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Abstract

This paper empirically studies the effects of representation choices on neural sentiment analysis
for Modern Hebrew, a morphologically rich language (MRL) for which no sentiment analyzer
currently exists. We study two dimensions of representational choices: (i) the granularity of
the input signal (token-based vs. morpheme-based), and (ii) the level of encoding of vocabulary
items (string-based vs. character-based). We hypothesise that for MRLs, languages where mul-
tiple meaning-bearing elements may be carried by a single space-delimited token, these choices
will have measurable effects on task perfromance, and that these effects may vary for different
architectural designs: fully-connected, convolutional or recurrent. Specifically, we hypothesize
that morpheme-based representations will have advantages in terms of their generalization capac-
ity and task accuracy, due to their better OOV coverage. To empirically study these effects, we
develop a new sentiment analysis benchmark for Hebrew, based on 12K social media comments,
and provide two instances thereof: token-based and morpheme-based. Our experiments show
that the effect of representational choices vary with architectural types. While fully-connected
and convolutional networks slightly prefer token-based settings, RNNs benefit from a morpheme-
based representation, in accord with the hypothesis that explicit morphological information may
help generalize. Our endeavor also delivers the first state-of-the-art broad-coverage sentiment
analyzer for Hebrew, with over 89% accuracy, alongside an established benchmark to further
study the effects of linguistic representation choices on neural networks’ task performance.

1 Introduction

Deep learning (Goodfellow et al., 2016) has seen a surge of interest in recent years, transforming all
application domains of machine learning. In particular, neural network (NN) architectures currently
dominate the development of models and applications in NLP, including syntactic parsing (Chen and
Manning, 2014; Dyer et al., 2015; Durrett and Klein, 2015), sequence labeling (Grave, 2008), informa-
tion extraction (Chen et al., 2015; dos Santos et al., 2015), text classification (Lai et al., 2015; Zhang et
al., 2015) and sentiment analysis (Dos Santos and Gatti, 2014; Dong et al., 2014).

Much NN work in NLP has been conducted on English, which in turn raises the question whether these
methods will be equally effective when applied to languages with different linguistic characteristics than
English, and in particular, Morphologically rich languages (MRLs) (Tsarfaty et al., 2010). MRLs are lan-
guages where word structure holds substantial information, corresponding to multiple meaning-bearing
units (morphemes) per space-delimited token. Furthermore, in MRLs word-order may be flexible. These
properties may pose challenges to NN models which rely heavily on the distributional characteristics of
the input tokens. While it is clear that any application of NN architectures to NLP may be non-trivial to
design, and task performance may crucially depend on non-trivial architectural and modelling choices
(Goldberg, 2015), we further ask: should these choices also be affected by the structure and properties
of the language?

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
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In this paper we attend to this question by empirically studying the effects of two dimensions of
representational and modeling choices on neural sentiment analysis for Modern Hebrew — an MRL
with interesting word-internal complexities and surface level ambiguity — and for which no sentiment
analyzer currently exists.

We study two dimensions of representation choices: the first concerns the representation of the
morphologically-rich input signal, token-based vs. morpheme-based, and the second concerns the level
of encoding of the vocabulary items, which could be embedded as complete strings or as sequences
of characters. We study these modeling choices for five architectures (a linear baseline and four NNs:
fully-connected, convolutional, recurrent, and bi-directironal recurrent) to observe and analyze emerging
trends in performance. In order to empirically evaluate the different models we develop a new and novel
benchmark dataset for sentiment analysis in Hebrew, consisting of 12K user-generated comments on of-
ficial Facebook pages of political figures. The sentiment of each comment has been manually coded by
two trained human annotators, and the data themselves have been morphologically analysed and disam-
biguated, providing us with the opportunity to represent the input at different granularities.

