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Abstract

Large scale knowledge graphs (KGs) such as Freebase are generally incomplete. Reasoning over
multi-hop (mh) KG paths is thus an important capability that is needed for question answering
or other NLP tasks that require knowledge about the world. mh-KG reasoning includes diverse
scenarios, e.g., given a head entity and a relation path, predict the tail entity; or given two enti-
ties connected by some relation paths, predict the unknown relation between them. We present
ROPs, recurrent one-hop predictors, that predict entities at each step of mh-KB paths by using
recurrent neural networks and vector representations of entities and relations, with two benefits:
(i) modeling mh-paths of arbitrary lengths while updating the entity and relation representations
by the training signal at each step; (ii) handling different types of mh-KG reasoning in a unified
framework. Our models show state-of-the-art for two important multi-hop KG reasoning tasks:
Knowledge Base Completion and Path Query Answering.1

1 Introduction

Natural language understanding (NLU) is impossible without knowledge about the world. Large scale
knowledge graphs (KGs) such as Freebase (Bollacker et al., 2008) are structures that store world knowl-
edge. Unfortunately, KGs suffer from incomplete coverage (Min et al., 2013); e.g., Freebase contains
Brandon Lee, but not his ethnicity.

The knowledge in KGs needs to be expanded to cover more facts; reasoning is one way to do so.
For example, we could infer that (Microsoft, ?, United States) instantiates “CountryOfHQ” given the
facts (Microsoft, IsBasedIn, Seattle) and (Seattle, LocatedIn, United States); or we could infer Brandon
Lee’s ethnicity from his parents’ ethnicity, i.e., answering the query (Brandon Lee, Ethnicity, ?) by facts
(Brandon Lee, Father, Bruce Lee) and (Bruce Lee, Ethnicity, Chinese). We refer to the two reasoning
examples as “knowledge base completion (KBC)” and “path query answering (PQA)”, respectively.

The most successful approach for modeling KGs is the embedding approach. It embeds KG elements
(entities and relations) into low-dimensional dense vectors; controlling the dimensionality of the vector
space forces generalization to new facts (Nickel et al., 2011).

In this work, we are mainly interested in three issues. (i) Compared to modeling one-hop
KG paths, a bigger challenge is how to model multi-hop paths, e.g., the path query (U.S.A,
president→spouse→born in, ?) for the question “Where was the first lady of the United States born?”
(ii) How can we address different KG reasoning problems driven by multi-hop paths in a universal
paradigm rather than via different systems? (iii) How can we combine specific multi-hop KG reasoning
tasks with generic KG representation learning, so that KG representation learning can either stand alone
or be incorporated into diverse multi-hop KG-related NLU problems. We get inspiration from following
two types of work.

First, prior work in KG reasoning. Guu et al. (2015) extend one-hop reasoning regimes such as TransE
(Bordes et al., 2013) to multi-hop PQA. However, these basic one-hop models do not encode the relation

1https://github.com/yinwenpeng/KBPath
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order when used in compositional training schemes. For example, path query q1 = (h, r1→r2→· · ·→rk,
?) will be encoded into the same embedding as path query q2 = (h, r2→r1→· · ·→rk, ?), resulting
in (often incorrect) prediction of the same tail entity. Instead, the relation order should influence the
prediction. This limitation in modeling multi-hop relation paths motivates the RNN approach: using
recurrent neural networks (RNN (Elman, 1990)) to model relation paths (Neelakantan et al., 2015). Das
et al. (2017) further extend this approach by incorporating entity information and apply it to multi-hop
KBC. Intermediate entities should influence the reasoning decision. For example, given two paths with
the same relation sequence: (Donald Trump, child, Ivanka Trump, mother, Ivana Trump) and (Donald
Trump, child, Barron Trump, mother, Melania Trump), even though both paths have the relation sequence
[child,mother], the relation between (Donald Trump, Melania Trump) is “spouse” while it does not hold
between (Donald Trump, Ivana Trump) due to the intermediate entities: “Ivanka Trump” vs. “Barron
Trump”. Similarly, paths (JFK, located in, NYC, located in, NY) and (Yankee Stadium, located in,
NYC, located in, NY) would predict the same score for target relation “airport serves place” if we do
not consider that Yankee Stadium is not an airport (Das et al., 2017).

