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Abstract

Human communication includes information, opinions and reactions. Reactions are often cap-
tured by the affective-messages in written as well as verbal communications. While there has
been work in affect modeling and to some extent affective content generation, the area of af-
fective word distributions is not well studied. Synsets and lexica capture semantic relationships
across words. These models, however, lack in encoding affective or emotional word interpreta-
tions. Our proposed model, Aff2Vec, provides a method for enriched word embeddings that are
representative of affective interpretations of words. Aff2Vec outperforms the state-of-the-art in
intrinsic word-similarity tasks. Further, the use of Aff2Vec representations outperforms baseline
embeddings in downstream natural language understanding tasks including sentiment analysis,
personality detection, and frustration prediction.

1 Introduction

Affect refers to the experience of a feeling or an emotion (Scherer et al., 2010; Picard, 1997). This defini-
tion includes emotions, sentiments, personality, and moods. The importance of affect analysis in human
communication and interactions has been discussed by Picard (1997). Historically, affective computing
has focused on studying human communication and reactions through multi-modal data gathered via
various sensors. The study of human affect from text and other published content is an important topic in
language understanding. Word correlation with social and psychological processes is discussed by Pen-
nebaker (2011). Preotiuc-Pietro et al. (2017) studied personality and psycho-demographic preferences
through Facebook and Twitter content. Sentiment analysis in Twitter, with a detailed discussion on hu-
man affect (Rosenthal et al., 2017) and affect analysis in poetry (Kao and Jurafsky, 2012) have also been
explored. Human communication not only contains semantic and syntactic information but also reflects
the psychological and emotional states. Examples include the use of opinion and emotion words (Ghosh
et al., 2017). The analysis of affect in interpersonal communication such as emails, chats, and longer
articles is necessary for various applications including the study of consumer behavior and psychology,
understanding audiences and opinions in computational social science, and more recently for dialogue
systems and conversational agents. This is an open research space today.

Traditional natural language understanding systems rely on statistical language modeling and seman-
tic word distributions such as WORDNET (Miller, 1995) to understand relationships across different
words. There has been a resurgence of research efforts towards creating word distributions that capture
multi-dimensional word semantics (Mikolov et al., 2013a; Pennington et al., 2014). Sedoc et al. (2017b)
introduce the notion of affect features in word distributions but their approach is limited to creating en-
riched representations and no comments on the utility of the new word distribution is presented. Beyond
word-semantics, deep learning research in natural language understanding is focused towards sentence
representations using encoder-decoder models (Ahn et al., 2016), integration of symbolic knowledge to
language models (Vinyals et al., 2015), and some recent works in augmenting neural language modeling
with affective information to emotive text generation (Ghosh et al., 2017). These works, however, do
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(a) GloVe (b) GloVe⊕Affect (c) GloVe + Counterfitting ⊕ Affect

Figure 1: t-SNE for significant affect words: The graphs show the distribution of sample words from
Sedoc et al (2017b). The variance in the visualization illustrates the perturbation introduced by

distributional schemes discussed in this paper. Vanilla GloVe embeddings show ‘disappointed’ near
‘delighted’, while these are separated in the ⊕Affect representations.

not introduce distributional affective word representations that not only reflect affective content but are
also superior for related downstream natural language tasks such as sentiment analysis and personality
detection.

We introduce Aff2Vec, affect-enriched word distributions trained on lexical resources coupled with
semantic word distributions. Aff2Vec captures opinions and affect information in the representation
using post-processing approaches. Figure 1 illustrates how Aff2Vec captures affective relationships us-
ing a t-SNE visualization of the word space. Even though Aff2Vec is trained on the Valence-Arousal-
Dominance dimensions, our approach is generalizable to any other affect spaces. Our experiments show
that Aff2Vec outperforms vanilla embedding spaces on both intrinsic word-similarity tasks as well as
extrinsic natural language applications. The main contributions of this paper include:

• Aff2Vec: Affect-enriched word representations using post-processing techniques. We show that
Aff2Vec outperforms the state-of-the-art in both intrinsic word similarity metrics as well as down-
stream natural language tasks including Sentiment analysis, Personality detection, and Frustration
detection in interpersonal communication.

• ENRON-FFP Dataset: We introduce the ENRON-FFP Email dataset with Frustration, Formality,
and Politeness tags gathered using a crowd-sourced human perception study.

