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Abstract

This survey discusses how recent developments in multimodal processing facilitate conceptual
grounding of language. We categorize the information flow in multimodal processing with re-
spect to cognitive models of human information processing and analyze different methods for
combining multimodal representations. Based on this methodological inventory, we discuss the
benefit of multimodal grounding for a variety of language processing tasks and the challenges
that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for
the compositional power of language.

Title and Abstract in German
Multimodale konzeptuelle Verankerung fiir die automatische Sprachverarbeitung

Dieser Uberblick erortert, wie aktuelle Entwicklungen in der automatischen Verarbeitung mul-
timodaler Inhalte die konzeptuelle Verankerung sprachlicher Inhalte erleichtern kénnen. Die
automatischen Methoden zur Verarbeitung multimodaler Inhalte werden zunéchst hinsichtlich
der zugrundeliegenden kognitiven Modelle menschlicher Informationsverarbeitung kategorisiert.
Daraus ergeben sich verschiedene Methoden um Reprisentationen unterschiedlicher Modalititen
miteinander zu kombinieren. Ausgehend von diesen methodischen Grundlagen wird disku-
tiert, wie verschiedene Forschungsprobleme in der automatischen Sprachverarbeitung von multi-
modaler Verankerung profitieren konnen und welche Herausforderungen sich dabei ergeben. Ein
besonderer Schwerpunkt wird dabei auf die multimodale konzeptuelle Verankerung von Verben
gelegt, da diese eine wichtige kompositorische Funktion erfiillen.

1 Introduction

Natural languages are continually developing constructs that include numerous variations and irregulari-
ties. Modeling the subtleties of language in a formal, processable way has driven computational linguis-
tics for decades. In recent years, distributional approaches have become the most widely accepted solu-
tion to model the associative character of word meaning (Harris, 1954; Collobert et al., 2011; Mikolov et
al., 2013; Pennington et al., 2014). These approaches learn word representations in a high-dimensional
vector space based on context patterns in large text collections. Machine learning researchers aim at
reducing external knowledge to an absolute minimum and simply interpret language as a continuous
stream of characters. From an engineering perspective, these data-driven approaches are highly attrac-
tive because they reduce the need of domain experts.

From a cognitive perspective, processing language in isolation without information on situational con-
text seems to be an overly artificial setup. Human acquisition of semantic representations does not
occur based on pure language input. The term conceptual grounding refers to the idea that language is
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Figure 1: Information flow in multimodal tasks. Blue and yellow shapes refer to modality A and B.

grounded in perceptual experience and sensorimotor interactions with the environment (Barsalou, 2008).
In its strictest interpretation, this embodied perspective implies that language production and language
comprehension involve perceptual and motor simulations of the described situation (Goldman, 2006).
An impressive number of recent neuroimaging studies indicate that processing a word activates areas
in the brain that correspond to the associated sensory modality of its semantic category: action-related
words like kick trigger activity in the motor cortex and object-related words like cup activate visual areas
(Pulvermiiller et al., 2005; Garagnani and Pulvermiiller, 2016). While it remains a controversial ques-
tion to what extent conceptual representations are actually shared across modalities (Louwerse, 2011;
Leshinskaya and Caramazza, 2016), it has been widely accepted that conceptual and sensorimotor rep-
resentations are tightly coupled and interact with each other. Cognitively plausible language processing
should thus interpret language as one modality within a multimodal environment.

This survey discusses how recent developments in multimodal processing facilitate conceptual ground-
ing of language. It intents to provide a bridge between the field of multimodal machine learning (Bal-
trusaitis et al., 2017) and the cognitive theories for grounding distributional semantics (Baroni, 2016). As
this is a wide interdisciplinary topic which influences many subfields, we focus on multimodal ground-
ing for computational linguistics. For a better understanding of the interaction between modalities, we
categorize multimodal tasks according to the information flow between the modalities. In a second step,
we analyze different methods for combining multimodal information. Based on this methodological in-
ventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks. In
multimodal processing, grounding is usually limited to concrete concepts leading to a reduction of refer-
ential ambiguity. We provide a detailed analysis of the challenges that arise when multimodal grounding
is extended to open-domain language settings. We particularly focus on multimodal grounding of verbs
which is essential for the interpretation of sequences and the identification of relations between concepts.