Second, sequence labeling tasks such as POS tagging, chunking and NER have been successfully
addressed by RNNs (Huang et al., 2015; Lample et al., 2016). These approaches model the mechanism
in a structure of form “input1, tag1, input2, tag2, input3, tag3, · · · , inputt, tagt”, which resembles the
structure of multi-hop KG paths.

Inspired by this prior work, we propose ROP, Recurrent One-hop Predictor. Given a head entity,
ROP encodes a multi-hop sequence of relations and predicts a sequence of entities using an RNN. More
formally, given relation sequence “r1, r2, · · · , rt” and the head entity eh, ROP predicts the sequence
e1, e2, · · · , et, thus generating a complete KG path eh, r1, e1, r2, e2, · · · , rt, et. Intuitively, our model
memorizes history of path context; given a new relation, it predicts the next entity, then the memory is
updated, and the process – given new relation, predicting new entity, updating memory – keeps going.
Grouping step-wise updates in a chain gives our model two advantages. (i) A better vector space rep-
resentation of KG entities and relations, with training signals either from in-path entities or from labels
of reasoning tasks or from both. (ii) A unified approach for two different reasoning tasks (mh-KBC and
mh-PQA) and state-of-the-art in each.

In summary, our contributions are: (i) ROP, a novel RNN sequence modeling of multi-hop KG paths
that updates entity and relation embeddings by training signal at each step and leads to better KG embed-
dings; (ii) unified framework for solving different multi-hop reasoning tasks over KGs; (iii) showing the
importance of modeling within-path entities in mh-PQA; (iv) state-of-the-art results for both mh-KBC
and mh-PQA; (v) releasing an enhanced version of a mh-PQA dataset by adding within-path entities.
§2 introduces the mh-KBC and mh-PQA tasks. §3 discusses related work. §4 presents three ROP

architectures and §5 evaluates them. §6 concludes.

2 Multi-Hop Path Reasoning Tasks

We first give background on the two KG reasoning tasks we address in this work.

Knowledge Base Completion (mh-KBC). In mh-KBC, the goal is to predict new relations between
entities using existing path connections. For example, (A, LivesIn, B) is implied, with some probability,
from (A, CEO, X) and (X, HQIn, B). This kind of reasoning lets us infer new or missing facts from KGs.

Figure 1(a) shows two paths between Microsoft and United States: (Microsoft, IsBasedIn, Seattle, Is-
LocatedIn, Washington, IsLocatedIn, United States) (blue) and (Microsoft, CEO, Satya Nadella, Place-
OfBirth, India, LargestTradingPartner, United States) (red). The task is then to predict the direct relation
that connects Microsoft and United States; i.e., CountryOfHQ in this case. There can exist multiple long
paths between two entities; the example shows that the target relation may only be inferrable from one
path. The difficulty of finding the most informative path makes this task challenging.

Path Query Answering (mh-PQA). In mh-PQA, the goal is to predict missing properties of an entity,
such as the earlier mentioned ethnicity of Brandon Lee. More generally, given an entity and relations
of interest, predict what the target entity is, as Figure 1(b) shows. This task corresponds to answering



(a) Multi-hop knowledge base completion (b) Multi-hop path query answering

Figure 1: Multi-Hop Path Reasoning Tasks

compositional natural questions. For example, the question “Where do Brandon Lee’s parents live?” can
be formulated by the path query brandon lee/parents/live in. mh-PQA tries to find answers to the path
queries and hence compositional questions. Unfortunately, KGs often have missing facts (edges), which
makes mh-PQA a non-trivial problem.

A path query qt consists of an initial anchor entity, eh, followed by a sequence of t relations to be
traversed, p = (r1, · · · , rt). Following (Guu et al., 2015), the answer or denotation of the query is the set
of all entities that can be reached from eh by traversing p.