The remainder of the paper is organized as follows. The prior art for enriched word distributions is
discussed in Section 2. Aff2Vec is introduced in Section 3. We present a crowd-sourcing study for the
ENRON-FFP Dataset in Section 4 and Section 5 discusses the experimental setup. Section 6 presents the
evaluation of Aff2Vec for various intrinsic and extrinsic tasks. A discussion on the distributional word
representations is presented in Section 7 before the conclusion in Section 8.

2 Related Work

The use of lexical semantic information (lexical resources) to improve distributional representations is
recent. Methods like (Yu and Dredze, 2014; Xu et al., 2014; Bian et al., 2014; Kiela et al., 2015) achieve
improved representations by using word similarity and relational knowledge to modify the prior or add
a regularization term. We call such methods ‘pre-training methods’, as they alter the training process for
word representations. Such methods require a change in the loss function while training the embeddings,
hence are computationally expensive.

The other set of word distribution enhancements are done post-training. These methods aim to include
external information using normalizations and modifications to the vanilla word distributions. Methods
such as Retrofitting (Faruqui et al., 2015), which try to drag similar words closer together (where notion
of similarity is taken from word relation knowledge found in semantic lexica (e.g. WordNet)) fall in
this category. Counterfitting (Mrkšic et al., 2016) on the other hand, initiates from SimLex-999 tuned
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embeddings, injects antonym and synonym constraints to improve word representations. This paper in-
troduces post-training techniques on vanilla, retrofitted and counterfitted embeddings to include affective
information in the distributions. Our work falls in the post-training category, hence no direct comparison
with the pre-trained approaches is presented in this paper.

Recent work has explored approaches to adapt general-purpose lexica for specific contexts and affects.
Studies have recognized the limited applicability of general purpose lexica such as ANEW (Bradley and
Lang, 1999) to identify affect in verbs and adverbs, as they focus heavily on adjectives. Recognizing that
general-purpose lexica often detect sentiment which is incongruous with context, Ribeiro et al. (2016)
proposed a sentiment-damping method which utilizes the average sentiment strength over a document
to damp any abnormality in the derived sentiment strength. Similarly, Blitzer et al. (2007) argued that
words like ‘predictable’ induced a negative connotation to book reviews, while ‘must-read’ implied a
highly positive sentiment. This paper doesn’t focus on building yet another affect lexicon but studies the
consequences of including affect information in distributional word representations that aim at defining
relational relationships across all words in large contexts and vocabularies.

Automatic expansion of affect rating has been approached with the intuition that words closer in the
distributional space would have similar ratings (Recchia and Louwerse, 2015; Palogiannidi et al., 2015;
Vankrunkelsven et al., 2015; Köper and Im Walde, 2016). Recent work by Sedoc et al. (2017b) uses
Signed Spectral Clustering to differentiate between words which are contextually similar but display
opposite affect. Wang et al. (2016) use a graph-based method inspired by label propagation. While our
approach follows the nature of the task defined in Sedoc et al. (2017b), we propose a generalized method
to enrich content with affective information. Instead of only focusing on distinguishing the polarities,
our method incorporates both semantic and affect information. Hence, creating embeddings that can also
be used for semantic similarity tasks. Note that Sedoc et al. do not include any semantic information in
their modeling.

3 Aff2Vec: Affect–enriched Word Distributions

Aff2Vec aims at incorporating affective information in word representations. We leverage the
Warriner’s lexicon (Warriner et al., 2013) in the Valence-Arousal-Dominance space for this work.
The proposed work is generalizable to other affect spaces (Refer Appendix A for experiments with
different dimensions.). This section presents two approaches for affect–enrichment of word distributions.

Warriner’s lexicon: We use the Warriner’s lexicon (Warriner et al., 2013) in this work. This is a affect
lexicon with 13, 915 English words. It contains real-valued scores for valence, arousal, and dominance
(VAD) on a scale of 1−9 each. 1, 5, and 9 correspond to the low, moderate (i.e. neutral), and high values
for each dimension respectively. For out-of-dictionary words, such as stop words or proper nouns, we
assume a neutral affect vector ~a = [5, 5, 5].

