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Abstract

Natural language inference (NLI) is the task of determining if a natural language hypothesis can
be inferred from a given premise in a justifiable manner. NLI was proposed as a benchmark
task for natural language understanding. Existing models perform well at standard datasets for
NLI, achieving impressive results across different genres of text. However, the extent to which
these models understand the semantic content of sentences is unclear. In this work, we propose
an evaluation methodology consisting of automatically constructed “stress tests” that allow us
to examine whether systems have the ability to make real inferential decisions. Our evaluation
of six sentence-encoder models on these stress tests reveals strengths and weaknesses of these
models with respect to challenging linguistic phenomena, and suggests important directions for
future work in this area.

1 Introduction

Natural language inference (NLI), also known as recognizing textual entailment (RTE), is concerned with
determining the relationship between a premise sentence and an associated hypothesis. This requires a
model to make the 3-way decision of whether a hypothesis is true given the premise (entailment), false
given the premise (contradiction), or whether the truth value cannot be determined (neutral). NLI has
been proposed as a benchmark task for natural language understanding research (Cooper et al., 1996;
Dagan et al., 2006; Giampiccolo et al., 2007; Dagan et al., 2013; Bowman et al., 2015; Nangia et
al., 2017), due to the requirement for models to reason about several difficult linguistic phenomena1 to
perform well at this task (Bowman et al., 2015; Williams et al., 2017).

Due to its importance, significant prior work (Dagan et al., 2006; Dagan et al., 2009; Dagan et al.,
2013; Marelli et al., 2014a) has focused on developing datasets and models for this benchmark task.
Most recently, this task has been concretely implemented in the Stanford NLI (SNLI; Bowman et al.
(2015)), and Multi-genre NLI (MultiNLI; Williams et al. (2017)) datasets, where crowdworkers are given
a premise sentence and asked to generate novel sentences representing the three categories of entailment
relations. Within the scope of these benchmark datasets, state-of-the-art deep learning-based sentence
encoder models2 (Nie and Bansal (2017), Chen et al. (2017), Conneau et al. (2017), Balazs et al. (2017),
inter alia) have been shown to consistently achieve high accuracies, which may lead us to believe that
these models excel at NLI across genres of text. However, machine learning models are known to exploit
idiosyncrasies of how the data was produced, allowing them to imitate desired behavior using tricks such
as pattern matching (Levesque, 2014; Rimell et al., 2009; Papernot et al., 2017). In NLI this arises
when the test set contains many easy examples, and the extent to which difficult components of language
understanding are required is masked within traditional evaluation. Therefore we ask a natural question:

∗*The first two authors contributed equally to this work.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/

1such as scope, coreference, quantification, lexical ambiguity, modality and belief.
2Sentence-encoder models are considered to be especially important to natural language understanding due to the require-

ment to represent sentences as fixed length vectors and perform reasoning based on these representations (Nangia et al., 2017).
Thus, they will be our primary focus.

http://creativecommons.org/licenses/by/4.0/
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is good model performance on NLI benchmarks a result of sophisticated pattern matching, or does it
reflect true competence at natural language understanding?

In this work, we propose an evaluation based on “stress” tests for NLI, which tests robustness of
NLI models to specific linguistic phenomena. This methodology is inspired by the work of Jia and Liang
(2017) (and other related work: §5), which proposes the use of adversarial evaluation for reading compre-
hension by adding a distracting sentence at the end of a paragraph (known as concatenative adversaries),
and evaluating models on this test set. However, this evaluation scheme cannot easily be applied to NLI
as i) the adversarial perturbations suggested are not label preserving, that is the semantic relation between
premise and hypothesis will not be maintained by such edits, ii) the perturbations may decrease system
performance but are not interpretable and iii) premise-hypothesis pairs in inference usually consist of
a single sentence, but concatenative adversaries break this assumption. In addition, besides evaluating
model robustness to distractions in the form of adversarial examples, we are also interested in evaluating
model competence on types of reasoning necessary to perform well at the task.

