break
(PB) prediction. Because the PB prediction is the first step of TTS, any error in this step will propagate
to downstream steps such as intonation prediction and duration modeling. Those errors will result in
the synthetic speech which is unnatural and difficult to understand. So that many researchers devote
themselves to improving the performance of the PB prediction.

Typically PB prediction methods usually use machine learning models like Hidden Markov Models
(HMMs) or Conditional Random Fields (CRFs) which trained with large sets of labeled training data. In
these PB prediction models, the Part-of-Speech (POS) tag have been shown to be an effective feature and
usually been included in the input feature set. The POS estimation itself is also a challenging task, and
relies on large labeled training corpus, too. Its accuracy is always lower than our expectation, especially
for those low-resource languages like Mongolian where the required linguistic resources are not readily
available, and manual annotation is expensive and time-consuming.

In recent years, there are many works applying the word embedding techniques to Natural Language
Processing (NLP) tasks, such as question answering, machine translation and so on (Bordes, 2014; X-
iong, 2017; Devlin, 2014). Previous work has shown that the POS prediction task can be solved with
high accuracy only using the word embedding feature as the input (Wang, 2015). POS information is
most likely to be included in the word embedding representations. Therefore, some PB prediction sys-
tems which don’t rely on the POS feature are developed (Watts, 2011; Vadapalli, 2014; Vadapalli, 2016).
In (Watts, 2011), the authors obtain continuous-valued word embedding features that summarize the dis-
tributional characteristics of word types as surrogates of POS features. In (Vadapalli, 2014), researchers
propose a neural network dictionary learning architecture to induce task-specified word embedding rep-
resentations and show that these features perform better at PB prediction task. (Vadapalli, 2016) presents
their investigations of recurrent neural networks (RNNs) for the phrase break prediction task by using
word embedding. The above efforts have also been directed toward unsupervised methods of inducing
word representations, which can be used as surrogates for POS tags, in the PB prediction task.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details:
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ost important , it is good for human health.

Latin  

neN qihvla ni homun-u bey_e-yin eregul qihirag-tv tvsalan_a. 

Segmentation  

neN qihvla ni homun -u bey_e -yin eregul qihirag -tv tvsalan_a. 

 Phrase Break Label: 
neN [NB] qihvla [NB] ni [B] homun [NB] -u [NB] bey_e [NB] 

-yin [B] eregul [NB] qihirag [NB] -tv [NB] tvsalan_a [B].

Figure 1: NNBS suffixes within a Mongolian sentences, the red part is the segmented NNBS suffixes
from the word. There are three pauses in the sentence, one of which is located at the NNBS suffix:
“-yin”.

Although the word embedding training operates in an unsupervised way, this approach face an issue
when applied to Mongolian languages, which are agglutinative in nature and the available Mongolian
corpus is not large enough for the huge Mongolian vocabulary. Fortunately, Mongolian is a morpholog-
ically rich language. Its suffixes often act as a positive signal which implies the POS information of the
word. It’s like that the word implied by the suffix ‘-ly’ is an adverb in English. Morphologically, unlike
many other languages, a Mongolian word is not just a concatenation of characters. It is constructed by
the special agglutinative property. Mongolian words can be decomposed into a set of morphemes: one
root and several suffixes.

In this paper, we investigate Mongolian PB prediction models that operate on the level of sub-word
units: stem and suffixes (the part without suffix). We hypothesize that stem and suffix serve to discrim-
inate words based on syntactic meaning, and that these sub-word units can be used to model PB. We
automatically segment every Mongolian word to a sequence of sub-word units, then map all sub-word
units into a continuous vector representations by lookup table, which are then fed into a neural network.
Instead of a feed-forward network, we use the Long Short-Term Memory (LSTM) network to predict the
right PB label. The segmentation process reduces the vocabulary and alleviates the data sparse problem.
Therefore, the learned word embedding for sub-word is more robust, then the performance of the PB
prediction system can be improved.

Our experiments show the proposed model can achieve significant performance than the conventional
CRF-based models, and the sub-word embedding based method outperforms the entire word embedding
based method.

2 Mongolian characteristics

As an agglutinative language, like Turkish, Japanese and Korean, Mongolian has complex morphological
structure. Most Mongolian words can be decomposed into root, derivational suffixes, and inflectional
suffixes (Bao, 2013). The first two parts together are called a word-stem, it holds the major information
in a word, and inflectional suffixes server to discriminate words based on lexical meaning. As for nouns,
the inflectional suffixes contain case suffixes, reflexive suffixes, and plural suffixes. All above three
suffixes are attached to stem through a Narrow Non-Break Space (NNBS) (U+202F, Latin: “-”). We call
them NNBS suffixes. The NNBS suffixes used are very pervasive, in Fig.1, there are 3 NNBS suffixes in
a sentence with only 8 words.