3.1 Affect-APPEND (⊕ Affect)
Consider word embeddingsW , the aim is to introduce affective information to this space using the affect
embedding space, A. The word vectors W , each with dimension D, are concatenated with affect vectors
A with dimension F , thus resulting in a D + F dimensional enriched representation. The process for
this concatenation is described here:

1. Normalize word vector W and affect vector A using their L2-Norms (Equation 1). This reduces the
individual vectors to unit-length.

xi =
xi√∑D
k=1 x

2
ik

∀xi ∈W, ai =
ai√∑F
k=1 a

2
ik

∀ai ∈ A (1)

2. Concatenate the regularized word vectors xi with regularized affect vectors ai.

WA(w) = W (w)⊕A(w) (2)
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3. Standardize (variance 1 , mean 0) the D + F dimensional embeddings to achieve standard normal
distribution.

yi =
yi − µ
σ

∀yi ∈WA (3)

where, µ and σ represent the mean and standard deviation respectively.

4. The enriched space WA is then reduced to original D dimensional vector. We use Principal Com-
ponent Analysis for the dimensionality reduction.

3.2 Affect-STRENGTH
In this approach, the strength in the antonym-synonym relationships of the words is incorporated to the
word distribution space. Hence, we leverage the retrofitting algorithm (Faruqui et al., 2015) as shown
below. 1

Retrofitting: Let V = {w1, w2, w3, ..., wn} be a vocabulary and Ω be an ontology which en-
codes semantic relations between words present in V (e.g. WORDNET). This ontology Ω is represented
as an undirected graph (V,E) with words as vertices and (wi, wj) as edges indicating the semantic
relationship of interest. Each word wi ∈ V is represented as a vector representation q̂i ∈ Rd learnt using
a data-driven approach (e.g. Word2Vec or GloVe) where d is the length of the word vectors.

Let Q̂ be the matrix collection of these vector representations. The objective is to learn the matrix
Q = (q1, ..., qn) such that the word vectors (qi) are both close to their counterparts in Q̂ and to adjacent
vertices in Ω. The distance between a pair of vectors is defined to be Euclidean, hence the objective
function for minimization is

Ψ(Q) =
∑n

i=1

[
αi‖qi − q̂i‖2 +

∑
(i,j)∈E βij‖qi − qj‖

2

]
(4)

where, α and β are hyper parameters and control the relative strengths of the two associations. Ψ is a
convex function in Q and its global optimal solution can be found by using an iterative update method.
By setting ∂Ψ(Q)

∂qi
= 0, the online updates are as follows:

qi =

∑
j:(i,j)∈E βijqj + αiq̂i∑

j:(i,j)∈E βij + αi
(5)

We propose two ways to modify βij in equation 4 in order to incorporate affective strength in the edge
weights connecting two retrofitted vectors to each other.

Affect-cStrength (∗ cStrength): In this approach, the affective strength is considered as a func-
tion of all F affect dimensions.

S(wi, wj) = 1− ‖ai − aj‖√∑F
f=1max dist

2
f

(6)

where, ai and aj are F dimensional vectors in A and max distf is defined as the maximum possible
distance between two vectors in f th dimension (= 9.0− 1.0 = 8.0 for VAD dimensions).

Affect-iStrength (∗ iStrength): Here, each dimension is treated individually. For every dimen-
sion f in A, we add an edge between neighbors in the Ontology Ω where the strength of that edge is
given by Sf (wi, wj):

Sf (wi, wj) = 1−
|aif − ajf |
max distf

, S(wi, wj) =

F∑
f=1

Sf (wi, wj) (7)

βij from equation 5 is normalized with this strength function as βij = βij ∗ S(wi, wj), where S(wi, wj)
is defined by either Affect-cStrength or Affect-iStrength.

1https://github.com/mfaruqui/retrofitting
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4 Dataset: ENRON-FFP

Table 1: Enron-FFP Dataset Description

Property Value
Total number of emails (Main Experiment) 960
Total number of emails (Pilot Experiment) 90
Min. sentences per email 1
Max. sentences per email 17
Average email size (no. of sentences) 4.22
Average number of words per email 77.5

Table 2: Datasets for Intrinsic Evaluation

Dataset # Word-Pairs
Word Similarity (WS) (Finkelstein et al., 2001) 353
RG-65 (Rubenstein and Goodenough, 1965) 65
MEN (Bruni et al., 2012) 3000
Miller-Charles (MC) (Miller and Charles, 1991) 30
RW (Luong et al., 2013) 2034
SCWS (Huang et al., 2012) 2023
SimLex-999 (SL) (Hill et al., 2016) 999
SimVerb-3500 (SV) (Gerz et al., 2016) 3500