The proposed method offers a fine-grained evaluation for NLI (with label-preserving adversarial per-
turbations when required), in the form of “stress tests”. In the stress testing methodology, systems are
tested beyond normal operational capacity in order to identify weaknesses and to confirm that intended
specifications are being met (Hartman and Owens, 1967; Tretmans, 1999; Beizer, 2003; Pressman,
2005; Nelson, 2009). To construct these stress tests for NLI, we first examine the predictions of the
best-performing sentence encoder model on MultiNLI (Nie and Bansal, 2017), and create a typology of
phenomena that it finds challenging (§2). Based on this typology, we present a methodology to automati-
cally construct stress tests, which may cause models that suffer from similar weaknesses to fail (§3). The
resulting tests make it possible to perform evaluation on a phenomenon-by-phenomenon basis, which is
not the case for Jia and Liang (2017).3 We benchmark the performance of four state-of-the-art models
on the MultiNLI dataset on our constructed stress tests (§4), and observe performance drops across stress
tests. We view these results as a first step towards robust, fine-grained evaluation of NLI systems. To
encourage development of models that perform true natural language understanding for NLI, we release
our code and all stress tests for future evaluation. 4

2 Weaknesses of State-of-the-art NLI

Before creating adversarial examples that challenge state-of-the-art systems, it is helpful to study what
phenomena systems find difficult. To elucidate this, we conduct a comprehensive error analysis of the
best-performing sentence encoder model for MutliNLI (Nie and Bansal, 2017). For this analysis, we
sample 100 misclassified examples from both genre-matched and mismatched sets, analyze their poten-
tial sources of errors, and group them into a typology of common reasons for error.In the end, the reasons
for errors can broadly be divided into the following categories,5 with examples shown in Table 1:

1. Word Overlap (29%): Large word-overlap between premise and hypothesis sentences causes
wrong entailment prediction, even if they are unrelated. Very little word overlap causes a prediction
of neutral instead of entailment.

2. Negation (13%): Strong negation words (“no”, “not”) cause the model to predict contradiction for
neutral or entailed statements.

3. Antonymy (5%): Premise-hypothesis pairs containing antonyms (instead of explicit negation) are
not detected as contradiction by the model.

4. Numerical Reasoning (4%): For some premise-hypothesis pairs, the model is unable to perform
reasoning involving numbers or quantifiers for correct relation prediction.

3Isabelle et al. (2017) have proposed a similar fine-grained evaluation approach for machine translation, but it requires the
manual construction of examples, unlike our automatic approach.

4All stress tests and resources available at https://abhilasharavichander.github.io/NLI_StressTest/
5% indicates what proportion of examples from our error analysis on the matched development set, fall into each category.

Results on the mismatched development set follow similar trends and are available in appendix A

https://abhilasharavichander.github.io/NLI_StressTest/
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Error Premise Hypothesis
Word Overlap
(N→E)

And, could it not result in a decline in Postal Service
volumes across–the–board?

There may not be a decline in Postal Service vol-
umes across–the–board.

Negation
(E→C)

Enthusiasm for Disney’s Broadway production of
The Lion King dwindles.

The broadway production of The Lion King is no
longer enthusiastically attended.

Numerical
Reasoning
(C→E)

Deborah Pryce said Ohio Legal Services in Colum-
bus will receive a $200,000 federal grant toward an
online legal self-help center.

A $900,000 federal grant will be received by Mis-
souri Legal Services, said Deborah Pryce.

Antonymy
(C→E)

“Have her show it,” said Thorn. Thorn told her to hide it.

Length Mis-
match (C→N)

So you know well a lot of the stuff you hear coming
from South Africa now and from West Africa that’s
considered world music because it’s not particularly
using certain types of folk styles.

They rely too heavily on the types of folk styles.

Grammaticality
(N→E)

So if there are something interesting or something
worried, please give me a call at any time.

The person is open to take a call anytime.

Real World
Knowledge
(E→N)

It was still night. The sun hadn’t risen yet, for the moon was shining
daringly in the sky.

Ambiguity
(E→N)

Outside the cathedral you will find a statue of John
Knox with Bible in hand.

John Knox was someone who read the Bible.

Unknown
(E→C)

We’re going to try something different this morning,
said Jon.

Jon decided to try a new approach.

Table 1: Examples of misclassified samples for each error category (Gold Label→Predicted Label)

5. Length Mismatch (3%): The premise is much longer than the hypothesis and this extra information
could act as a distraction for the model.

6. Grammaticality (3%): The premise or the hypothesis is ill-formed because of spelling errors or
incorrect subject-verb agreement.

7. Real-World Knowledge (12%): These examples are hard to classify without some real-world
knowledge.

8. Ambiguity (6%): For some instances, the correct answer is unclear to humans. These are the most
difficult cases.

9. Unknown (26%): No obvious source of error is discernible in these samples.

Some of our error categories such as real world knowledge are well-known “hard” problems. However,
error categories such as negation scope and antonymy, are crucial for natural language understanding
and been of significant interest to study in formal semantics (Kroch, 1974; Muehleisen, 1997; Murphy,
2003; Moscati, 2006; Brandtler, 2006). Some of these phenomena have long been suspected to be
challenging for entailment models (Jijkoun and De Rijke, 2006; LoBue and Yates, 2011; Roy, 2017). In
fact, at roughly the same time as this submission, Gururangan et al. (2018) corroborate our findings by
identifying lexical choice such as negation words, as well as sentence length as biasing factors in NLI
datasets.