New words can be formed by connecting different suffixes to the end of a stem. A lot of new words can
be induced from a single stem. For example: ������� !"# , ������� $% , ������� !� , ������� &'( , ������� )* . These words share the
same word-stem “������� ” (Latin: “sandali”, means: “chair”). It makes Mongolian has a huge vocabulary,
about one million, with only about 30 thousands stems (Bao, 2013). The large vocabulary leads to data
sparse, and a serious dependence on a large corpus. However, the available Mongolian corpus is not
enough for the word embedding training. The bad word embedding further reduces the accuracy of the
PB prediction system. To get through the problem, we segment the NNBS suffixes from the Mongolian
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(qihirag-tv)(eregul)(bey_e-yin)(homun-u) (tvsalan_a)
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LSTMLSTMLSTMLSTM LSTMLSTM LSTM LSTM
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Figure 2: A framework for the proposed Mongolian PB prediction system based on sub-word embedding.
The segment layer convert the Latin-cased Mongolian word to its sub-word form: stem (black part) and
suffixes (red part); the sub-word embeddings are generated by a lookup table; the information is passed
through a LSTM layer and the decode layer.

word and learn embedding representation on these individual suffixes and stems. After segmentating, the
sentence will include more tokens, for example, in Fig.1, 3 words with NNBS will be turned into new
units: “homun-u” turned into “homun” and “-u”, “bey e-yin” turned into “bey e” and “-yin”, “qihirag-tv”
turned into “qihirag” and “-tv”.

3 Proposed model

Our system framework is shown in Fig.2. This architecture consists of a segment layer, an input layer, a
LSTM layer and a decode layer.

The system input is raw Mongolian sentence consisting of entire word. First, the segment layer con-
verts every Mongolian word into stem and NNBS suffixes according to the location of NNBS inside of
the word. Second, the input layer maps these processed Mongolian sub-word units into sub-word em-
beddings. The remaining layers are a LSTM network (Greff, 2017) used as a discriminative classifier
and a decode layer to obtain the final PB label: “B” or “NB”. “B” and “NB” are PB labels means break
after a word and non-break respectively.

3.1 Sub-word embedding
In current work, we hypothesize that stem and suffix serve to discriminate words based on semantic
meaning in Mongolian, and that these sub-word units can be used to model PB. We learn the embedding
representation for sub-word units inspired the word embedding technique.

Word embedding represents words as continuous vectors in a low-dimensional space based on the dis-
tributional hypothesis that words in similar contexts have an analogous meaning. Based on this hypoth-
esis, various word embedding models have been developed, including continuous bag-of-words model
(CBOW), Skip-Gram model (Mikolov, 2013), and Global C&W(Glove) (Pennington, 2014). We use
Skip-Gram model to train the sub-word embedding representation. Given a sequence of training unit
u1, ..., uT , the Skip-Gram model try to maximize the average of log probability:

1

T

T∑
t=1

∑
−c≤j≤c

logP (ut+c|ut) (1)

where c is the training context around the center unit ut. The prediction probability can be defined as:

P (o|i) = exp(V T
o Wi)∑U

u=1 exp(V
T
u Wi)

(2)
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Figure 3: Comparision of the Mongolian Skip-Gram model representation of word unit (a) and sub-word
unit (b). The sub-word Skip-Gram model regard stem and suffix as a basic unit, it allows the model to
learn more information from suffixes with same context windows.

whereW and V are the “input” and “output” unit vector representations of u, andU is the set of sub-word
units. XT is the transpose of matrix X .

The difference between word and sub-word Skip-Gram model is shown in in Fig.3 for the sentence:
“ homun-u bey e-yin eregul qihirag-tv tvsalan a”. In the word Skip-Gram model, if the center word is
“bey e-yin”, the nearby words are “ni”, “homun-u”, “eregul” and “qihirag-tv”. While in sub-word Skip-
Gram model, when the basic learning unit is changed to sub-word, the center word is turned to “bey e”,
the nearby words to “homun”, “-u”, “-yin” and “eregul”. The sub-word Skip-Gram model lies in dealing
with sub-word units (stem and suffixes). It captures more information from the nearby suffixes under
same context window size.

3.2 LSTM layer & Decode layer
PB prediction can be treated as a sequential labeling task that assigns boundary labels to words of an
input sentence. Recurrent neural networks (RNNs) have recently produced outstanding performances on
many tasks including sequential labelling (Vadapalli, 2016). In theory, RNN can learn from the entire
historical inputs. But in practice, it can access only a limited range of context because of the vanishing
gradient problem. LSTM uses purpose-built memory cells to store information, which is designed to
overcome this problem. LSTM is composed of a set of recurrently connected memory blocks and each
block consists of one or more self-connected memory cells and three multiplicative gates, i.e., input gate,
forget gate and output gate. The three gates are designed to capture long-range contextual information
by using nonlinear summation units.