Table 3: Example emails with varying inter-annotator agreements.
Affect Dimension Example Annotations
Frustration: Low Agreement See highlighted portion. We should throw this back at Davis next time he points

the finger.
(-1, -1, 0, 0, -2, -2, 0, 0, -2, 0)

Frustration: High Agreement Please see announcement below. Pilar, Linda, India and Deb, please forward to
all of your people. Thanks in advance, adr

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Formality: Low Agreement I talked with the same reporters yesterday (with Palmer and Shapro). Any other
information that you can supply Gary would be appreciated. Steve, did Gary A.
get your original as the CAISO turns email? GAC

(0, 0, -1, 1, 1, 1, 0, -1, -2, -1)

Politeness: High Agreement John, This looks fine from a legal perspective. Everything in it is either already in
the public domain or otherwise non-proprietary. Kind regards, Dan

(1, 1, 1, 1, 1, 1, 1, 1, 2, 1)

We introduce an email dataset, a subset of the ENRON data (Cohen, 2009), with tags about inter-
personal communication traits: Formality, Politeness, and Frustration. Along with the content of the
emails, the dataset also provides user and network level information for email exchanges between Enron
employees.

Human Perceptions and Definitions: Tone or affects such as frustration and politeness are highly
subjective. In this work, we do not attempt to introduce or standardize an accurate definition for
frustration (or formality and politeness). Instead, we assume that these are defined by human perception
and each individual may differ in their understanding of these metrics. This approach of using untrained
human judgments has been used in prior studies of pragmatics in text data (Pavlick and Tetreault,
2016; Danescu-Niculescu-Mizil et al., 2013) and is a recommended way of gathering gold-standard
annotations (Sigley, 1997). The tagged data is then used to predict the formality, frustration, and
politeness tags using Aff2Vec embeddings.

Dataset Annotation: We conducted a crowd-sourced experiment using Amazon’s Mechanical
Turk2. The analysis presented in this section is based on 1, 050 emails that were tagged across multiple
experiments3. Table 1 provides the statistics of the annotated data. We follow the annotation protocol of
the Likert Scale (Allen and Seaman, 2007) for all three dimensions. Each email is considered as a single
data point and only the text in the email body is provided for tagging. Frustration is tagged on a 3 point
scale with neutral being equated to ‘not frustrated’; ‘frustrated’ and ‘very frustrated’ are marked with
−1 and −2 respectively. Formality and politeness follow a 5 point scale from −2 to +2, where both
extremes mark the higher degree of presence and absence of the respective dimension. Table 3 shows
example emails from the dataset.

Inter-annotator Agreement: To measure whether an individual’s intuition of the affect dimen-
sions is consistent with other annotators’ judgment, we use inter-class correlation4 to quantify the

2https://www.mturk.com/mturk/welcome
3Link to the annotated ENRON-FFP dataset: https://bit.ly/2IAxPab
4We report the average raters absolute agreement (ICC1k) using the psych package in R.
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Table 4: Intrinsic Evaluation: Word Similarity–We report the Spearman’s correlation coefficient (ρ).
The results show that Aff2Vec variants improve performance consistently.