3 Stress Test Set Construction

While the error analysis is informative for Nie and Bansal (2017), performing a manual analysis for
every system is not scalable. To create an automatically calculable proxy, we focus on automatically
constructing large-scale datasets (stress tests), which test NLI models on phenomena that account for
most errors in our analysis. In particular, we generate adversarial examples which test “word overlap”,
“negation”, “length mismatch”, “antonyms”, “spelling error” and “numerical reasoning”.6

6Notably, we focus only on “spelling error” for “grammaticality”. We omit “real world knowledge” as it is not trivial to
create a large dataset without human input, the “ambiguity” category because it is unreasonable that models can handle such
cases, and the “unknown” category because it does not correspond to a particular phenomenon.
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Error Cat. Premise Hypothesis
Antonyms I love the Cinderella story. I hate the Cinderella story.
Numerical
Reasoning

Tim has 350 pounds of cement in 100, 50, and 25
pound bags

Tim has less than 750 pounds of cement in 100,
50, and 25 pound bags

Word
Overlap

Possibly no other country has had such a turbu-
lent history.

The country’s history has been turbulent and true
is true

Negation Possibly no other country has had such a turbu-
lent history.

The country’s history has been turbulent and
false is not true

Length
Mismatch

Possibly no other country has had such a turbu-
lent history and true is true and true is true and
true is true and true is true and true is true

The country’s history has been turbulent.

Spelling
Errors

As he emerged, Boris remarked, glancing up at
teh clock: ”You are early

Boris had just arrived at the rendezvous when he
appeared

Table 2: Example constructions from stress tests

We organize our stress tests into three classes, based on their perceived difficulty for the model. The
first class (competence tests) evaluates the model’s ability to reason about quantities and understand
antonymy relations. The second class (distraction tests), estimates model robustness to shallow distrac-
tions such as lexical similarity or presence of negation words. This category contains “word overlap”,
“negation” and “length mismatch” tests. The final class (noise tests) checks model robustness to noisy
data and consists of our “spelling error” test. Our adversarial construction uses three techniques: heuris-
tic rules with external knowledge sources (for competence tests), a propositional logic framework (for
distraction tests) and randomized perturbation (for noise tests). The following subsections describe our
stress test construction, with examples shown in Table 2.

3.1 Competence Test Construction
Antonymy: For this construction, we consider every sentence from premise-hypothesis pairs in the
development set independently. We perform word-sense disambiguation for each adjective and noun
in the sentence using the Lesk algorithm (Lesk, 1986). We then sample an antonym for the word from
WordNet (Miller, 1995). The sentence with the word substituted by its antonym and the original sentence
become a new premise-hypothesis pair in our set. This results in 1561 and 1734 premise-hypothesis pairs
for matched and mismatched sets respectively.

Substituting a word with its antonym may not always result in a contradiction 7 . Hence, three annota-
tors were provided 100 random samples from the stress test set to evaluate for correctness. At least two
annotators agreed on 86% of the labels being contradiction. We also evaluated grammaticality of our
constructions, with at least two annotators agreeing on 87% being grammatical.
Numerical Reasoning: Creating a stress test for numerical reasoning is non-trivial as most of the
MultiNLI development set does not involve quantities. Hence, we extract premise sentences from AQuA-
RAT (Ling et al., 2017a), a dataset specifically focused on algebraic word problems along with rationales
for their solutions. However, word problems from AQuA-RAT are quite complicated8 and general-
purpose NLI models cannot reasonably be expected to solve them.

To generate a reasonable set of premise sentences, we first discard problems which do not have numer-
ical answers or have long rationales (>3 sentences) as such problems are inherently complex. We then
split all problems into individual sentences and discard sentences without numbers, resulting in a set of
40,000 sentences. From this set, we discard sentences which do not contain at least one named entity
(we consider “PERSON”, “LOCATION” and “ORGANIZATION”), since such sentences mostly deal
with abstract concepts.9 This results in a set of 2500 premise sentences. For each premise, we generate
entailed, contradictory and neutral hypotheses using heuristic rules:

7Consider examples of sentences with modalities, belief, conjunction or even conversational text such as “They can change
the tone of people’s voice yes.”, “They can change the tone of people’s voice no.”, coreference, word substitution in metaphors
or failure of word sense disambiguation.