Specifically, in this study, we follow the LSTM with forget gates and peephole connections to predict
Mongolian phrase break. We use the following implementation:

it = σ(Wxixt) +Whiht−1 +Wcict−1 + bi) (3)

ct = (1− it)� ct−1 + it � tanh(Wxcxt +Whcht−1 + bc) (4)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5)

ht = ot � tanh(ct) (6)
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where � indicates element-wise product and σ indicates element-wise sigmoid function. More detail
description can be found in (Greff, 2017).

The LSTM is trained using standard backpropagation through time to maximize the data conditional
likelihood: ∏

t

P (yt|x1 · · · xt) (7)

where xt, yt are the input and output respectively at time t. As mentioned in Section 3.1, the input xt to
the LSTM at time t, is the sub-word embedding corresponding to the token at time t.

The probability distribution is strictly a function of the hidden layer activations, which in turn depend
only on the inputs (and their own past values). Thus, the most likely sequence of phrase break labels can
be computed as:

y∗t = argmaxP (yt|x1 · · · xt) (8)

4 EXPERIMENTS AND RESULTS

4.1 Dataset
4.1.1 Embedding corpus
The embedding train data were crawled from mainstream websites in Mongolian. After cleaning web
page tags and filtering longer sentences, its token size and vocabulary are about 200 million and 3 million
respectively. After we split the suffixes into a new token, we find a dramatic decrease on vocabulary even
with the token number growth. The segmented corpus’ token size and vocabulary are about 300 million
and 2.5 million respectively.

4.1.2 PB prediction corpus
To evaluate the proposed method, a Mongolian speech synthesis corpus is involved. This corpus is
recorded by a native Mongolian female speaker, who is a television news announcer. This corpus contains
58,695 utterances, where there are about 449,000 Mongolian words and 22,050 vocabularies. This corpus
is labeled with prosodic phrase boundary by hand according to its speech. The labels correspond to the
actual stops in the utterance. Specifically, each word is labeled as “B” (means break) if there is a short
break after the word. Otherwise, the word is labeled as “NB” (means non-break). We divide the corpus
into suitable subsets for training, validation and test as 8:1:1.

4.2 Evaluation
We conduct three sessions of experimentation. The first session is designed to verify the effectiveness of
sub-word method under the CRF model, which aims to investigate the performance of regard the stem and
suffixes as individual tokens. The second session about CRF-based systems is built to evaluate the idea of
replacing the POS with the embedding representation for word and sub-word. The third session aims to
investigate whether utilizing the LSTM model with sub-word embedding can improve the performance
of Mongolian PB prediction. All Mongolian words are Latin-cased before passing through the lookup
table to convert to their corresponding embeddings.

We evaluate the systems with F-Measure of the PB prediction, which this the harmonic mean of the
Precision and the Recall. F-Measure values range from 0 to 1. The higher F-Measure means better PB
prediction performance.

4.2.1 CRF with subword
We use CRF++ toolkit1 to build a CRF-based Mongolian phrase break prediction system as a baseline
named “CPw”. “CPw” system consider the nearby words and its POS feature within the fixed context
window size. Another two CRF-based systems are built to analyze the effects of the sub-word named
“CPs” and “CPB”, which have the same configuration as the CRF baseline, except the word feature. The
‘CPs’ system removes the segmented suffixes from the input token. The ‘CPB’ system segments the

1https://taku910.github.io/crfpp/
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word into stem and suffixes, and uses them both as individual input tokens. All the CRF models used in
this paper is a linear-chain CRF, we carry on all experiments under two context windows type: Unigram
(U: previous one word, current word and future one word) and Bigram (B: previous two words, current
words and future two words).

As illustrated in Table 1. Compared with the ‘CPw’ baseline under all context windows type, we can
see the performance of the ‘CPs’ drop down. It is because that the word stems have less discrimina-
tive information than the entire word, since its suffixes are removed. ‘CPB’ outperforms the baseline
and achieves the peak performance (82.96%) under Bigram context window. It can learn all semantic
information from the individual suffix and stem but also alleviate the data sparse problem in a limited
corpus.