Model Word Similarity
SL SV WS RG RW SCWS MC MEN

GloVe 0.41 0.28 0.74 0.77 0.54 0.64 0.80 0.80
⊕ Affect 0.49 0.39 0.77 0.79 0.59 0.67 0.80 0.84
+ Retrofitting 0.53 0.37 0.73 0.81 0.52 0.66 0.82 0.82
+ Retrofitting ∗ cStrength 0.53 0.36 0.74 0.81 0.52 0.66 0.82 0.82
+ Retrofitting ∗ iStrength 0.56 0.38 0.64 0.80 0.44 0.62 0.80 0.78
+ Retrofitting ⊕ Affect 0.60 0.46 0.76 0.81 0.61 0.69 0.81 0.85
+ Counterfitting 0.58 0.47 0.65 0.80 0.56 0.61 0.78 0.77
+ Counterfitting ⊕ Affect 0.62 0.53 0.70 0.84 0.61 0.64 0.84 0.80
Word2Vec 0.45 0.36 0.70 0.76 0.59 0.67 0.80 0.78
⊕ Affect 0.49 0.42 0.67 0.81 0.59 0.66 0.85 0.79
+ Retrofitting 0.55 0.45 0.74 0.82 0.62 0.70 0.83 0.80
+ Retrofitting ∗ cStrength 0.55 0.44 0.73 0.82 0.62 0.70 0.83 0.80
+ Retrofitting ∗ iStrength 0.58 0.47 0.71 0.83 0.57 0.69 0.85 0.80
+ Retrofitting ⊕ Affect 0.59 0.49 0.71 0.84 0.62 0.70 0.86 0.82
+ Counterfitting 0.56 0.51 0.66 0.75 0.61 0.64 0.75 0.73
+ Counterfitting ⊕ Affect 0.60 0.54 0.64 0.82 0.60 0.64 0.82 0.76
Paragram 0.69 0.54 0.73 0.78 0.59 0.68 0.80 0.78
⊕ Affect 0.71 0.59 0.70 0.77 0.60 0.67 0.76 0.79
+ Retrofitting 0.68 0.55 0.73 0.79 0.59 0.68 0.81 0.78
+ Retrofitting ∗ cStrength 0.69 0.55 0.73 0.79 0.59 0.69 0.81 0.78
+ Retrofitting ∗ iStrength 0.68 0.56 0.71 0.80 0.58 0.68 0.84 0.77
+ Retrofitting ⊕ Affect 0.71 0.58 0.70 0.80 0.59 0.67 0.78 0.79
+ Counterfitting 0.74 0.63 0.69 0.81 0.60 0.66 0.82 0.74
+ Counterfitting ⊕ Affect 0.75 0.66 0.68 0.81 0.60 0.65 0.82 0.76

ordinal ratings. This measure accounts for the fact that we may have different groups of annotators for
each data point. Each data point has 10 distinct annotations. Agreements reported are 0.506 ± 0.05(for
3 class), 0.73 ± 0.02(for 5 class), and 0.64 ± 0.03(for 5 class) for frustration, formality, and politeness
respectively. The agreement measures are similar to those reported for other such psycholinguistic
tagging tasks.

5 Experiments
Two sets of experiments are presented to evaluate Aff2Vec embeddings5 - Intrinsic evaluation using word
similarity tasks and extrinsic evaluation using multiple NLP applications. We focus on 3 vanilla word em-
beddings: GloVe (Pennington et al., 2014), Word2Vec-SkipGram6 (Mikolov et al., 2013b) and Paragram-
SL999 (Wieting et al., 2015); and their retrofitted (Faruqui et al., 2015) and counterfitted (Mrkšic et al.,
2016) versions. The vocabulary and embeddings used in our experiments resonate with the experimental
setup by Mrkšić et al.(2016) (76, 427 words).

5.1 Intrinsic Evaluation

Word similarity is a standard task used to evaluate embeddings (Mrkšic et al., 2016; Faruqui et al., 2015;
Bollegala et al., 2016). In this paper, we evaluate the embeddings on benchmark datasets given in Table 2.
We report the Spearman’s rank correlation coefficient between rankings produced by our model (based
on cosine similarity of the pair of words) against the benchmark human rankings for each dataset.

5.2 Extrinsic Evaluation
Although intrinsic tasks are popular, performance of word embeddings on these benchmarks does not
reflect directly into the downstream nlp tasks (Chiu et al., 2016). Gladkova and Drozd (2016) and

5Link to the Aff2Vec word embeddings: https://bit.ly/2HGohsO
6https://code.google.com/archive/p/word2vec/
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Table 5: Extrinsic Evaluation: Results for FFP-Prediction, Personality Detection, Sentiment Analysis,
and WASSA Emotional Intensity task for Aff2Vec variants for GloVe and Word2Vec embeddings. We

report the Mean Squared Error (MSE) for FFP-Prediction, Accuracy (% ACC) for Personality
Detection, and Sentiment Analysis (SA) and Person’s ρ for the WASSA Emo-Int Task (EMO-INT)

Model FFP-Prediction Personality Detection SA EMO-INT
MSE (X10−3) Acc. (%) Acc. (%) Pearson’s ρ (X10−2)