8Including concepts such as probability, geometry and theoretical proofs.
9For example, “Find the smallest number of five digits exactly divisible by 22, 33, 66 and 44”.
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1. Entailment: Randomly choose and change one numerical quantity from the premise, prefixing it with
the phrase “less than” or “more than” based on whether the new number is higher or lower.
2. Contradiction: Perform one of two actions with equal probability: randomly choose a numerical
quantity from the premise and change it, or randomly choose a numerical quantity from the premise and
prefix it with “less than/ more than” without changing it.
3. Neutral: Flip the corresponding entailed premise-hypothesis pair.
Using these rules, we generate a set of 7,596 premise-hypothesis pairs testing models on their ability
to perform numerical reasoning. We further instruct three human annotators to evaluate 100 randomly
sampled examples for difficulty, grammaticality and label correctness (since the labels are automatically
generated). At least two annotators agreed with our generated label for 91% of the samples. Addition-
ally, at least two annotators agreed on 92% of the examples being grammatical, and 98% being trivial
numerical reasoning for humans.

3.2 Distraction Test Construction

This class includes stress tests for “word overlap”, “negation” and “length mismatch”, which test model
ability to avoid getting distracted by simple cues such as lexical similarity or strong negation words.
Models usually exploit such cues to achieve high performance since they have strong but spurious
correlations with gold labels, but reliance on shallow reasoning can be used to distract models easily, as
we demonstrate. We use a framework inspired by propositional logic to construct adversarial examples.

Propositional Logic Framework: Assume a premise p and a hypothesis h. For entailment, (p ⇒ h)
=⇒ (p∧True ⇒ h) since (p∧True = p). Similarly for contradiction, (p ⇒⇐ h) =⇒ (p∧True ⇒
⇐ h) and if p and h are neutral, they remain neutral. In other words, if the premise or hypothesis is in
conjunction with a statement that is independently true in all worlds, the entailment relation is preserved.

The next step is to construct such statements whose values are true in all worlds (tautologies). We then
define stress test accuracy for NLI as :

Adv(a) =
1

|Dtest|
∑

i∈Dtest

1{f(p, h, a) = ci}

where a is an adversarial tautology which can be attached as a conjunction to either the premise or
hypothesis without changing the relation. We use this framework to construct distraction tests for “word
overlap”, “negation” and “length mismatch”. For all sets, we use simple tautologies, which do not contain
words that share any topical significance with the premise or hypothesis.

A natural concern is that statements obtained from such constructions are unnatural (Grice, 1975),
making the NLI task more difficult for humans. To study this, we run a human evaluation where three
annotators are shown premise-hypothesis pairs from these sets and instructed to label the relation. On
word overlap, we find the provided label has 91% agreement with the gold label. For length mismatch,
the provided label has 85% agreement with gold. This is similar to the agreement reported in Williams
et al. (2017), leading us to believe the constructed examples are not too unnatural or difficult. The con-
structions also remain grammatical; after annotating 100 samples from our adversarially generated set,
only two were deemed ungrammatical, and both were because of reasons unrelated to our perturbations.
Specific details for our sets are as follows:
Word Overlap: For this set, we append the tautology “and true is true” to the end of the hypothesis
sentence for every example in the MultiNLI development set.
Negation: For this set, we append the tautology “and false is not true”, which contains a strong negation
word (“not”), to the end of the hypothesis sentence for every example in the MultiNLI development set.
Length Mismatch: For this adversarial set, we append the tautology “and true is true” five times to the
end of the premise sentence for every example in the MultiNLI development set. We modify the premise
sentence in this case as we hypothesize that errors in this category mainly arise due to the premise
sentence being unwieldy.
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Original Competence Test Distraction Test Noise Test
MultiNLI Word Length Spelling

System Dev Antonymy Numerical Overlap Negation Mismatch Error
Mat Mis Mat Mis Reasoning Mat Mis Mat Mis Mat Mis Mat Mis

NB 74.2 74.8 15.1 19.3 21.2 47.2 47.1 39.5 40.0 48.2 47.3 51.1 49.8
CH 73.7 72.8 11.6 9.3 30.3 58.3 58.4 52.4 52.2 63.7 65.0 68.3 69.1
RC 71.3 71.6 36.4 32.8 30.2 53.7 54.4 49.5 50.4 48.6 49.6 66.6 67.0
IS 70.3 70.6 14.4 10.2 28.8 50.0 50.2 46.8 46.6 58.7 59.4 58.3 59.4

BiLSTM 70.2 70.8 13.2 9.8 31.3 57.0 58.5 51.4 51.9 49.7 51.2 65.0 65.1
CBOW 63.5 64.2 6.3 3.6 30.3 53.6 55.6 43.7 44.2 48.0 49.3 60.3 60.6

Table 3: Classification accuracy (%) of state-of-the-art models on our constructed stress tests. Accuracies
shown on both genre-matched and mismatched categories for each stress set. For reference, random
baseline accuracy is 33%.