Our experiments show that representation choices affect task performance, and these effects vary with
the architectural type. While simple fully-connected and convolutional networks show advantages with
the token-based representation, RNNs, in contrast, prefer morpheme-based settings and token-based
bi-RNNs close much of the gap with the morphemes. This is the case for both the string-based and char-
based encoding. We further show that, as in English, CNNs perform particularly well on Hebrew neural
sentiment analysis, and conjecture that this is due to the tendency of CNNs to capture relatively large
window sequences that are strong predictors, and these windows are, in turn, compatible with token-
level granularity. Based on this investigation, we deliver the first sentiment analyser for Hebrew, with
over 89% accuracy on analysing sentiment of user-generated comments, defining a new state-of-the-art
for Hebrew NLP. A qualitative analysis of a sample of our best model’s prediction errors shows that
around a half of the remaining errors are also difficult for humans to classify, and require further work
on integrating finer-grained aspects of the data.

Our contribution is then manifold. Firstly, we present empirical evidence to the varied effects that
morphological information may have on different NN architectures. Secondly, we deliver a neural sen-
timent analyser for Hebrew, approaching 90% accuracy, on social media content. Finally, we provide
a new manually annotated benchmark for Hebrew sentiment analysis, and a strong baseline for further
investigation of the task-representation-architecture interplay and neural sentiment analysis in particular.

2 Task Description

Sentiment is a subjective attitude towards, for or against, a certain topic. The term sentiment analysis
refers to the use of natural language processing and machine learning methods for the purpose of identi-
fying or characterizing the sentiment expressed in a given piece of textual data (Pang and Lee, 2008). In
this work we focus on sentiment analysis of social media content.

Due to their use by wide audiences, data extracted from social media are valuable sources for study-
ing social, political and economic phenomena. One of the main motivations to analyze sentiment on
the social web is opinion mining, an approach that challenges the traditional and dominant paradigms
in political science, such as opinion polling, surveys or focus groups (Liu, 2012). Affect responses on
social media have also been applied to study political behaviour (Ceron et al., 2014), determine organi-
zational legitimacy (Etter et al., 2017), and even predict results of election campaigns (Tumasjan et al.,
2010). While Twitter is a social media platform that lends itself naturally to sentiment analysis due to the
short, informal character of tweets (Kouloumpis et al., 2011), various sentiment models analysed online
conversations on other platforms (Paltoglou and Thelwall, 2012).

Open-source tools and sentiment analysis algorithms are available in several languages, including
Arabic (Abdulla et al., 2013; Abdul-Mageed et al., 2014; Al Sallab et al., 2015), but as of yet no sentiment
analysis tool is available for Hebrew. This represents a serious gap in the NLP technology available for
Hebrew, and moreover, it places a significant barrier on the investigation of political situations through
the unfolding conversations in the social web. Here we aim to leverage NN architectures for developing
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a sentiment analysis tool for Modern Hebrew, in order to facilitate opinion mining in Israeli social media,
and to expand the language technology available for the Hebrew-speaking research community. Since
Twitter is not widely used for political discussion in Israel, we develop a new benchmark based on user
comments to politicians’ pages on Facebook, which is widely used in Israel by politicians and the public.

3 Data Representation

Previous work on sentiment analysis in general and on neural sentiment analysis in particular focused
mainly on English data. Here, we consider Modern Hebrew, a Semitic language with very different
characteristics than English. In particular, Hebrew is a morphologically rich language (MRL), of which
word structure is internally complex and word order is quite flexible. How might these properties affect
our modeling decisions when developing a NN-based sentiment analyzer for Hebrew?

Let us begin by theoretically considering the notion of an input token in Hebrew. Because of its rich
morphology, any single space-delimited token in Hebrew may contain, in addition to its lexical content,
functional clitics (prefixes and suffixes) that correspond to independent stand-alone words in English. To
illustrate, the word “wkftmkti”1 may be morphologically segmented into “w” (and) “kf” (when) “tmkti”
(supported+1person), and be translated to “and when I supported”. Without segmenting the raw tokens
into these morphological units, the positive affinity of “tmkti” (supported+1person) may be lost on the
model, which may have observed “tmkti” as a standalone token elsewhere, but not in this composition.

This situation is further complicated by the fact that Hebrew surface tokens are highly ambiguous.
Due to the rich morphology and the lack of diacritics in standard textual data, a Hebrew space-delimited
token may admit multiple different morphological analyses, only one of which is relevant in context
(Tsarfaty, 2006). For example, the token “frch” may be a-priory analyzed as the simple verb “frch”
(infested+3person) or as the sequences “f” (that) + “rch” (ran+3person+feminine) or “f” (that) + “rch”
(wanted+3person+masculine). The latter analysis has a stronger affinity with positive sentiment than
the others. This means that improper morphological disambiguation, or lack thereof, may undermine
sentiment accuracy scores.