3 Related Work

Here we focus on the multi-hop path reasoning literature. Some work (Neelakantan et al., 2015; Guu et
al., 2015; Lin et al., 2015; Lin et al., 2016; Shen et al., 2016) does some composition over relation paths.
Given relation path p = (r1, · · · , rt), the composition operation is add (p = r1+· · ·+rt), multiplication
(p = r1 · · · rt) or an RNN step: pi = RNN(pi−1, ri), where pi is the accumulated relation information
up to step i. Some work explores compositional encoding of long paths (Lin et al., 2016; Shen et al.,
2016), but still performs reasoning in one-hop scenario. Neelakantan et al. (2015) use RNNs to model
multi-hop paths.

Das et al. (2017) extend the RNN approaches by leveraging within-path entities into the encoding of
inputs along with relations. We also include within-path entities, but we do not give them as inputs;
instead, we force our RNN to predict them as outputs and do updates at each step in the path. This
supports representation learning for KG entities and relations even without task-specific annotations.
Toutanova et al. (2016) propose a dynamic programming algorithm to model both relation types and
intermediate entities in the compositional path representations and test on WordNet and a biomedical KG.
These two works address mh-KBC; for mh-PQA, there is no prior work on using within-path entities2,
including Das et al. (2017), in which the system uses within-path entities as input, while those entities
are not available for testing. So Das et al. (2017) use RNN for mh-PQA to encode the relation sequence,
but it does not incorporate the intermediate entities involved.

4 Recurrent One-Hop Prediction

We propose three ROPs, recurrent one-hop predictors, to model paths such as p = (eh, r1, e1, · · · , ri,
ei, · · · , rt, et). Entities and relations appear alternately in p; eh and et are head and tail entities; t
steps (hops) connect eh and et; each step is a single fact triple (ei−1, ri, ei). We stipulate ei ∈ Rde and
ri ∈ Rdr . We allow de 6= dr.

2Guu et al. (2015) attempt to measure how severe the cascading errors along the path are by reconstructing the intermediate
entities along a path. Their operation only generates an evaluation score for the path representation. We instead turn this into a
training objective to fine-tune the path representations.



(a) ROP ARC1 (b) ROP ARC2 (c) ROP ARC3

Figure 2: Three recurrent one-hop predictors

Paths are encoded by GRUs (Cho et al., 2014):

gz = σ(xiU
z + hi−1W

z) (1)

gr = σ(xiU
r + hi−1W

r) (2)

ĥi = tanh(xiU
q + (hi−1 ◦ gr)Wq) (3)

hi = (1− gz) ◦ ĥi + gz ◦ hi−1 (4)

where x is the input sequence with xi at position i, h is the output sequence with hi at position i. gz and
gr are gates. All Us and Ws are parameters. In following, we define the whole Eqs. 1–4 as a single GRU
step as:

hi = GRU(hi−1, xi) (5)

Thus, we interpret each GRU step as a composition function of two objects: hi−1 and xi.
We now introduce the three architectures ROP ARC1, ROP ARC2 and ROP ARC3 that encode the

context “eh, r1, e1, · · · , ri” in different ways to predict entity ei.
ROP ARC1 (Figure 2(a)) models KG paths as:

ê0 =eh (6)

êi =GRU(êi−1, ri) (7)

ê0 is initialized to the embedding of the true head entity eh. At position i, i > 0, êi is the predicted
entity embedding.

ROP ARC1 is essentially a recurrent process with a pre-set starting state; the key is to use the head
entity embedding eh as the initialization of the hidden state of GRU. We hope this start point guides
where the path goes and what state to reach at each position. As a result, relations lie in the input space
and entities lie in the hidden space. All predicted entities êi will be compared with the gold intermediate
entities ei, then the loss (red in Figure 2) is used to train the system.

ROP ARC1 only encodes head entity eh at the starting hidden state, possibly far from the tail en-
tity et for long paths. Thus, eh cannot provide effective guidance for prediction of et. This motivates
ROP ARC2, a modification of ROP ARC1.

In ROP ARC2, we want the head entity eh to participate in the entity prediction at each step more
directly and effectively. To this end, ROP ARC2 first encodes the relation sequence as standard GRU:

h0 = 0

hi = GRU(hi−1, ri)
(8)

h0 is initialized to 0. hi, i > 0, contains the information of the relation sequence r1, r2, · · · , ri inde-
pendent of the head entity eh. To make sure the path reaches the correct state, ROP arc2 then composes
each hi with eh to predict ei as:

êi = COMP1(eh,hi) (9)

As composition function COMP1 we use ADD (addition, as in TransE) or GRU (Eq 5).