3.3 Noise Test Construction

This class consists of an adversarial example set which tests model robustness to spelling errors. Spelling
errors occur often in MultiNLI data, due to involvement of Turkers and noisy source text (Ghaeini et
al., 2018), which is problematic as some NLI systems rely heavily on word embeddings. Inspired by
Belinkov and Bisk (2017), we construct a stress test for “spelling errors” by performing two types of
perturbations on a word sampled randomly from the hypothesis: random swap of adjacent characters
within the word (for example, “I saw Tipper with him at teh movie.”), and random substitution of a single
alphabetical character with the character next to it on the English keyboard. For example, “Agencies have
been further restricted and given less choice in selecting contractimg methods”.

4 Experiments

4.1 Experimental Setup

We focus on the following sentence-encoder models, which achieve strong performance on MultiNLI:
Nie and Bansal (2017) (NB): This model uses a sentence encoder consisting of stacked BiLSTM-RNNs
with shortcut connections and fine-tuning of embeddings. It achieves the top non-ensemble result in the
RepEval-2017 shared task (Nangia et al., 2017).
Chen et al. (2017) (CH): This model also uses a sentence encoder consisting of stacked BiLSTM-RNNs
with shortcut connections. Additionally, it makes use of character-composition word embeddings
learned via CNNs, intra-sentence gated attention and ensembling to achieve the best overall result in the
RepEval-2017 shared task.
Balazs et al. (2017) (RiverCorners - RC): This model uses a single-layer BiLSTM with mean pooling
and intra-sentence attention.
Conneau et al. (2017) (InferSent - IS): This model uses a single-layer BiLSTM-RNN with max-
pooling. It is shown to learn robust universal sentence representations which transfer well across several
inference tasks.
We also set up two simple baseline models:
BiLSTM: The simple BiLSTM baseline model described by Nangia et al. (2017).
CBOW: A bag-of-words sentence representation from word embeddings.

4.2 Model Performance on Stress Tests

Table 3 shows the classification accuracy of all six models on our stress tests and the original MultiNLI
development set. We see that performance of all models drops across all stress tests. On competence
stress tests, no model is a clear winner, with RC and CH performing best on antonymy and numerical
reasoning respectively. On distraction tests, CH is the best-performing model, suggesting that their
gated-attention mechanism handles shallow word-level distractions to some extent. Interestingly, our



2346

BiLSTM baseline is the second-best model on two out of three distraction tests. On the noise test, CH,
RC and both baselines [BiLSTM;CBOW] do not show much performance degradation, most likely due
to the benefit of subword modeling via character-CNNs and the use of mean pooling. We further analyze
model performance on each class of tests.

4.3 Model Competence

Model Performance on Antonymy: Table 3 shows that all models perform poorly on antonymy. RC
achieves the best performance, with 36.4% and 32.8% on matched and mismatched sets respectively
which is just higher than random performance. Our analysis shows that models tend to overpredict
entailment (due to a high amount of word overlap in this test). This accounts for, on average, 86.4% and
87.6% of total errors on matched and mismatched sets.10

We study which antonym pairs are easy and difficult for models by examining the errors of the best
and worst performing models on this test [RC;CH]. On 982 samples where both models fail, we find
617 unique antonym pairs, and on 171 samples where both models succeed, we find 84 unique antonym
pairs. 89.8% of the “easy” and 57.2% of the “hard” antonym pairs appear in a contradiction relation
within the training data, suggesting that models succeed on easy antonym-pairs seen in the training data
but struggle to generalize.

We were also curious about error variation by antonym type. We randomly sample 100 examples
where both models fail and 100 samples where both succeed, and manually annotate whether the
antonym present was gradable, relational or complementary. Among successful examples, 99% are
complementary antonyms with only one relational antonym. Amongst the failure cases, 20% are
relational antonym pairs, 73% are complementary and 7% are gradable, suggesting that models find
relational and gradable antonyms hard, but get complementary antonyms both right and wrong. Finally,
we examine differences between models by analyzing examples classified correctly by the best model
which are not handled by the worst. We find that antonym pairs recognized by the weaker model occur,
on average, nearly twice as often in the training data as antonym pairs recognized by the stronger model,
suggesting that RC is able to learn antonymy from fewer examples (though these examples must be
present in training data).