FOR FRU POL EXT NEU AGR CON OPEN DAN ANG FEA JOY SAD
GloVe 27.59 32.40 21.89 56.08 55.25 56.06 57.32 59.14 83.1 70.98 71.19 65.85 73.30
⊕ Affect 27.72 28.76 22.02 51.47 57.41 56.09 55.06 62.08 84.3 70.91 71.72 66.26 73.58
+ Retrofitting 27.44 29.35 21.75 55.79 59.67 55.59 56.89 59.67 82.7 72.10 71.86 67.11 73.14
+ Retrofitting ⊕ Affect 28.33 27.91 22.24 55.01 56.43 57.48 53.04 61.12 83.7 72.38 72.53 66.29 72.76
+ Counterfitting 25.66 29.20 22.90 55.11 58.32 55.41 53.89 60.36 84.2 70.45 68.95 65.27 72.63
+ Counterfitting ⊕ Affect 28.89 32.46 21.64 52.12 60.03 56.53 54.93 59.51 84.4 70.20 70.43 65.81 72.37
Word2Vec 25.86 27.88 21.56 56.08 58.19 56.59 55.18 61.41 83.3 68.86 71.24 65.23 72.60
⊕ Affect 25.39 28.16 22.99 53.54 57.97 55.17 54.12 59.31 83.4 69.29 71.92 64.49 72.63
+ Retrofitting 27.81 29.05 21.85 54.33 56.65 57.39 54.65 60.03 82.5 70.12 71.42 67.96 72.02
+ Retrofitting ⊕ Affect 25.08 27.08 21.64 53.74 59.61 56.34 56.93 59.7 83.3 70.65 71.90 66.36 72.20
+ Counterfitting 28.28 27.12 22.95 54.55 57.61 57.09 54.1 58.5 83.3 68.64 70.13 63.36 70.67
+ Counterfitting ⊕ Affect 27.73 29.67 21.52 51.28 58.86 56.66 53.22 61.62 83.5 69.38 70.31 64.94 71.37
Baselines
(Majumder et al., 2017) – – – 58.09 59.38 56.71 57.30 62.68 – – – – –
ENRON Trainable 31.61 43.90 26.27 – – – – – – – – – –
Re(Glove)(Yu et al., 2017) – – – – – – – – 82.2 – – – –
Re(w2v)(Yu et al., 2017) – – – – – – – – 82.4 – – – –

Batchkarov et al. (2016) suggest that intrinsic tasks should not be considered as gold standards but as
a tool to improve the model. Therefore, we test the utility of Aff2Vec on 4 distinct natural language
understanding tasks:

Affect Prediction (FFP-Prediction): The experiment is to predict the formality, politeness, and
frustration in email. We introduce the ENRON-FFP dataset for this task in section 4. A basic CNN
model is used for the prediction (Refer to Appendix B.4 for hyper-parameters and model details). The
purpose of this experiment is to evaluate the quality of the embeddings and not necessarily the model
architecture. The CNN is hence not optimized for this task. Embeddings trained on the ENRON dataset
(ENRON-Trainable) are used as a baseline.

Personality Detection: This task is to predict human personality from text. The big five person-
ality dimensions (Digman, 1990) are used for this experiment. The 5 personality dimensions include
Extroversion (EXT), Neuroticism (NEU), Agreeableness (AGR), Conscientiousness (CON), and
Openness (OPEN). Stream-of-consciousness essay dataset by Pennebaker et al. (1999) contains 2, 468
anonymous essays tagged with personality traits of the author. We use this dataset for the experiment.
Majumder et al (2017) propose a CNN model for this prediction. We use their best results as baseline
and report the performance of Aff2Vec on their default implementation7.

Sentiment Analysis: The Stanford Sentiment Treebank (SST) (Socher et al., 2013) contains sen-
timent labels on sentences from movie reviews. This dataset in its binary form is split into 6, 920
training, 872 validation, and 1, 821 test set samples. We report the performance on a Deep Averaging
Network (DAN)(Iyyer et al., 2015)8 with default parameters on the SST dataset and compare against
refined embeddings specifically created for sentiment analysis. Implementation by Yu et al (2017) is
used for the refined embeddings9.

Emotion Intensity Task (WASSA): WASSA shared task on emotion intensity (Mohammad and
Bravo-Marquez, 2017) requires to determine the intensity of a particular emotion (anger, fear, joy, or

7https://github.com/SenticNet/personality-detection
8https://github.com/miyyer/dan
9Implementation provided by the authors is used for this experiment.
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Table 6: Polarity-Noise@k (PN@10) and Granularity-Noise@k (GN@10) where k = 10 for GloVe and
Word2Vec variants. Note that lower the number, better this qualitative metric.