2 Multimodal processing models

The term “multimodal” has been used in a broad range of different interpretations even in the computa-
tional linguistics literature alone. In the common interpretation, modalities refer to sensory input such
as audio, vision, touch, smell, and taste. Other definitions stretch over different communicative channels
such as language and gesture, or simply different “modes” of the same modality (e.g., day and night
pictures). In this section, we analyze the flow of multimodal information in different multimodal tasks
exemplified by three modalities: natural language encoded as texts, visual signals encoded as images
or videos, and audio signals encoded as sound files. For an overview of the challenges and machine
learning methods associated with each task, the interested reader is referred to Baltrusaitis et al. (2017).
We propose a classification of multimodal tasks with respect to the information flow between modalities
into cross-modal transfer, cross-modal interpretation, and joint multimodal processing. From a histori-
cal perspective, progress in multimodal processing can be aligned with cognitive theories of multimodal
organization in the human brain.

2.1 Cross-modal transfer

In the 1980s and 90s, cognitive processing theories were heavily influenced by the theory of the modu-
larity of mind (Fodor, 1985). It assumes that processing occurs in domain-specific encapsulated modules
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that do not interact with each other. Earlier approaches to multimodal engineering have taken a similar
modular perspective. They model the information flow in each modality separately and the final out-
come is then transferred or aligned to another modality. We group tasks in which one modality serves as
the interface to query or represent the content from another modality under the category of cross-modal
transfer, see Figure 1a.

A classical example for cross-modal transfer are search and retrieval tasks. The human user provides
a natural language description to query an artifact (i.e., an image, video, or audio file) from a database
(Atrey et al., 2010). The cross-modal alignment between the query and the artifact requires query expan-
sion and disambiguation for referential indexing. In speech-related transfer tasks, textual content needs
to be mapped to audio samples. Speech synthesis transforms text into artificially generated phonemes
for users who cannot read (Zen et al., 2009). The reverse task of transcribing audio and video content
is addressed by approaches for speech recognition (Juang and Rabiner, 2005) and subtitle generation
(Daelemans et al., 2004). For lipreading tasks, mute video input of people speaking is transformed into
text representing their utterances (Ngiam et al., 2011).

In these cross-modal transfer tasks, synchronous processing of the input in one modality is not directly
influenced by information from the output modality. The main challenge lies in finding appropriate
translations or alignments from one modality to the other. Information from the output modality is
mainly used for reranking of input hypotheses. This view corresponds to mental models of a language
hub in the brain that does not directly incorporate perceptual information (Chomsky, 1986).

2.2 Cross-modal interpretation

In order to explain how humans can select relevant information from perceptual input, the concept of at-
tention has become very popular. Bridewell and Bello (2016) argue that attention serves as "a bottleneck
for information flow in a cognitive system” that redirects mental resources. In multimodal processing,
the concept of attention as a mediator between modalities is relevant for cross-modal interpretation. For
these tasks, the goal is to obtain a compressed and structured intermediate representation of the input to
generate a useful interpretation in the target modality. Attention mechanisms (Bahdanau et al., 2014) are
used for the identification of relevant information, see Figure 1b.

A textual interpretation of a visually presented scene is generated in image captioning (Xu et al.,
2015) and sketch recognition (Li et al., 2015). The goal is to identify relevant elements, group individual
elements to semantic concepts, identify relations between concepts, and express these relations in natural
language. The output sequence is generated while paying attention to different salient areas in the image.
To our knowledge, a bidirectional information flow that includes cues from the language generation
module in the image recognition process has not yet been implemented. However, semantic information
could help to better direct the attention for image recognition, e.g., the generation of a verb like eat could
constrain the visual recognition to edible objects as filler roles. Yatskar et al. (2016) propose the task of
situation recognition to approximate this problem.