Model Performance on Numerical Reasoning: Table 3 shows that all models exhibit a significant
performance drop on numerical reasoning, with none achieving an accuracy better than random (33%).
We analyze the predictions of the best and worst performing models on this test [BiLSTM;NB]. The
biggest source of common errors for both models (1703 out of 4337 errors) is misclassifying neutral
pairs as entailment, which arises because our construction technique flips entailed premise-hypothesis
pairs to create neutral pairs, leading to high word overlap for neutral pairs. Our constructions also lead
to high word overlap for contradiction pairs, leading to a large number of C-E errors for both models
(1695 out of 4337 errors). Thus, 78.3% of all errors are caused due to the models falsely predicting
entailment. Most of the remaining errors are caused by entailment examples containing the phrases
“more than” or “less than” being incorrectly classified as contradiction. This behavior could arise as
these phrases are often used by crowdworkers to create contradictory examples in the original MultiNLI
data, fooling models into marking examples with this phrase as “contradiction” without reasoning about
involved quantities. Our observations suggest that models do not perform quantitative reasoning, but rely
on word overlap and other shallow lexical cues for prediction.

4.4 Model Distraction

Our distraction tests are designed to check model robustness to: 1) decreasing lexical similarity between
premise-hypothesis pairs, 2) strong negation words in sentence pairs.

Effect of Decreasing Lexical Similarity: Due to our construction methodology (appending tautologies),
accuracy on word overlap and length mismatch demonstrates the effect of decreasing lexical similarity

10Detailed results from this analysis are provided in appendix B
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Sys MultiNLI Word Length
tem Dev Overlap Mismatch

Mat Mis Mat Mis Mat Mis
NB 33.2 33.1 43.2 38.3 46.0 46.9
CH 32.9 31.7 84.7 85.3 65.8 65.8
RC 37.1 39.1 74.3 83.3 74.2 79.5
IS 34.7 31.4 86.3 87.0 43.5 44.2

BiLSTM 38.5 37.9 83.2 81.9 75.9 79.1
CBOW 33.9 30.2 74.5 72.3 54.7 59.9

Table 4: % of FALSE NEUTRAL in total er-
rors on MultiNLI development set, word over-
lap test and length mismatch test.

System BiLSTM NB
Mat Mis Mat Mis

MultiNLI Dev 70.2 70.4 66.6 66.6
NEGATION 68.9 70.4 49.3 48.7
DIFF TAUT 49.0 49.3 49.9 49.7

Table 5: Effect of training on distraction data
on original DEV set, original distraction set
and new distraction set

on model performance. Table 3, shows accuracy decreases for all models on both tests. This drop is
lower for CH, suggesting that their gated attention mechanism might help in focusing on relevant parts
of the sentence.

The significant decrease in accuracy indicates that lexical similarity is a strong signal for entailment
prediction, failing which models default to predicting neutral. To provide further justification, we com-
pare the proportion of false neutral errors for all models on word overlap and length mismatch stress sets
vs. the original MultiNLI development set. As shown in Table 4, we find it increases for all models on
both sets.

Effect of Introducing Strong Negation Words: Table 3 shows results on negation, and we see that all
state-of-the-art models perform poorly, with accuracies decreasing by 23.4% and 23.38%, on average,
on matched and mismatched sets respectively. However, comparing the number of E-C (entailment
predicted as contradiction) and N-C (neutral predicted as contradiction) errors for these models on the
negation test vs. the original MultiNLI development set, we do not find an increase in these error types
on negation. Instead, we observe an increase in false neutral errors for all models. This could occur due
to the introduction of extra words (“false”, “is” and “true”) apart from “not”, indicating that decreasing
lexical similarity has a stronger effect on models than introducing negation.

4.5 Effect of Noise

Our noise test results in Table 3 show that NB and IS exhibit a huge decrease in accuracy, since both
models rely on word embeddings. Other models show little performance degradation on this test. CH
performs subword modeling via character-level CNNs, which provides robustness towards perturbation
attacks. RC and BiLSTM perform well despite relying on word embeddings since both use mean pool-
ing, which might reduce the effect of single-word edits on the final representation. CBOW is also very
robust to this test, which can arise from the fact that it sums word embeddings to create the final sentence
embedding, diluting the effect of changing a single word on final model performance11.

4.6 Training with Distraction

Finally, we study the effect of training with distractions generated via our adversarial construction. We
generate an equivalent sample with the negation distraction for every sample in the training data, and
retrain NB and BiLSTM on the union of these examples and original training data.

We observe the performance of the trained models on three tests: the original MultiNLI development
set, the negation stress test and a new distraction test creating using a different tautology “green is not
red” (DIFF TAUT). We observe that NB shows performance degradation across all tests, but training

11We analyze difference in model performance across perturbation techniques such as adjacent character swapping, keyboard
character swapping, function word and content word perturbations, but do not observe significant differences. Results from
these experiments are included in appendix C.
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BiLSTM on distraction data helps it become robust to the tautology it was trained on. However, it
collapses when evaluated on a different tautology. Ignoring such distractions is something humans do
naturally. Models should not have to train on the specific distraction to succeed on this evaluation.