When constructing a vocabulary and defining the alphabet on which the NN will operate, we need
to make representation choices that would be suitable for these properties of MRLs. In this paper we
consider two dimensions of representational choices:

• Input Items: Token-Based vs. Morpheme-Based. First, we compare NN models trained on a sig-
nal consisting of the raw tokens with ones trained on sequences of morphological segments that
represent standalone lexical and functional units. The hypothesis is that models trained on morpho-
logically segmented input will provide better generalization capacity for the network and will thus
improve the prediction accuracy.

• Vocabulary Encoding: String-Based vs. Char-Based. It has been proposed in previous work (Ling
et al., 2015; Ballesteros et al., 2015) that combating the complexity of word structure in NN archi-
tectures may benefit from encoding the vocabulary using sub-words or character sequences. We thus
contrast models that encode vocabulary items as complete strings to ones that encode a vocabulary
of characters that are used to construct each of the strings.

The empirical investigation we conduct aims to empirically answer two questions: (i) would the choice
of representation affect prediction accuracy? and, (ii) would the different representation choices affect
different neural network architectures in different ways?

4 Data Preparation

In order to empirically evaluate task performance for the different representational choices and architec-
tural design, we develop a new Hebrew benchmark for sentiment analysis and provide these annotated
data in two different representational forms: a token-based and a morpheme-based version.

1We assume the transliteration of Sima’an et al. (2001).
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Positive Sentiment Negative Sentiment
“Ruvi, well done! Keep following your predecessor. Talk less
and do more. You are the right person in the right timing.”

“We should revenge the entire village of the kidnappers. Without
fear. A government of cowards.”

“Mr. President, you radiate peacefulness, humanism and security,
and I hope this will soon be the case. Bless you. Mr. President,
your vigorous actions create waves of connection and healing. I
thank you for being my president.”

“Shame on you! We don’t care about your opinion! Constitu-
tionally, the president should be a-political and your entire stupid
post is wrapped with righteous politics. Shame on you and may
this soon happen to your granddaughters”.

Table 1: Inter-Annotator Agreement on the Rivlin’s Annotated Corpus

Coder 1, Coder 2 N
cases

Example Explanation

Positive, Negative 26 “Terrible. May he rest in peace.” Mixed sentiment
Negative, Positive 14 “I am dreaming about peace and you are dreaming about football!

A wasted dream!”
Potentially sarcastic

Neutral, Negative 2 “Daniel, this is not the time to generalize people despite of what
you think of him. He’s a Jew just like you and me.”

Internal discussion among com-
menters

Neutral, Positive 2 “Mr. President, how can I arrange an appointment with you? I
have been cherishing you for many years, since eleventh grade.”

Off-topic

Positive, Neutral 4 “Mr. President, I would like to ask you to help the communi-
ties surrounding the Gaza Strip and to provide them with ade-
quate housing and educational services for their children in safe
places until genuine calm. This is not a matter of abandonment
and Hamas propaganda is baseless.”

Off-topic

Negative, Neutral 2 “Why not the length and breadth of it, Mr. President” Potentially sarcastic

Table 2: Qualitative analysis of a sample of 50 comments for which there was no inter-rater agreement

Our data set consists of 12,804 user comments to posts on the official Facebook page of Israel’s
president, Mr. Reuven Rivlin. In October 2015, we used the open software application Netvizz (Rieder,
2013) to scrape all the comments to all of the president’s posts in the period of June – August 2014,
the first three months of Rivlin’s presidency.2 While the president’s posts aimed at reconciling tensions
and called for tolerance and empathy, the sentiment expressed in the comments to the president’s posts
was polarized between citizens who warmly thanked the president, and citizens that fiercely critiqued his
policy. Of the 12,804 comments, 370 are neutral; 8,512 are positive, 3,922 negative.