Complementary approaches attempt to generate visual representations to summarize documents and
present the most relevant information in an intuitive way (Kucher and Kerren, 2015). The most pop-
ular approach are so-called word clouds which are frequency-based visualizations for topic modeling
(Bateman et al., 2008). More recent approaches include semantic relations between words for a more
conceptual-driven interpretation (Xu et al., 2016). Concept maps highlight structural relations between
concepts in a graph-based visualization (Zubrinic et al., 2012). One key challenge for cross-modal in-
terpretation tasks lies in the evaluation of the output because interpretations are by definition subjective
and divergent solutions can be equally valid. Accumulations over various human ratings are currently
considered to be better quality approximations than any automatic metrics (Vedantam et al., 2015).

2.3 Joint multimodal processing

Due to a wave of experimental findings that support the cognitive theory of embodied processing, the sep-
arating aspects between different modalities have become blurred (Pulvermiiller et al., 2005). A similar
development can be observed in multimodal machine learning. Tasks which explicitly require the combi-
nation of knowledge from different modalities gave rise to joint multimodal processing (Figure 1c). For
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Figure 2: Methods for learning multimodal representations. Blue and yellow shapes indicate the repre-
sentation space of modality A and B.

emotion recognition (Morency et al., 2011) or persuasiveness prediction (Santos et al., 2016), the actual
content of an utterance and paraverbal cues (e.g., pitch, facial expression) need to be jointly evaluated.
An ironic tone of voice might reverse the conceptual interpretation of the language content.

Recent work from the vision community goes one step further and tackles tasks that imperatively re-
quire an interactive flow of information. In visual question answering, a human user can ask questions
about an image that the system should answer (Malinowski et al., 2015). This requires several steps:
understanding the question, determining the salient elements in the image, interpreting the image with
respect to the question, and generating a coherent natural language answer that matches the question.
For this task, exchange of information between the modalities is crucial. In an overview, Wu et al.
(2017) compare 29 approaches to visual question answering. 23 of these approaches use a joint repre-
sentation of textual and visual information. The remaining 6 approaches organize the exchange either
through a coordinated network architecture or through shared external knowledge bases. Novel interac-
tive approaches make it possible to directly modulate the information flow in one modality by input from
another modality (Vries et al., 2017) or by human feedback (Ling and Fidler, 2017).

The main challenge for joint processing lies in efficiently combining information from the modalities,
so that redundant information is integrated without losing complementary cues. In human language un-
derstanding, this process seems to be performed in an effortless and highly accurate manner (Crocker
et al., 2010). However, the underlying mechanisms of multimodal representations remain poorly under-
stood. In Section 3, we discuss different methods for obtaining joint representations computationally.

3 Multimodal representation learning

Multimodal representations combine information from separate modalities. We discuss methods for
representing known concepts, projecting information to represent unknown concepts, and for combining
concept representations into compositional representations for sequences.

3.1 Concept representations

Even in unimodal tasks, researchers experiment with many different variations of representing concepts
and their relations. Earlier work on multimodal representations used human-elicited visual features (Sil-
berer and Lapata, 2012; Roller and Schulte Im Walde, 2013). Conveniently, integrating knowledge from
different modalities has been facilitated due to the now common low-level representations of the input
(also known as embeddings). Images are represented as groups of pixels, videos as series of image
frames, audio data as windows of waveform samples, and language as sequences of distributional word
representations. These values are then fed into a neural network that learns to compress and normalize
the representation such that it better generalizes across input samples (Kiela and Bottou, 2014). A con-
cept representation is usually obtained by averaging over many different samples for the concept (e.g.,
the concept bird is represented by averaging over the representation for n images showing a bird). The
representations are expressed as high-dimensional matrices which can be projected into a common space.
This approach facilitates a joint information flow between different modalities and has contributed to the
growing success of multimodal processing.
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Fusion The most intuitive approach is multimodal fusion (Figure 2a). Assuming that a unimodal vec-
tor representation v for the concept ¢ and the modalities m; and ms exists, the multimodal representation
Umm consists of the concatenation ™ of the two vectors weighted by a tunable parameter «:
Umm(€) = - Uy (€) 7 (1= @) - vy ().