5 Related Work and Discussion

Adversarial evaluation schemes have been proposed to evaluate model robustness on various NLP tasks.
Smith (2012) discuss dangers of community-wide “overfitting” to benchmark datasets and emphasize
the need to correlate model errors to well-defined linguistic phenomena to understand specific model
strengths and weaknesses. Prior work (Rimell et al., 2009; Schneider et al., 2017) performed analyses
of model errors in dependency parsing and information extraction. Motivated by this desideratum, we
analyze errors in Multi-Genre NLI and automatically construct large stress sets to evaluate NLI systems
on identified difficulties. This is analogous to recent work (Jia and Liang, 2017; Burlot and Yvon,
2017) on developing automated adversarial evaluation schemes for reading comprehension and machine
translation. However, unlike these efforts, our stress tests allow us to study model performance on a
range of linguistic phenomena. Unlike work on manual construction of small adversarial evaluation sets
for various NLP tasks (Levesque, 2014; Mahler et al., 2017; Staliūnaite and Bonfil, 2017; Isabelle et al.,
2017; Belinkov and Bisk, 2017; Bawden et al., 2017), our work focuses on a more exhaustive large-scale
evaluation for NLI. It is interesting to note that Bayer et al. (2006) discuss the daunting cost of finding
entailment pairs for NLI evaluation, but our techniques can be used to construct such pairs with low cost.

The NLI task attracted significant interest before datasets became large enough for the application of
neural methods (Glickman et al., 2005; Harabagiu and Hickl, 2006; Romano et al., 2006; Dagan et al.,
2006; Giampiccolo et al., 2007; Dagan et al., 2010; MacCartney, 2009; Zanzotto et al., 2006; Malakasi-
otis and Androutsopoulos, 2007; Haghighi et al., 2005; Angeli and Manning, 2014). de Marneffe et al.
(2009) analyze the effect of multi-word expressions and find that they do not significantly affect the per-
formance of NLI systems. Perhaps the closest to our contribution are the works of Cooper et al. (1996),
which manually constructs sentences containing phenomena that NLI systems are expected to handle
(FraCaS), and Marelli et al. (2014b), which constructs sentences that require compositional knowledge
(SICK). Our constructions differ from SICK and FraCaS in several aspects. Since we use large datasets
(Williams et al., 2017; Ling et al., 2017b) as base data, our sets are larger and more lexically diverse than
both SICK (which used a seed set of 1500 sentences) and FraCaS (which was manually constructed).
Secondly, while SICK uses handcrafted rules and incorporates linguistic phenomena, sentence-pairs are
not constrained to exhibit only one phenomenon, which may introduce confounding factors during analy-
sis. Though FraCaS follows the constraint of restricting sentence-pairs to exhibit only one phenomenon,
it contains very few examples of each phenomenon. Conversely, our techniques generate large evalua-
tion sets, with each set focusing on a single phenomenon, providing a testbed for fine-grained evaluation
and analysis. Lastly, our stress tests are grounded in failings of current state-of-the-art models, rather
than on phenomena hypothesized to be challenging for NLI models. Our evaluation sets also differ from
the small portion of the MultiNLI development set annotated for challenging linguistic phenomena, as
similar to SICK, each sentence pair is not constrained to exhibit a single phenomenon. In addition, pres-
ence of biases in the MultiNLI development and test data (Gururangan et al., 2018; Poliak et al., 2018)
could also lead to models exploiting them as shallow cues for prediction (for example, the performance
of baseline models on the subset of the MultiNLI dataset annotated for antonymy averages 67% , while
the same baselines perform much worse on our antonymy stress-test).

We hope that insights derived from our stress tests will stimulate future research in NLI. One promising
direction would be the development and investigation of more linguistically-motivated neural models
on NLI (such as models which incorporate explicit negation scope information or semantic roles for
example), as our stress tests now provide a framework for in-depth analysis of model performance and
demonstrate significant room for improvement in these areas. While we benchmark the performance
of state-of-the-art models on our stress tests, in the future, it would be interesting to investigate which
architectural choices contribute to model successes and why. Another interesting research direction
is the identification of “core competencies”, such as quantitative reasoning or antonymy, which can
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enhance model performance across multiple NLP tasks such as sentiment analysis, question answering
and relation extraction and studying transfer of representations from “competent” models.