Model PN@10 (%) GN@10 (X10−2)
V A D V A D

GloVe 23.21 22.15 27.07 83.91 79.19 74.19
⊕ Affect 16.46 19.65 19.42 72.56 69.00 64.02
+ Retrofitting 22.55 21.82 26.5 82.15 78.68 72.53
+ Retrofitting ∗ cStrength 22.07 21.63 26.14 80.85 78.12 71.86
+ Retrofitting ∗ iStrength 23.05 21.77 26.66 83.14 78.76 72.65
+ Retrofitting ⊕ Affect 19.68 18.16 22.88 73.45 71.56 66.55
+ Counterfitting 22.68 22.2 26.46 83.31 78.78 72.54
+ Counterfitting ⊕ Affect 16.75 19.99 19.99 73.89 69.55 63.93
Word2Vec 24.66 22.19 27.41 85.81 79.23 74.25
⊕ Affect 20.62 17.83 23.19 74.78 71.64 67.32
+ Retrofitting 23.75 22.25 26.94 84.65 79.36 73.00
+ Retrofitting ∗ cStrength 23.33 22.01 26.58 83.39 78.71 72.24
+ Retrofitting ∗ iStrength 23.90 22.30 27.13 85.34 79.46 73.12
+ Retrofitting ⊕ Affect 20.61 18.54 23.6 75.71 72.47 67.61
+ Counterfitting 23.47 22.48 26.72 84.62 79.14 72.29
+ Counterfitting ⊕ Affect 20.34 18.17 23.01 74.83 71.94 66.62
Paragram 25.16 22.55 28.05 88.34 80.73 75.49
⊕ Affect 20.81 21.29 23.45 81.83 75.27 69.79
+ Retrofitting 25.69 22.8 28.48 89.67 81.25 76.05
+ Retrofitting ∗ cStrength 25.46 22.64 28.22 89.06 80.95 75.58
+ Retrofitting ∗ iStrength 25.69 22.84 28.43 89.85 81.26 75.93
+ Retrofitting ⊕ Affect 23.38 20.34 25.99 83.17 76.51 71.83
+ Counterfitting 24.86 22.76 27.88 88.27 80.68 75.18
+ Counterfitting ⊕ Affect 20.31 21.50 23.03 81.40 75.05 69.10

sadness) in a tweet. This intensity score can be seen as an approximation of the emotion intensity of
the author or as felt by the reader. We train a BiLSTM-CNN–based model for this regression task with
embedding dimensions as features (Refer to Appendix B.3 for model details). Vanilla embeddings are
used as a baseline for this experiment.

5.3 Qualitative Evaluation: Noise@k

Affect-enriched embeddings perform better as they move semantically similar but affectively dissimilar
words away from each other in the vector space. We demonstrate this effect through two measures that
capture noise in the neighborhood of a word.

Polarity-Noise@k (PN@k) (Yu et al., 2017) calculates the number of top k nearest neighbors of
a word with opposite polarity for the affect dimension under consideration.
Granular-Noise@k (GN@k) captures the average difference between a word and its top k nearest
neighbors for a particular affect dimension (f ).

GNi@k =

∑
j∈kNNi

|aif − ajf |
k

(8)

where, ai, aj are F -dimensional vectors in A and kNNi denotes the top k nearest neighbors of word i.
This is done for each word in the affect lexicon.

6 Results

All experiments are compared against the vanilla word embeddings, embeddings with counterfitting, and
embeddings with retrofitting.

Table A.1 summarizes the results of the Intrinsic word–similarity tasks. For the pre-trained word
embeddings, Paragram-SL999 outperformed GloVe and Word2Vec on most metrics. Both retrofitting
and counterfitting procedures show better or at par performance on all datasets except for WordSim-
353. Addition of affect information to different versions of GloVe consistently improves performance
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Figure 2: Variation of Granular Noise with different k values for GloVe and Affect-APPEND variants

whereas the only significant improvement for Paragram-SL999 variants is observed on the SimLex-
999 and SimVerb-3500 datasets. To the best of our knowledge, ρ = 0.74 reported by Mrkšić
et al. (2016) represents the current state-of-the-art for SimLex-999 and inclusion of affect infor-
mation to these embeddings yields higher performance (ρ = 0.75). Similarly, for the SimVerb-
3500 dataset, Paragram+Counterfitting⊕Affect embeddings beat the state-of-the-art scores10. Amongst
Affect-APPEND and Affect-STRENGTH, Affect-APPEND out performs the rest in most cases for
GloVe and Word2Vec. However, Affect-STRENGTH variations perform slightly better for the Paragram
embeddings.