The concatenation occurs directly on the concept level and is thus called feature-level fusion or early
fusion (Leong and Mihalcea, 2011; Bruni et al., 2011). In the case of pure concatenation, the unimodal
representations reside in separate conceptual spaces. The concatenated representation for car could give
us the information that cat is visually similar to panther and textually similar to dog, but it is not possible
to determine cross-modal similarity. In order to smooth the concatenated representations while maintain-
ing multimodal correlations, dimensionality reduction techniques such as singular value decomposition
(Bruni et al., 2014) or canonical correlation analysis (Silberer and Lapata, 2012) have been applied.

3.2 Projection

In practice, concepts that have a representation in one modality are not necessarily covered by represen-
tations in another modality. The projection of unseen concepts is known as zero shot learning. It can
either be performed on a mapped or a joint representational space.

Mapping To overcome the lack of representations for one modality, several researchers proposed to
map representations from one modality to the other (Figure 2b). The idea is to learn a mapping function
f from m; to mgo that maximizes the similarity between a known representation of ¢ in mgo and its
projection from the representation in 1m1: ¢y ~ f(Cmy ).

The choice of the similarity and the loss measures for learning the mapping function vary. A max-margin
optimization which maximizes the similarity between true pairs of concept representations (¢, , Cm, )
and minimizes the similarity for pairs with random target representations (¢, , random,,2) has been
shown to be a good choice for image labeling (Frome et al., 2013). In this task, the mapping approach
is applied in the image-to-text direction to classify unknown objects in images based on their semantic
similarity to known objects (Socher et al., 2013) . Lazaridou et al. (2014) and Collell et al. (2017)
proceed in the reverse text-to-image direction to ground words in the visual world. Similar propagation
approaches had already been examined by Johns and Jones (2012) and Hill and Korhonen (2014), but
they used human-elicited perceptual features from the McRae dataset (McRae et al., 2005) instead of
automatically derived image representations.

Joint learning The mapping approaches assume a directed transformation from one modality to the
other. Joint estimation approaches aim to learn shared representations instead (Figure 2b). An approach
inspired by topic modeling interprets aligned data as a multimodal document and uses Latent Dirich-
let Allocation to derive multimodal topics (Andrews et al., 2009; Feng and Lapata, 2010; Silberer and
Lapata, 2012; Roller and Schulte Im Walde, 2013). Unfortunately, this approach cannot be easily used
for zero shot learning. Lazaridou et al. (2015) enrich the skip-gram model by Mikolov et al. (2013)
with visual features. Their model optimizes two constraints: the representation of concepts ¢ with re-
spect to their textual contexts (unsupervised skip-gram objective in m1) and the similarity between word
representations and their visual counterparts (supervised max-margin objective for (¢y,, , ¢m,)). In their
approach, the visual representations remain fixed, but the textual representations are learned from scratch.
Silberer and Lapata (2014) go one step further and use stacked multimodal autoencoders to simultane-
ously learn good representations for each modality (unsupervised reconstruction objective for m; and
my) and their optimal multimodal combination (supervised classification objective for (¢, , ¢, )). Both
approaches implicitly also learn a mapping between the two modalities and can be adjusted to induce a
directional projection for zero shot learning. Joint learning of multimodal representations is very popular
in the vision community (Karpathy et al., 2014; Srivastava and Salakhutdinov, 2012; Ngiam et al., 2011).

3.3 Compositional representations

For tasks that require representing longer sequences, a naive approach is sequence-level fusion. In this
setting, the unimodal sequence representation is obtained by performing an arithmetic operation (e.g.,
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average, max) over the concept representations for each word in the sequence. Multimodal fusion is then
performed on this averaged representation (Glavas et al., 2017; Bruni et al., 2014). Shutova et al. (2016)
work with short phrases consisting of two words and directly learn phrase representations. Missing
concept representations in one modality can be obtained by mapping functions (Botschen et al., 2018).