We use a morphosyntactic parser called yap (yet another parser) (More and Tsarfaty, 2016) to mor-
phologically analyze, disambiguate and segment all comments in our dataset. In the token-based repre-
sentation, there is an average of 23 tokens per comment, and in the morpheme-based representation an
average of 31 morphemes per comment. In terms of out-of-vocabulary (OOV) items, we observe a higher
OOV rate in the token-based test set, 8.865% (2552 out of 28787), compared to the OOV rate 7.624%
(1442 out of 18912) with the respective morpheme-based representation of the same set, as expected.
So, at least in theory, a morpheme-based representation may better generalize from training instances, at
least in cases where the composition of seen morphemes yields unseen tokens.

Data Annotation: A trained researcher examined each comment and determined its sentiment value,
where comments with an overall positive sentiment were assigned the value 1, comments with an overall
negative sentiment were assigned the value -1, and comments that are off-topic to the post’s content
were assigned the value 0. We validated the coding scheme by asking a second trained researcher to
code the same data. There was substantial agreement between raters (N of agreements: 10623, N of
disagreements: 2105, Coehn’s Kappa = 0.697, p = 0).

Table 1 shows examples of positive and negative sentiment in clear cases of agreement between human
annotators. We further examined the source of disagreements between the annotators. In a qualitative
analysis of a sample of 50 comments for which there was disagreement between raters, summarized in

2It should be noted that the period of data collection was politically and socially charged. This has been due to a series of
violent events that escalated fragile tensions with regards to Jewish-Arab relations in the region, including the kidnapping and
murder of three teenagers living in the settlements of the West Bank, a revenge murder of an Arab teenager in East Jerusalem, a
two-months war in Gaza, and a controversial wedding between a Jewish woman and an Arab man which sparked demonstrations
led by extremist Jewish groups.
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Table 2, we observe that the majority of the disagreement cases originated in comments that contained
mixed sentiments, such as in the following:

• “Mr. President, every person has the right to decide on their lives, but converting to Islam in these
crazy days, which is what her partner wanted, means that their offsprings will not be Jewish. You
are talking about racism but they want to destroy us because we are Jews. Mr. President I wish you
success, health and joy”.

• “The hotheads, the enemy inside. The real enemy ‘thanks’ to whom we were scattered in all direc-
tions in the era of the Temple, the real enemy that might put us all in the grave”.

In the first example, the commenter expresses a positive and respectful sentiment towards the president,
but displays a negative sentiment towards conversion to Islam. In the second example, the sentiment can
be interpreted in both directions. The content of the comment expresses negative sentiment towards the
’hot heads’, but reading in also the context on the president’s post, it actually expresses positive sentiment
towards the idea that tolerance is better than hatred. It appears then that the unrestricted length and form
of expression in Facebook comments makes the overall sentiment classification task more challenging.

Data Normalization and Two-Level Representation: We excluded from the dataset comments that
do not contain any word in Hebrew. We also added spaces to separate Hebrew (or English) tokens,
numbers, and punctuation symbols from one another in the text sequence. We then fed the raw tokens in
our dataset to a morphological analysis and disambiguation parser (More and Tsarfaty, 2016), to build
the respective morpheme-based representation. We split our dataset into a train set (80%) and a test set
(20%) of sizes 10,244 and 2,560 comments, respectively. Out of the comments in the train set, 20% are
reserved as dev set for evaluation and optimization after each epoch.

5 Neural Network Architectures for Sentiment Analysis

For each of the representation choices outlined above, we set out to compare and contrast the performance
of different architectures. In all cases, we learn from our data a sentiment analysis function f : x → y,
where x ∈ X is a textual sequence which may be represented and encoded in the different ways discussed
in Section 3, and y ∈ {positive, neutral, negative} is a three-way classification of sentiment polarity.

We compare traditional linear models with non-linear models, contrasting different choices of NN
architectures. Simple feed-forward fully-connected networks, such as the multi-layer perceptron (MLP),
accept a sequence of items as input, which are then treated as features of the model (a bag of words
(BOW) approach). They are simple to conceptualise and construct, however, the BOW representation,
while highly sensitive to lexical content, is insensitive to any sequencing or ordering preferences. So,
“The soup was not good, it was bad” may score the same as “The soup was not bad, it was good”.