In ROP ARC2, head entity eh directly participates in entity prediction at each step. Unfortunately,
there is often another issue – head entity eh may not match the hidden state hi if they are far away
from each other – hi mainly encodes some latest relation inputs that are less related to the head entity.
Besides, there is a second information source, in addition to eh, that is clearly relevant for accurate
prediction: the preceding predicted entity êi−1. But ROP ARC2 does not make it available. Our solution
is ROP ARC3. This architecture predicts the next entity ei using both eh and êi−1, based on the intuition
that ei is directly related to its predecessor ei−1.

ROP ARC3 combines the benefits of ROP ARC1 and ROP ARC2. It encodes the relation sequence
as in Eq 8 in ROP ARC2, but composes head entity eh as well as the predicted entity êi−1 with hi to
predict the entity ei as:

êi = COMP2(eh, êi−1,hi) (10)

As composition function COMP2, we use ADD (addition) or an extended GRU step, defined as:

gzh = σ(hiU
zh + ehW

zh) (11)

grh = σ(hiU
rh + ehW

rh) (12)

gzp = σ(hiU
zp + êi−1W

zp) (13)

grp = σ(hiU
rp + êi−1W

rp) (14)

ĥi = tanh(hiU
q + (eh ◦ grh)Wqh + (êi−1 ◦ grp)Wqp) (15)

êi = (1− gzh − gzp) ◦ ĥi + gzh ◦ eh + gzp ◦ êi−1 (16)

where super/subscript h refers to head entity and p refers to prior predicted entity êi−1.
In following work, we define Eqs. 11–16 as eGRU (extended GRU) step as:

êi = eGRU(eh, êi−1,hi) (17)

We extend GRU into eGRU, so that one architecture can compose three objects: a hidden state hi and
two entity states eh and êi−1.

Training. For the gold entity sequence e1, e2, · · · , et, we define the loss function as the margin-based
ranking criterion used in TransE (Bordes et al., 2013):

lseq =
∑

i max(0, α+s(e−i , êi)−s(ei, êi)) (18)

where α is the margin, e−i a negative sample for entity ei and s() a similarity function.
Discussion. The three ROP models differ in three aspects.
(i) ROP ARC1 has only one composition process, i.e., GRU, to encode from head entity eh to

ri; ROP ARC2 and ROP ARC3 each have two composition processes, one composes relation se-
quence r1, · · · , ri into hidden state hi, the other composes entities (eh in ROP ARC2, eh and êi−1

in ROP ARC3) with hi to predict ei.
Figure 2 shows that ROP ARC1 uses the GRU hidden states as outputs to compare with gold entities.

ROP ARC2 and ROP ARC3 instead compose their hidden states with head entity or preceding predicted
entity to generate a new output space, then compare with gold entities.

(ii) ROP ARC2 only uses the head entity eh along with the current hidden state hi to predict the
next entity ei whereas ROP ARC1 and ROP ARC3 in addition use the preceding predicted entity êi−1.
Hence, ROP ARC3 roughly uses the combined information of ROP ARC1 and ROP ARC2 to do the
prediction.

(iii) GRUs like ROP ARC2&ARC3 often zero-initialize first hidden state h0. Setting h0 to the head
entity in ROP ARC1 supports prediction of subsequent entities.

The ROP models are similar in three aspects.
(i) They model entities and relations in different spaces: relations are in the input space, entities are in

hidden or output spaces. Our motivation is similar to SE, TransH and TransR (cf. §3).



Figure 3: Architecture for mh-KBC task

(ii) The gating mechanism enables flexible compositions between entities and relations based on path
context. In contrast, one-hop KG embedding approaches model compositions statically as shared pa-
rameters and consider no context.