For image captioning approaches, representations for a pair of an image and the corresponding cap-
tion are learned jointly (Kiros et al., 2014; Socher et al., 2014). Pre-trained unimodal representations
are fed into a neural network which is trained with the max-margin objective to distinguish between true
and false captions for an image. The multimodal sequence representation can be obtained from the last
hidden layer of the network. The introduction of attention variables can function as a mediator between
the visual and the textual modality (see Section 2.2). For a more detailed overview of multimodal se-
quence representations in the vision community, the interested reader is referred to Wu et al. (2017). The
approaches for compositional representations have focused on enriching noun and adjective meaning
multimodally. The multimodal interpretation of verbs as an integral part of compositional sequences has
not yet been thoroughly examined.

4 Multimodal grounding for language processing

The progress in joint multimodal processing and the increasing availability of multimodal datasets and
representations open up new possibilities for grounded approaches to language processing. We review
recent works for grounding concepts, grounding phrases, and grounding interaction. The challenges that
arise from these efforts are discussed in Section 5.

4.1 Grounding concepts

Multimodal concept representations are motivated by the idea that semantic relations between words
are grounded in perception. Being able to assess semantic relations between concepts is an important
prerequisite for modeling generalization capabilities in language processing. The combination of the
textual and the visual modality has received most attention for conceptual grounding, but perceptual
information from the auditory and the olfactory channel have also been used for dedicated tasks (Kiela
et al., 2015; Kiela and Clark, 2017). In order to provide a more concrete discussion, we focus on the
combination of textual and visual cues for the remainder of the survey.

The quality of concept representations is commonly evaluated by their ability to model semantic prop-
erties. Different approaches to learning conceptual models are compared by their performance on simi-
larity datasets, e.g., WordSim353 (Finkelstein et al., 2002), SimLex-999 (Hill et al., 2015), MEN (Bruni
et al., 2012), SemSim, and VisSim (Silberer and Lapata, 2014)). These datasets contain pairs of words
that have been annotated with similarity scores for the two concepts. Several evaluations of semantic
models have shown that multimodal concept representations outperform unimodal ones (Feng and Lap-
ata, 2010; Silberer and Lapata, 2012; Bruni et al., 2014; Kiela et al., 2014). Kiela et al. (2016) perform
a comparison of different image sources and architectures and their ability to model semantic similar-
ity. Despite the advantages of multimodal models in capturing semantic relations, it remains an open
question whether they contribute to a cognitively more plausible approximation of human conceptual
grounding. Bulat et al. (2017b) and Anderson et al. (2017) conduct experiments to label brain activity
scans by human subjects with the corresponding concepts that elicited the brain activity. They compare
different distributional semantic models and obtain mixed results. Bulat et al. (2017b) find that visual
information is beneficial for modeling concrete words, whereas Anderson et al. (2017) conclude that tex-
tual models sufficiently integrate visual properties. Further interdisciplinary research involving computer
science, neuroscience, and psycholinguistics is required to obtain a deeper understanding of cognitively
plausible language processing (Embick and Poeppel, 2015).

4.2 Grounding phrases

Most experiments for conceptual grounding indicate that providing a multimodal representation for ab-
stract concepts is significantly more challenging due to the lack of perceptual patterns associated with
abstract words (Hill et al., 2014). For grounding phrases, the meaning for concrete and abstract concepts
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need to be combined (see Section 3.3). Bruni et al. (2012) examine the compositional meaning of color
adjectives and find that multimodal representations are superior in modeling color. However, they fail to
distinguish between literal and non-literal usage of color adjectives (e.g., green cup vs green future).

Vivid imagery and synaesthetic associations play an important role in the interpretation of figurative
language. In their influential theory of metaphor, Lakoff and Johnson (1980) argue that abstract concepts
can be grounded metaphorically in embodied and situated knowledge. They assume that metaphors can
be understood as a mapping from a concrete source domain to a more abstract target domain. For ex-
ample, time is often viewed as a stream that flows in a direction. Turney et al. (2011) operationalize this
theoretical account by identifying metaphoric phrases based on the discrepancy in concreteness of source
and target term. Shutova et al. (2016) and Bulat et al. (2017a) build on their approach and use multimodal
models for identifying metaphoric word usage in adjective-noun combinations. They show that words
used in a metaphorical combination (dry wit) exhibit less similarity than words in non-metaphorical
phrases (dry skin). We strongly believe that progress in multimodal compositional grounding will pave
the way for a more holistic understanding of figurative language processing. As a prerequisite, multi-
modal grounding needs to be examined beyond the representation of concrete objects (see Section 5.2).
Representing verbs, compositional phrases, and even full sentences by means of multimodal information
has not yet been sufficiently examined.