To capture some ordering information, it is customary to employ a feed-forward convolutional neural
network (CNN) with a pooling layer. CNN architectures apply a non-linear function on a sliding win-
dow over words in the comment, and transform it to channel size vector. Then, a “pooling” operation
combines the different vectors into a single channel size vector, that is in turn used for prediction. CNNs
were previously shown to provide excellent performance on sentiment analysis of English (dos Santos et
al., 2015). Would it be possible to replicate these achievements for Hebrew?

Ordering information may alternatively be captured by changing the network architecture to explicitely
encode a sequence: this can be done using recursive or recurrant neural networks (RNNs). Indeed,
various English sentiment analyzers assume RNNs at their backbone (Dong et al., 2014). For sentiment
analysis we assume an RNN architecture, where the intermediate states throughout the sequence are used
for prediction, loss calculation, and back propagation to update previous states.

In this work we consider a concrete implementation of RNNs — Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997) — which preserves gradients over time using functions
that simulate logical gates (memory cells). At each input state, a gate is used to decide how much of the
new input should be written to the memory cell, and how much of the current content of the memory
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(a) The MLP Architecture (b) The CNN Architecture (c) The RNN Architecture

Figure 1: The Neural Network architectures in our experiments. All architectures started with an input
vector of word/char index followed by an embedding layer with embedding size 300. In (a) we used
3 fully-connected layers, the first with 256 units, the second with 128 units and the third with 64 units.
Each fully-connected layer has a dropout rate of 0.5. (b) uses 2 parallel convolution layers with 128 filters
and kernel size of 3, 8 for string-based and 10, 30 for char-based. After the convolution, we apply max
pooling with pooling size of 2. We then concatenate the results from previous layers and feed it to a fully-
connected layer with 128 units and 0.5 dropout rate. (c) uses 2 layers of specific RNN implementations,
LSTM or BiLSTM, followed by a fully-connected layer with 128 units and 0.5 dropout.

should be forgotten. Three gates are controlling for input, forget and output. Gate values are computed
based on linear combinations of the current input and the previous state.

We also consider Bidirectional-RNNs, and in particular, a Bidrectional-LSTM (BiLSTM), which is a
variant of LSTMs that has been shown to perform well on various sequence labeling and transduction
tasks. BiLSTMs maintain two separate states for each input position, one forward and one backward.
The forward and backward states are generated by two different LSTMs. The first LSTM is fed the input
sequence as is, while the second LSTM is fed the input sequence in reverse. For morphologically rich
sequences as discussed here, BiLSTMs may potentially capture the influence of prefixes and suffixes on
upcoming content as well content that precedes them. At least in theory, such effects may help leverage
morphological phenomena for classification.

6 Experiments

We set out to evaluate the effects of different input representation choices (Sections 3) and different
architectural choices (Section 5) on neural sentiment analysis for Modern Hebrew. All of our models
aim to learn the same objective function f : x→ y where x ∈ Σ∗ is a sequence of vocabulary items over
an alphabet Σ, encoded in the different ways detailed in Section 3. The output is a sentiment value y ∈
{positive, neutral, negative}.

We compare a traditional Linear basedline model to four different NN-based models: MLP, CNN,
LSTM and BiLSTM. We implemented our models using Keras (Chollet, 2015) a high-level API with
TensorFlow (Abadi et al., 2015) running as the backend engine. All models start with input represented
by a vector of word/char index which is fed into an embedding layer, followed by the specific model
layers (e.g. convolutional, RNN, etc.), and conclude with a softmax activation for the output. All of our
NN models’ architectures are depicted in Figure 1.