(iii) Unlike Neelakantan et al. (2015), Guu et al. (2015) and Lin et al. (2015) (who also do some
composition over relation paths), we finetune entity/relation embeddings in each step of the path. Our
intuition is that many more training signals coming from each step of the sequence enable better learning
of entity/relation embeddings. Das et al. (2017), as prior work that incorporates entities in the paths, only
update the entity embeddings in the path once, when reaching the end of the path. We test this effect in
our experiments.

5 Experiments

5.1 Knowledge Base Completion (mh-KBC)
Dataset. We use Das et al. (2017)’s dataset, in which there are 46 query relations, each has train, dev
and test files containing positive and negative entity pairs (head entity, tail entity). Each entity pair is
also provided with multiple multi-hop paths connecting them.

This is a binary classification task for each query relation: does the query relation hold between a pair
of entities? The classifier builds a ranked list of entity pairs for corresponding query relation. Evaluation:
mean average precision (MAP) across all 46 relations.

Task setup. We use ROP for mh-KBC. Figure 3 shows that we extend the basic ROP architecture
(§4) by a GRU layer (bottom layer in Figure 3), denoted as GRUr, that learns the representation of the
relation sequence. Finally, we use ht (the last hidden state of GRUr, shown in blue in Figure 3) to match
the query relation r.3

Thus, the training loss of this task has two parts: one comes from the loss of ROP training (lseq, Eq 18);
the other is the prediction loss of query relation, denoted as lpred. Our preliminary experiments always
showed worse performance of ADD, so the first loss lseq here only considers (e)GRU. The second loss is
as in (Neelakantan et al., 2015); we show that our ROP part boosts the system as it enables relation paths
to encode entity information with multiple updating – as opposed to a single update per path as in (Das
et al., 2017). Similar to lseq, we define:

lpred=
∑

j,i max(0, β+s(h−
j , r)−s(hi, r)) (19)

where r is the embedding of a query relation in Figure 3, hi (resp. h−
j ) is the representation of positive

(resp. negative) path example i (resp. j), shown as ht in Figure 3. In testing, all paths are ranked in terms
of the given query relation.

The target relation is often not inferrable from all paths between head and tail (see Figure 1(a)); it can
be entailed by a single path or a subset of paths. Hence, given the representation of a group of paths,
how to match them with the representation of the target relation is a key problem. We use max (over all
paths) because we found it works well in selecting the best path for the target relation. See last paragraph
of §5.1 for discussion.

3Using the last hidden state in ROP (which participates in predicting the tail entity) to predict the query relation performed
much worse. We suspect the finetuning by tail entity makes it not indicative for query relations.



Model MAP
PRA (Lao et al., 2011) 64.43
PRA+ Bigram (Neelakantan et al., 2015) 64.93
RNN-path (Neelakantan et al., 2015) 68.43
RNN-path-entity (Das et al., 2017) 71.74
RNN-path-types (Das et al., 2017) 73.26
ROP ARC1 74.23
ROP ARC2 74.46
ROP ARC3 76.16

Table 1: Results of mh-KBC task

We use AdaGrad (Duchi et al., 2011) with learning rate 0.1. Relation embedding dimension is 200,
margins α and β are 0.5 (Eqs. 18–19), entity embedding dimension 200, batch size 20, negative sampling
size 4. Longer paths are truncated to 8, the first 30 paths are kept for each entity pair.

Results. Table 1 compares our ROP systems to five baselines. RNN-path (Neelakantan et al., 2015)
composes the relations occurring in a path using a vanilla RNN. It ignores all information about within-
path entities and trains separate models per relation. RNN-path-entity (Das et al., 2017) models the path
entities and improves the results. RNN-path-type (Das et al., 2017) further improves the result by repre-
senting entities with the sum of their type embeddings. Thus, RNN-path-type uses extra information, the
entity types. Apart from these baselines, it is also feasible to compare with the baselines based on com-
position of one-hop triple-based embedding models. However, the performance of these baselines is very
poor for this task (Neelakantan et al., 2015) and therefore, we do not include them in our comparison.