4.3 Grounding interaction

The origins of grounding theories were initiated to account for situational language use and interac-
tion. We distinguish two main scenarios for interactive language use: language learning and situational
grounding of action descriptions.

Grounded language learning Language learning is deeply rooted in social interaction and initially
emerges with respect to a concrete referential context (Tomasello, 2010). Children acquire language
in interaction with their parents and foreign language learning proceeds much faster in an environment
that forces the learner to interact in the foreign language (Nation, 1990). Usage-based approaches to
language learning that account for the frequency and the quality of the language stimulus have a long
tradition (Dale and Chall, 1948). Brysbaert and New (2009) have shown that frequency information
grounded in auditory and visual communicative cues can better model human processing effects than
frequency information extracted from purely textual corpora. Lazaridou et al. (2016) show that a mul-
timodal distributional approach better approximates word learning from interactive child-directed input
than unimodal approaches. The same model can also convincingly simulate word meaning induction by
adults (Lazaridou et al., 2017a). Psycholinguistic research indicates that conceptual mapping modulated
by visual properties is not only relevant for first language acquisition, but is also used as a means to es-
tablish cross-lingual links in foreign language learning (Beinborn et al., 2014). Bergsma and Van Durme
(2011) and Vuli¢ et al. (2016) take advantage of this observation and use multimodal representations to
induce multilingual representations.

Grounding sequences in actions Situational grounding of action descriptions requires the representa-
tion of sequences and their compositional interpretation. Regneri et al. (2013) build a corpus that grounds
descriptions of actions in videos showing these actions. For the interpretation of sequences, evaluating
verbs and their arguments plays a fundamental role. Yatskar et al. (2016) developed the imSitu dataset
which consists of images depicting verbs and annotations which link the verb arguments to visual ref-
erents. This dataset can be used for the multimodal task of situation recognition (Mallya and Lazebnik,
2017; Zellers and Choi, 2017), and it serves as a multimodal resource for verb processing. Ground-
ing verbs is particularly challenging because of the variety of their possible visual instantiations. For
example, an image of an adult drinking beer has very little in common with a zebra drinking water.
Multimodal interpretation of sequences is highly relevant for robotics research (Chaplot et al., 2017).
Mordatch and Abbeel (2017) examine the emergence of compositionality in grounded multi-agent com-
munication. The language learned by artificial agents is not necessarily interpretable by humans. Lazari-
dou et al. (2017b) show that agents which develop their own language for representing concepts that are
grounded in images infer similar taxonomic relations as humans. Their work suggests that the learned
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concepts can even be mapped back into natural language. Agent-agent communication has already been
examined in the talking head experiments, in which two agents learn to discriminate between objects and
develop their own language of referring expressions (Steels and Vogt, 1997; Steels, 2002). Hermann et
al. (2017) and Heinrich and Wermter (2018) explicitly focus on human-robot interaction and train their
agent to associate natural language descriptions of actions with perceptual input from its sensors.

For experiments on grounded language understanding, the situational environment is usually artifi-
cially restricted to a very small domain. This confined setting facilitates the analysis of compositional
expressions and their referential interpretation as complex object descriptions or action sequences. In
open-domain language understanding, semantic disambiguation is even more challenging. Approaches
using multimodal information for the disambiguation of concepts (Xie et al., 2017), named entities
(Moon et al., 2018), and sentences (Botschen et al., 2018; Shutova et al., 2017) show promising ten-
dencies, but the underlying compositional principles are not yet understood.