The Linear model contains a single fully-connected layer with 100 units and without activation. This
is the only model that did not include an embedding layer and dropout regularization. The MLP model
contains 3 fully-connected feed-forward layers, the first with 256 units, the second with 128 units and the
third with 64 units. We apply dropout with rate of 0.5 on each fully-connected layer. Our CNN (ConvNet)
contains two convolutional layers, one with kernel size 3 and the other with kernel size 8. After each
convolutional layer there is a max pooling layer. These layers are followed by a fully-connected layer
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(a) String-based Vocabulary
Architecture: Linear MLP CNN LSTM BiLSTM
Input Representation:
Token-Based 68.20 86.80 89.20 85.20 87.40
Morpheme-Based 66.13 86.40 89.06 86.20 87.50
(b) Char-based Vocabulary
Architecture: Linear MLP CNN LSTM BiLSTM
Input Representation:
Token-Based 69.38 74.60 82.40 69.50 73.70
Morpheme-Based 68.71 74.50 78.55 70.60 73.10

Table 3: Accuracy results (percentage of correct label predictions) for all architecture and representation
choices on our test set; for (a) the string-based vocabulary, and (b) the char-based vocabulary (b).

with 256 units. For char-based we changed the kernel sizes to 10 and 30.3 Our RNN/BiRNN Recurrent
Neural Network architectures contain two specific RNN implementations (LSTM or BiLSTM) with 93
units followed by 1 fully connected layer with 256 units and 0.5 dropout rate.

All models use the cross-entropy loss for training and Adam optimizer (Kingma and Ba, 2014) to
update models weights and biases. We set a learning rate of 1e− 4, and use batch size of 50 for training.

We evaluate two alternatives for representing the input: a token-based representation, where raw to-
kens are passed on as they are, and a morpheme-based representation, where the input signal is first
morphologically disambiguated and is passed on as a sequence of morphological segments. From the
train dataset we created a vocabulary Σ with 5K top items (tokens/morphemes). Then, we considered
two alternatives of encoding the vocabulary items. A string-based encoding, where each of the to-
kens/morphemes is represented as a single item in the vocabulary, and a character-based representation
assuming a narrower vocabulary, consisting of alphanumeric characters and special signals, and where
each item (token or morpheme) is represented as a sequence of characters. The character set used in the
vocabulary of our char-based models consists of 220 characters, including Hebrew letters, digits, and
other characters such as white space and a new line character.

We set the comment length limit to 100 items (tokens or morphemes) in the string-based encoding
and to 300 for char-based encoding. If a sequence was less than the limit, we padded it with the padding
value, and if it is greater we trimmed it.

Results: Table 3(a) presents the results of the empirical comparison between our five architectures,
in token-based vs. morpheme-based settings, for the string-based encoding of vocabulary items. When
contrasting token-based and morpheme-based NN architectures in string-based encoding, the most strik-
ing outcome is that representation choices do have an effect on task performance, and that the difference
in task performance varies across architectures.

First of all, we see that linear models, assuming a naı̈ve classification architecture based on unigram
features, perform roughly at the same level as a “majority vote” baseline, i.e., a classifier that would
simply predict “positive” for all cases. In our data, “positive” constitutes 66.6% of the gold judgments.
Yet, we observe a clear empirical advantage to the token-based representation over morpheme-based
in this setting, perhaps since tokens allow more context to enter the classification — these tokens may
essentially be seen as n-grams of morphological segments. Furthermore, in feed-forward networks, both
fully-connected and convolutional, there is still an advantage to the token-based representation. We
conjecture that this is due to the inherent order-insensitivity of these models. Morphological segments
out of context may be less informative, and tokens capture more context of particular morphemes, where
these larger “chunks” may exhibit particular ngrams that are strong predictors.

RNNs, in contrast, prefer the morpheme-based setting, and in the LSTM this is in a non-negligible
margin. This is in line with our hypothesis that explicit modeling of morphology may capture interactions
of elements in the sequence and allow for better generalization thereof. In contrast with MLPs and CNNs,
RNNs consider the entire sequence for classification, and so it may be the case that previously unseen
tokens in the sequence may undermine classification in token-based settings. This RNN representation

3This design outperformed CNNs with smaller (3,4,5) and larger (5,10,15) kernel sizes in our preliminary experiments.
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can benefit from the more compact vocabulary of the morpheme-based models, and may also benefit
from the decomposition of unknown tokens into potentially known morphemes to better generalize from
seen sequences to unseen ones. That said, it is to note that token-based BiLSTM closes much of the gap
with the morpheme-based setting, which suggests that the bidirectional representation of tokens perhaps
already implicitly captures some aspects of tokens’ internal decomposition and morphological signature.