6 Conclusion

In this work, we present a suite of large-scale stress tests to perform targeted evaluation of NLI models,
along with a set of techniques for their automatic construction. Our stress tests evaluate a model’s
ability to reason about quantities and antonymy (competence tests), its susceptibility to shallow lexical
cues (distraction tests) and its robustness to random perturbations (noise tests). We benchmark the
performance of four state-of-the-art sentence encoding models on our tests and find that they struggle on
many phenomena, despite reporting high accuracy on NLI.

Overall, we consider the MultiNLI dataset to be a valuable resource for the NLP community, with
entailment pairs drawn from several different genres of text. However, we argue that the community
would benefit by having NLI models pass sanity checks, in the form of “stress tests”, to ensure models
evolve against exploiting simple idiosyncrasies of training data. Similar to Isabelle et al. (2017), we
intend our stress tests to supplement existing NLI evaluation rather than replace it. In the future, we
hope benchmarking model performance on stress tests in addition to standard evaluation criteria will
provide deeper insight into model strengths and weaknesses, and guide more informed model choices.
We would also like to note that the “stress test” evaluation paradigm that we propose for NLI can be
further updated in the future when new forms of models are devised, increasing the coverage of the tests
to cover problems of future models as well. We release all our stress tests and associated resources to the
community to promote work on models that get us closer to true natural language understanding.
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Analysing errors of open information extraction systems. In Proceedings of the First Workshop on Building
Linguistically Generalizable NLP Systems, pages 11–18, Copenhagen, Denmark, September. Association for
Computational Linguistics.

[Smith2012] Noah A Smith. 2012. Adversarial evaluation for models of natural language. arXiv preprint
arXiv:1207.0245.
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Appendix A. Error Analysis on Mismatched Set

Table 6 describes what proportion of misclassified examples from the mismatched set fall into each error
category, as defined in the typology presented in §2.

Appendix B. Error Types on Antonymy

The high amount of word overlap in this test causes models to overpredict entailment, accounting for, on
average, 86.4% and 87.6% of total errors on matched and mismatched sets respectively. We present the
exact proportion of False Entailment and False Neutral errors in Table 7. Keep in mind there is only one
gold class in this category: contradiction.

As expected, all four models make a high amount of false entailment errors because they notice high
amounts of lexical similarity between the premise and the hypothesis.
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Error Category % of Misclassified Examples
Word Overlap 28

Negation 12
Antonymy 4

Numerical Reasoning 4
Length Mismatch 6
Grammaticality 4

Real-World Knowledge 14
Ambiguity 8
Unknown 20

Table 6: Distribution of misclassified examples from the MultiNLI mismatched development set.

System C-E Errors C-N Errors
Mat Mis Mat Mis

NB 79.83 82.40 20.17 17.60
CH 99.78 99.75 0.22 0.25
RC 66.67 68.50 33.33 31.50
IS 99.40 99.81 0.60 0.19

Table 7: Percentage of C-E and C-N errors on antonymy test.

Appendix C. Additional Experiments with Spelling Error Stress Tests

This stress test consists of an adversarial example set which tests model robustness to spelling errors.
Spelling errors occur often in MultiNLI data, due to involvement of Turkers and noisy source text, which
is problematic as some NLI systems rely heavily on word embeddings. We construct a stress test for
“spelling errors” by performing two types of perturbations:
AdjSWAP: Swap adjacent characters in a single word sampled randomly from the hypothesis. For
example, “I saw Tipper with him at teh movie.”.
KBSWAP: Substitute a single alphabetical character randomly sampled from the hypothesis with the
character next to it on the English keyboard. For example, “Agencies have been further restricted and
given less choice in selecting contractimg methods.” We additionally perform perturbations on only
function words (conjunctions, pronouns and articles), and on only content words (nouns and adjectives)
in the hypothesis to study the effects. We do not address perturbations in verbs and adverbs in the content
word vs. function word analysis. The results are presented in Table 8.

Sys ADJ SWAP KB SWAP CN SWAP FN SWAP
tem Mat Mis Mat Mis Mat Mis Mat Mis
NB 43.0 42.9 47.7 47.9 51.1 49.8 49.7 49.6
CH 68.24 68.1 68.5 68.3 68.3 69.1 69.9 70.3
RC 66.6 66.4 67.0 66.8 66.6 67.0 68.4 68.4
IS 57.8 58.6 57.7 58.7 58.3 59.4 57.5 57.6

Table 8: Model Performance on grammaticality test

We observe that there is no significant effect of perturbing a function word or a content word. One
hypothesis is that content words can often be named entities for which the models do not find word
embeddings. We also do not find a considerable difference in performance between the different kinds
of perturbations but this is expected behaviour as most models use word embeddings, and these will just
be categorized as unknown words.
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