5 Challenges for grounded language processing

Multimodal grounding of language has been a longstanding goal of language researchers. The discussion
has gained new momentum due to the recent developments in learning distributed multimodal represen-
tations. Most evaluations indicate that multimodal representations are beneficial for a variety of tasks,
but explanatory analyses of this effect are still in a developing phase. In this section, we discuss open
challenges that arise from existing work. For future work, we propose to examine multimodal grounding
beyond concrete nouns and adjectives. In order to do this, larger multimodal datasets encompassing a
wider range of word classes need to be build. These datasets would enable us to analyze compositional
representations in more detail and to develop more elaborate models of selective multimodal grounding.

5.1 Combining complementary information

Different modalities contribute qualitatively different conceptual information. Bruni et al. (2014) argue
that highly relevant visual properties are often not represented by linguistic models because they are too
obvious to be explicitly mentioned in text (e.g., birds have wings, violins are brown). Textual models, on
the other hand, provide a better intuition of taxonomic and functional relations between concepts which
cannot easily be derived from images (Collell and Moens, 2016). Ideally, multimodal representations
should integrate the complementary perspectives for a more coherent grounded interpretation of lan-
guage. From a more skeptical perspective, Louwerse (2011) states that perceptual information is already
sufficiently encoded in textual cues. In this case, the superior performance of multimodal representations
that has been established by several researchers would mainly be due to a more robust representation of
highly redundant information. The results by Silberer and Lapata (2014) and Hill et al. (2014) support
the intuitive assumption that textual representations better model textual similarity and visual represen-
tations better model visual similarity. As the multimodal models improve on both similarity tasks, the
integration of complementary information seems to be successful. Interestingly, both evaluations show
that simply concatenating the two modalities already yields a quite competitive model. The reported
findings have been evaluated on models working with human-annotated perceptual features. These fea-
tures inherently represent taxonomic knowledge that cannot be directly inferred from visual input. It
remains an open question to which extent automatically derived image representations can contribute
complementary information when combined with textual representations. Most multimodal research to
date focuses on the representation of individual concepts (nouns) and their properties (adjectives). The
benefit of multimodal representations for language tasks going beyond concept similarity needs to be
examined in more detail from both, engineering and theoretical perspectives.

Multimodal grounding of verbs Verbs play a fundamental role for expressing relations between con-
cepts and their situational functionality (Hartshorne et al., 2014). The dynamic nature of verbs poses a
challenge for multimodal grounding. To our best knowledge, only Hill et al. (2014) and Collell et al.
(2017) consider verbs in their evaluation. They report that results for verbs are significantly worse, but
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Figure 3: Illustration for the quality of verb representations indicated as Spearman correlation between
the cosine similarity of verbs and their corresponding similarity rating in the SimVerb dataset.

do not elaborate on this finding. We present first steps towards an investigation of verb grounding.' Fig-
ure 3 illustrate the quality of verb representations in the most common publicly available approaches for
multimodal representations. In line with previous work, the quality of the representations is evaluated as
the Spearman correlation between the cosine similarity of two verbs and their corresponding similarity
rating in the SimVerb dataset (Gerz et al., 2016). We compare the quality of 3498 verb pairs® in textual
Glove representations (Pennington et al., 2014) and two visual datasets: the Google dataset that per-
formed best in Kiela et al. (2016) and has the highest coverage for the verb pairs (493 pairs, 14%)> and
the imSitu dataset which has been intentionally designed for verb identification (354 pairs, 10%). The
results show that models which include visual information outperform purely textual representations for
known concepts. However, the general quality of the verb representations is much lower than the quality
reported for nouns. As a consequence, the mapping to unseen verb pairs yields unsatisfactory results for
the full SimVerb dataset. Our encouraging results for the imSitu dataset indicate that it is recommended
to directly obtain visual representations for verbs instead of projecting the meaning. Building larger
multimodal datasets with a focus on verbs seems to be a promising strand of research for future work.