The best result across all models is obtained with the token-based CNN. As in English, CNNs show
excellent performance for this task, providing state of the art results for Hebrew sentiment analysis, above
89% accuracy. In particular, this is obtained in the token-based settings, where tokens are compatible
with the “n-gram” views filtered through the convolution.

Table 3(b) presents the results of the same comparisons, for char-based vocabulary encoding. Inter-
estingly, for the linear model the char-based representation outperforms the string-based counterpart, but
these models still lag far behind the rest of the neural networks. With simple and convolutional feed-
forward networks we continue to see that token-based representations outperform. Yet, in all cases, we
see better scores for the parallel models in the string-based setting. RNNs are inferior to all CNNs and
MLPs, still presenting an advantage to the morpheme-based representation, and almost no difference in
the BiLSTM experiment. It seems that while characters may be able to capture some (morphological)
regularities inside tokens, they are not very good at capturing the content of long character sequences.

For our best model overall, a token-based CNN in the string-based lexicon encoding, we compared the
automatic prediction on a sample of 50 examples with the manually annotated sentiment. 26/50 (52%)
of the mis-classifications are in cases when the human raters also happen to disagree, mostly due to
mixed sentiment. This suggests that further improvement will require more sophisticated, aspect-based
modeling, on finer-grained sentiment targets.

The main message coming out of this investigation is that the representation of linguistic items (tokens,
words, morphemes) may influence the performance of NN-based architectures in the case of MRLs, and
that the extent of the difference in performance depends on the type of architecture. It should be noted
though that this outcome is — quite possibly — task-dependent. Sentiment analysis presents a three-way
classification over complete sequences, for which long ngrams often seem to serve as good predictors.
It may well be that for sequence transduction (as in SMT) or structure prediction (as in parsing) we will
observe different trends in the influence of representation types on different languages and architectures.

Error Analysis: To gain further insight into the difference in task performance between different mod-
els and architectures, we performed a qualitative error analysis for 6 of our best models: the MLP, CNN,
LSTM architecture, in token-based and morpheme-based settings, for the string-based lexicon.4

In general, all models are better at identifying positive sentiment than in identifying negative senti-
ment. The cases where both morpheme-based and token-based models correctly identified the positive
sentiment constitute 91% of the positive comments in the MLP case, 93.8% in the CNN, and 94.1% in
the LSTM. In contrast, morpheme-based and token-based models correctly identified negative sentiment
only 27.8% of the negative comments in the MLP, 30.1% in CNN, and 48.1% in the LSTM. Cases where
morpheme-based and token-based models wrongly identified a positive sentiment as negative one have
different characteristics based on the architecture. In the MLP these are characterized by a double nega-
tion, and by addressing a third party. For CNN, comments that start with ”Sorry, but..” are identified
as negative, even when these happen to be positive. For the LSTMs, we see error in the prediction of
positive sentiment in the case of extremely long comments, i.e., accuracy here is length sensitive.

We now turn to consider cases where the token-based models made the right prediction and morpheme-
based models made the opposite prediction. The morpheme-based MLP wrongly identified a positive
sentiment as a negative one in the case of short comments, many punctuations, and many negation el-
ements. The CNN wrong classification of this type is characterized by a double negation, and also by
addressing multiple parties in the same comment. For the RNN, this wrong prediction is again charac-
terized by length — at moderate length of 12 morphemes the model often doesn’t succeed in making
the correct prediction. The opposite case, where morpheme-based models identify negative sentiment
as a positive one has a different characterization in these architectures: in the MLP this is characterized

4For the complete report, confusion matrix, error characterization and translated examples, see our supplementary materials.
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MLP CNN LSTM
MB,TB-correct,pos 60.39 % 62.07% 62.4%
MB,TB-correct,neg 23.25% 24.14% 14.08%
MB,TB-should be pos 3.59% double negation 2.34% “sorry, but..” 2.12% very long comments
MB,TB-should be neg 4.2% honorary, criticism, !!! 3.125% sarcasm, irony 7.185% address+mixed modifiers
TB-pos MB-error,neg 1.09% short, honoraries+negations 0.39% double negation, third party 1.4% short-moderate length
TB-neg MB-error,pos 1.95% honorary title+negative words 2.3% mixed sentiments 0.93% honorary title+opposing words
MB-pos TB-error,neg 1.25% third party, neg words 1.52% direct address / “advise” 1.09 sequential short utterances
MB-neg TB-error,pos 1.36% third party ref 1.093% repetitions, moderate length 7.92% very short comments