Model F-Measure (U) F-Measure(B)
CPw 82.23 82.40
CPs 82.12 82.34
CPB 82.52 82.96

Table 1: Performance of F-Measure for CRF-based model with different context window types. (U:
Unigram, B: Bigram)

F-Measure (U) F-Measure (B)

Model
Dim

50 100 150 200 300 50 100 150 200 300

CEw 82.67 82.89 82.85 82.81 82.73 82.86 82.92 82.98 82.87 82.78
CEs 82.67 82.70 82.73 82.68 82.59 82.65 82.73 82.83 82.80 82.79
CEB 83.45 83.59 83.68 83.44 83.53 83.66 83.72 83.79 83.68 83.55

Table 2: Performance of F-Measure for CRF-based model using embeddings for word and sub-word with
different dimensions and different context window types. (U: Unigram, B: Bigram, Dim: embedding
dimension)

F-Measure

Model
Dim

50 100 150 200 300

LEw (Vadapalli, 2016) 85.63 85.74 85.89 85.78 85.64
LEs 84.78 84.83 85.01 84.88 84.78
LEB (proposed) 89.51 89.77 89.89 89.79 88.93

Table 3: Performance of F-Measure for LSTM-based model using embeddings for word and sub-word
with different dimensions. (Dim: embedding dimension)

4.2.2 CRF with sub-word embedding
In these systems, the POS feature is replaced by the embedding, i.e. the systems input is the word or sub-
word unit and its corresponding embedding. And follow the experimental setting of the Section 4.2.1,
we index the three system as ‘CEw’, ‘CEs’ and ‘CEB’ respectively, which denotes CRF model using
embedding feature on the entire word, word stem or both the suffix and stem. We test the performance
of all systems with five embeddings dimension: 50, 100, 150, 200, 300. The evaluation results are listed
in Table 2.

Comparing these three systems, we get the same conclusion as the previous experiment, sub-word
based methods performance is better than the entire word setting. For Bigram context, ‘CEB’ achieves
the highest F-Measure (83.79%) in all embedding dimensions. The performance of all systems is first
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raised and then decreased with the embedding dimension range from 50 to 300, and reaches the best in
150. While a too long dimension will include other boring information that decoder cannot utilize, a too
small dimension can not learn enough information from context. More informative, the performance of
the Unigram context is worse than that of the Bigram context but shows the same trend.

The systems using sub-word embedding feature performs better than the systems utilizing POS feature
(Section 4.2.1). As can be seen, the performances of ‘CEw’, ‘CEs’, ‘CEB’ are obviously higher than that
of ‘CPw’, ‘CPs’, ‘CPB’. This is mainly caused by the representation power of the word embedding
technique. By using the sub-word embedding, we make a better use of the very limited training data
in Mongolian. And again the proposed sub-word method alleviate the data sparse problem for both the
word embedding training and the PB prediction models training.

4.2.3 LSTM with sub-word embedding
In this experiment, we replace the CRF model with the powerful LSTM model. All of the LSTM models
used a single hidden layer of 512 units. All models are trained with a momentum of 0.3, an initial
learning rate of 0.01. We select tanh() as our activation function, the minibatch size and forget gate bias
is 1, weight and inner cells initialization are glorot uniform (Glorot, 2010) and orthogonal (Saxe, 2013)
respectively. We train the LSTM model 50 epochs according to the development set. The evaluation
results are listed in Table 3 under the name of ‘LEw’, ‘LEs’ and ‘LEB’, which means LSTM model
using word embedding feature on the entire word (Vadapalli, 2016), sub-word embedding feature on
word stem or both the suffix and stem.

Compared with CRF-based systems (Section 4.2.2) the LSTM-based systems show a clear advan-
tage. ‘LEw’, ‘LEs’, ‘LEB’ systems respectively increased the performance by 2.91%, 2.18%, and 6.1%
compared with ‘CEw’, ‘CEs’, ‘CEB’ under the optimum embedding dimension – 150. Our proposed
method (‘LEB’) obtains 7.49% F-Measure gain compared with the baseline system - ‘CPw’ (Section
4.2.1) under 150 embedding dimensions. It is another evidence of the power of the LSTM model. LSTM
model is more suitable than the CRF model in the PB prediction task. It shows that the LSTM model
can fully absorb the nutrients of the embedding representation and get more benefits from the sub-word
embedding.

5 CONCLUSIONS

In this paper, we look at sub-word units and explore the use of sub-word embedding on stem and suffixes
to model Mongolian phrase break by using LSTM network. Embedding representation for the sub-word
unit is learned in an unsupervised manner from an untagged Mongolian text corpus. These sub-word units
can be directly identified from the text with a simple and effective approach. It provides more information
for model Mongolian PB and eliminates the need for additional manually features like part-of-speech
(POS) taggers. Experimental results demonstrate by means of the objective measure that LSTM model
built using these sub-word embeddings perform significantly improvement than conventional CRF model
built using POS sequence information. This work can also inspire other agglutinative language research.
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