5.2 Imageability of abstract words

Conceptual grounding of language can be intuitively performed for concrete words that have direct ref-
erents in sensory experience. Bruni et al. (2014) and Hill and Korhonen (2014) show that multimodal
representations are beneficial for evaluating concrete words, but have little to no impact on the evaluation
of abstract words. Projecting unseen concepts into the representation space based on their relations to
seen concepts in another modality provides an elegant method for zero shot learning, but it is question-
able whether multimodal relations between concrete concepts are sufficient to infer relations between
abstract concepts. Lazaridou et al. (2015) analyze projected abstract words by extracting the nearest vi-
sual neighbor from their multimodal representation. The neighbors were paired with random images and
human raters judged how well each image represents the word. The hypothesis that concrete objects are
more likely to be captured adequately by multimodal representations was confirmed. However, they also
provide illustrating examples which represent abstract words like together or theory surprisingly well.

Embodiment of verbs From a multimodal perspective, verbs can be categorized according to their
degree of embodiment. This measure indicates to which extent verb meanings involve bodily experience
(Sidhu et al., 2014). We obtain embodiment ratings for 1163 pairs.* The class high embodiment contains
pairs like fall-dive in which the embodiment of both verbs can be found in the highest quartile (135
pairs), low embodiment contains pairs with embodiment ratings in the lowest quartile (81 pairs) like
know-decide.’ Coherent with previous work on concrete and abstract nouns (Hill et al., 2014), it can be

'"The pre-trained embeddings and the script to reproduce our results are available for research purposes:
https://github.com/UKPLab/coling18-multimodalSurvey.

>Two pairs had to be excluded because misspend was not covered in the textual representations.

3The coverage in WN9-IMG (Xie et al., 2017) and the dataset used by Collell et al. (2017) is lower.

*nttps://psychology.ucalgary.ca/languageprocessing/node/22. We only include a pair, if an em-
bodiment rating is available for both verbs.

31t should be noted that not all instances of the two classes are covered by the visual representations. The small number of
instances might have an impact on the correlation values.
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seen that visual representations better capture the similarity of verbs with a high level of embodiment.
The mapped representations maintain this sense of embodiment, whereas the concatenated and fused
representations better capture the similarity for verbs referring to more conceptual actions. This finding
indicates that multimodal information is not equally beneficial for all words.

5.3 Selective multimodal grounding

The expressive power of language is essentially due to its combinatorial capabilities. Understanding
how to combine concept representations to represent multi-word expressions or even full sentences has
been a question of ongoing research in computational linguistics for decades. The inclusion of additional
modalities further complicates this debate. Glavas et al. (2017) and Botschen et al. (2018) obtain multi-
modal sentence representations by averaging over the multimodal representations for each word. They
report improved results for the tasks of sentence similarity and frame identification. Our comparison
above indicates that this superior performance is mainly due to a better representation of concepts. This
raises the assumption that multimodal grounding should only be performed on selected words. Glavas
et al. (2017) propose to condition the inclusion of visual information on the prototypicality of a concept
as measured by the image dispersion score (Kiela et al., 2014). This measure calculates the average
pairwise cosine distance in a set of images to model the assumption that an image collection for an
abstract concept like happiness is more diverse than for a concrete concept like ladder. Lazaridou et
al. (2015) and Hessel et al. (2018) propose alternative concreteness measures based on the same idea.
Unfortunately, these measures are highly dependent on the image retrieval algorithm which might be op-
timized towards obtaining a diverse range of images. Nevertheless, we assume that selective multimodal
grounding constitutes a more plausible approach to sentence processing. Some functional words (e.g.,
locative expressions) might benefit from multimodal information, but it currently remains unclear how
words with syntactic functions (e.g., coordinating expressions) should be represented visually.

6 Conclusion

We analyzed how multimodal processing has developed from transfer between encapsulated modalities
to interactive processing over joint multimodal representations. These developments contribute to new
avenues of research for grounded language processing. We strongly believe that the integration of mul-
timodal information will improve our understanding of conceptual semantic models, figurative language
processing, language learning, and situated interaction. Image datasets are often optimized towards pro-
viding a variety of visual instantiations. Developing algorithms for determining more prototypical visual
representations could contribute to better grounding of verbs and might also serve as a criterion for
selective multimodal grounding.
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