The performance order of our architectures for mh-KBC is ROP ARC3> ROP ARC2> ROP ARC1.
All our ROP systems are superior to the state-of-the-art. In particular, they are superior to RNN-path-
type (Das et al., 2017), the state-of-the-art, even though we do not need and do not use information about
the types of entities. Comparing ROP performance to RNN-path-entity is more fair, and this makes it
even clearer that our modeling is effective. Das et al. (2017) encode entities along with relations into
the path representation explicitly. Their motivation is that entity incorporation prevents prediction of
the same target relation when relation sequences are the same, but path entities are different. Our ROP
models achieve this implicitly, as the relation sequence can predict the entity sequence; this makes sure
the representation of the relation sequence is specific to the entity sequence. As a result, the same goal
can be achieved as (Das et al., 2017).

In (Das et al., 2017), an entity and a relation are concatenated as a new unit in the path; both entity and
relation representations are trained based on the given gold relation as label. ROP predicts intermediate
entities and updates the entity/relation embeddings and other parameters in each step; the training signals
can come from the in-path target entities and from the reasoning task specific annotations. Thus, ROP
makes use of the in-path structures to learn good quality entity/relation embeddings, which are further
employed and finetuned to solve the reasoning problem.

This can also explain why max (over all paths) works well for us while Das et al. (2017) found Log-
SumExp (over all paths) works better. As their system solely relies on target relations as training signals,
max selection prevents all other paths from generating gradients to update, so max tends to select ran-
domly in the initial stage. However, in our system, the representations of entities and relations get rich
training signals at each path hop, so that the path representations are more reliable. Hence, max can
select the most informative path and avoid misleading paths to support the claim of target relation. In
a similar vein, max pooling is widely found more effective than mean/sum pooling for classification as
this task mostly relies on the dominant features.

5.2 Path Query Answering (mh-PQA)

Dataset. We use the mh-PQA dataset released by Guu et al. (2015) and refer to it as BaseKGP4.
BaseKGP contains paths like eh, r1, r2, · · · , rt, et, where eh and et are head and tail entities, connected

4Das et al. (2017) use a dataset based on the WordNet, however they conclude that the dataset is not an ideal test bed for
mh-PQA due to some limitations: it is fairly small, with very short paths, few unseen paths during test time, and only one path
between an entity pair. Therefore, we experiment on BaseKGP.



#paths #entities #relations
train 6,266,058 75,043 26
dev 27,163 41,010 26
test 109,557 96,858 26

Table 2: Statistics of EnhancedKGP for mh-PQA
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ROP ARC1 89.4 54.2
ROP ARC2 (ADD) 90.3 55.5
ROP ARC2 (GRU) 90.5 56.3
ROP ARC3 (ADD) 90.3 55.8
ROP ARC3 (eGRU) 90.7 56.7

Table 3: Results of mh-PQA

by relation sequence r1, · · · , rt. There are 6,266,058/27,163/109,557 paths in train/dev/test.
BaseKGP is based on a Freebase subset released by Socher et al. (2013). The original subset contains

a collection of Freebase triplets in form of (head, relation, tail). Guu et al. (2015) generated paths by
traversing the triplet space. Paths in BaseKGP of form eh, r1, r2, · · · , rt, et do not contain intermediate
entities. We create EnhancedKGP by enhancing each BaseKGP path in train as follows. We search
entities at each step of a path by traversing the subset (Socher et al., 2013) until reaching the tail entity
et. When there are multiple entity choices at a step, we randomly choose one. EnhancedKGP train
has the same size as BaseKGP train, except that paths are filled by intermediate entities. Table 2 gives
statistics. We release EnhancedKGP,5 the first dataset for mh-PQA that includes within-path entities,
with the code.

Task setup. We tune parameters on dev. We sample 10 negative entities for each ground truth entity in
the path and use ranking loss (Eq 18) (with α=0.3, s() = cosine similarity). For testing, we ignore inter-
mediate predicted entities and only output the tail entity. We update parameters – relation embeddings,
entity embeddings (both dimension 300) and GRU parameters – using AdaGrad with learning rate 0.01
and mini-batch size 50.

We compare ROP with the three compositional training schemes Bilinear, Bilinear-Diag and TransE
in (Guu et al., 2015). The compositional training of TransE, denoted as Comp-TransE in this work, is
the state-of-the-art in mh-PQA. For ROP ARC2, we report the performance of using ADD and GRU for
COMP1 in Eq 9. Similarly, for ROP ARC3, we report the performance of using ADD and eGRU for
COMP2 in Eq 10.