Table 4: Qualitative Error Analysis and Confusion Quantitative Assessment on 2560 comments. TB de-
notes token-based and MB denote morpheme-based representation. We do not discuss neutral sentiment.

by kind and respectful words towards the president, alongside expressed criticism. For the CNN we
see confused classification in comments that express mixed sentiments towards different topics. For the
LSTM, we see the same pattern as the MLP; respectful attitude towards the president (Dear Mr. president,
respected president) followed by an opinion which is opposed to the post’s actual content.

Finally, cases where morpheme-based models made the right prediction and token-based models were
erroneous, i.e., the cases that coincide with our linguistic hypothesis, can be characterized as follows.
For the MLP, positive sentiments where identified as negative where the comments address a third party
and also contain certain negation elements (i.e., ”I choose Rivlin despite what Liberman says”). CNNs
classified positive sentiments as negative where the comments directly address the president, proposing
a sort of explicit “advice” (“Dear Mr. president we need to stop the violance”). The LSTM gets confused
in cases of long comments consisting a sequence of very short utterances, typically also containing
many negations and punctuation (“Me too. I’m opposed. Where do we go?” etc.) The opposite error
also happens in the token-based models, where morpheme-based are correct. MLPs classify negative
as positive where the comments do not address the president, but speak of a third party (the children,
the soldiers, etc). Token-based CNNs mistakenly classify negative as positive in comments of moderate
length (about 14 words) or those that have many repetitions (”sit down sit down sit down quietly and
listen..”). The token-based LSTM is wrong in cases of very short comments, with only a handful of
tokens.

All in all morpheme-based models do show advantages in identifying the correct sentiment of actual
content (addressing of third parties, serving advise, etc.) beyond fixed expressions, and are better in
classifying short texts or texts with repetitions. However it seems that the morpheme-based models
do get more easily confused by the existence of negation elements, double negation, and many titles
honoring the speaker (the president). These may steer the classification in a fairly rigid direction. Token-
based models that consider larger n-grams, in particular in the context of CNN architectures, capture
larger context windows, which currently present the best performance on Hebrew sentiment analysis.5

7 Discussion and Conclusion

Despite the great success of NN-based methods in NLP, the question of the interplay between language
type and architectural choices has only been scarcely attended to, if at all. Yin et al. (2017), for instance,
compare the strengths of different NN architectures for NLP tasks, but the discussion focuses solely on
English. Dos Santos and Zadrozny (2014) propose char-based CNNs for NLP, but the benefits of the
char-based modeling are not contrasted for different NN architectures and modeling. Finally, Al Sallab
et al. (2015) contrast deep learning architectures for sentiment analysis in Arabic. They use a simple bag
of words (BOW) approach without considering the MRL nature of the language, nor they are comparing
different representation choices for their lexicon.

In this work we address neural sentiment analysis of Hebrew, a Semitic language known for its mor-
phological complexities, and evaluate two choices of representing the input signal: (i) tokens vs. mor-
phemes input, and (ii) string-based vs. char-based encoding. We experiment with different architec-
tures: a linear model, feed-forward MLPs, CNNs, and (Bi)RNNs. We show that while linear models as

5Our data set, code, and models are publicly available at https://github.com/omilab/
Neural-Sentiment-Analyzer-for-Modern-Hebrew.
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well as MLPs and CNNs obtain higher accuracy at token-level granularity, RNNs prefer the morpheme-
based settings. We further show that while char-based representation can in most cases dispense with
morpheme-level information, it comes at a cost of an overall drop in accuracy. Our best model is a
token-based CNN with above 89% on a new Hebrew benchmark based on social media content.

We believe that this investigation is only a first step in un-black-boxing the use of NN models for
language processing tasks. Through this investigation, the two-level sentiment benchmark we deliver,
and the strong baseline results we provide, we hope to encourage further investigation into the interplay
between task, language types and modeling choices in general, and on NN models for MRLs in particular.
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