In addition, to better investigate ROP models, we run them on both BaseKGP and EnhancedKGP. Note
that since there are no intermediate entities in BaseKGP, ROP ARC3 is reduced to ROP ARC2. Hence,
we report results on BaseKGP only for ROP ARC1 and ROP ARC2.

Two benchmark metrics are reported for this task (Guu et al., 2015): hits at 10 (H@10), percentage
of ground truth tail entities ranked in the top 10 of all retrieved; and mean quantile (MQ), normalized
version of mean rank.

Results. Table 3 gives results for mh-PQA: top baselines on BaseKGP (block 1), ROP results on

5We inadvertently included Socher et al (2013)’s entire dataset (including test set) in our search space when randomly
generating intermediate entities for training paths. This means that it is possible that some test intermediate entities occurred in
training.
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Figure 4: H@10 vs. path lengths on test set

BaseKGP (block 2) and ROP results on EnhancedKGP (block 3). Overall, our ROP models all get
new state-of-the-art by large margins (2–4% H@10 on BaseKGP, 4–6% H@10 on EnhancedKGP). The
improvements of the second block over the first are evidence that recurrent neural networks are an appro-
priate paradigm in this task. The third block shows that encoding intermediate entities in an appropriate
way, like ROP does, can give a further boost.

Comparing ROP ARC2 and ROP ARC1, we realize that forwarding head entity eh directly to predict
each intermediate entity ei is better than putting eh as the start state of the GRU. We suspect this is due
to the fact that the latest state of GRU is gradually less influenced by eh when the following relation path
is getting longer and longer. In ROP ARC2, no matter how long the relation sequence r1, r2, · · · , ri is,
we always compose its whole representation hi with the representation of eh so that eh can participate
in the prediction of ei more directly.

ROP ARC3 further improves results by composing not only head entity eh, but also the preceding
predicted entity êi−1 with hi to predict entity ei. The result suggests that êi−1 provides critical infor-
mation in this prediction process. This may be due to the property of RNN that latest inputs tend to
be remembered better than old inputs, so the latest hidden state hi is heavily influenced by the adjacent
relations of position i; employing the preceding predicted entity êi−1 hence can help the prediction of ei.

For composition, GRU/eGRU always surpass ADD – presumably due to the higher expressibility of
(e)GRU’s gating mechanism.

Performance vs. path lengths. Figure 4 graphs H@10 on different path lengths for our three ROP
systems and the Comp-TransE baseline. We expected that H@10 should decrease gradually. However,
Figure 4 shows that even-length paths are harder than odd-length ones. This surprising phenomenon is
due to a large number of inverse relations, as most inverse relations in BaseKGP are 1-to-N connections.

The percentages of inverse relations in paths of length 1, 2, 3, 4, 5 are 0.0, 49.7, 38.3, 49.5 and 42.9,
respectively. Spearman correlation coefficients between these percentages and system performance are
always higher than 0.9. Thus, the more inverse relations, the worse performance. Unfortunately, to date
there is no good way to model pairs of a relation r and its inverse ∗r, e.g, “gender” and “*gender”,
as separate, yet at the same time as systematically related. Guu et al. (2015)’s TransE implementation
enforces ∗r+r = 0. Figure 4 shows this is not as effective as expected, perhaps because it fails for 1-to-N
projections. ROP treats inverse relations as independent, but we did not observe any worse performance.
Better modeling of inverse relations is an interesting challenge for future work.

6 Conclusion

This work presented three ROP architectures for multi-hop KG reasoning. ROP models a KG path of
arbitrary length as a pair of a relation sequence and an entity sequence, using the former to predict the
latter by encoding and decoding step by step. Our neural sequential modeling of KG paths enables better
learning of entity/relation embeddings because there are more training signals at each multi-hop path.
ROPs showed state-of-the-art in two representative KG reasoning tasks, multi-hop KBC and multi-hop
PQA. Incorporating knowledge from textual sources by initializing the entity embeddings with distri-



butional representation of entities (Yaghoobzadeh and Schütze, 2015) could improve our results further,
which we will explore in the future.
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