The results for the Extrinsic tasks are reported in Table 5. We report the performance for GloVe and
Word2Vec with Affect-APPEND variants11. For FFP-Prediction, Affect-APPEND gives lowest Mean
Squared Error for Frustration and Politeness. However, in the case of Formality, the counterfitting vari-
ant reports the lowest error. For the personality detection task, Affect-APPEND variants report best
performance for NEU, AGR, and OPEN classes. For CON, Glove beats the best results in (Majumder et
al., 2017). Evaluation against the Sentiment Analysis(SA) task shows that Affect-APPEND variants re-
port highest accuracies. The final experiment reported here is the WASSA-EmoInt task. Affect-APPEND
and retrofit variants out-perform the vanilla embeddings.

To summarize, the extrinsic evaluation supports the hypothesis that affect–enriched embeddings
improve performance for all NLP tasks. Further, the word similarity metrics show that Aff2Vec is not
specific to sentiment or affect-related tasks but is at par with accepted embedding quality metrics.

Qualitative Evaluation: Table 6 reports the average Polarity-Noise@10 and Granular-Noise@10
for GloVe, Word2Vec, and Paragram-SL999 variants. Note that lower the noise better the performance.
Affect-APPEND reports the lowest noise for all cases. This shows that the introduction of affect
dimensions in the word distributions intuitively captures psycholinguistic and in particular polarity
properties in the vocabulary space. The rate of change of noise with varying k provides insights into
(1) how similar are the embedding spaces and (2) how robust are the new representations to the noise
i.e. how well is the affect captured in the new embeddings. Figure 2 shows the granular noise@k
for valence, arousal, and sominance respectively. Noise@k for the Aff2Vec i.e. the Affect-APPEND
variants, specifically, ⊕Affect and Couterfitting⊕Affect has lower noise even for a higher k. The growth
rate for all variants is similar and reduces with an increase in the value of k. A similar behavior is
observed for Polarity-Noise@k.

7 Discussion

Experiments give an empirical evaluation of the proposed embeddings, none of these provide an insight
about the change in the distributional representations of the associated words. Semantic relationship

10Mentioned at http://people.ds.cam.ac.uk/dsg40/simverb.html
11Results for Paragram are reported in the supplement.
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Table 7: Top-5 NN for ‘Good’ and ‘Bad’ for variants of GloVe, SentiWordNet and Aff2Vec

Model Good Bad
GloVe [great, nice, excellent, decent, bad] [terrible, awful, horrible, wrong, thing]
⊕ Affect [great, nice, excellent, decent, pretty] [awful, terrible, horrible, wrong, crappy]
+ Retrofitting [great, decent, nice, excellent, pretty] [wrong, awful, terrible, horrible, nasty]
+ Retrofitting ⊕ Affect [nice, great, decent, excellent, pretty] [awful, wrong, nasty, terrible, horrible]
+ Counterfitting [decent, nice, optimum, presentable, exemplary] [rotten, shitty, horrid, naughty, lousy]
+ Counterfitting ⊕ Affect [nice, decent, optimum, presentable, dignified] [rotten, shitty, horrid, lousy, naughty]
Senti-WordNet12 [commodity, full, estimable, beneficial, adept] [regretful, badly]
Warriner’s Lexicon [grandmother, healing, cheesecake, play, blissful] [jittery, fuss, incessant, tramp, belligerent]

capture the synonym like information. We study how the neighborhood of a certain word changes based
on the different word distribution techniques used to create the corresponding representations. Table 7
shows the top five nearest neighbors based on the representations used. While SENTI-Wordnet represents
synonyms more than affectively similar words, the affect–enriched embeddings provide a combination
of both affective and semantic similarity. The variance in the ranking of words depicts how different
schemes capture the intuition of word distributions. Such an analysis can be used to build automated
natural language generation and text modification systems with varying objectives.

8 Conclusion

We present a novel, simple yet effective method to create affect–enriched word embeddings using affect
and semantic lexica. The proposed embeddings outperform the state-of-the-art in benchmark intrinsic
evaluations as well as extrinsic applications including sentiment analysis, personality detection, and
affect prediction. We introduce a new human-annotated dataset with formality, politeness, and frustration
tags on a subset of the publicly available ENRON email data. We are currently exploring the effect of
dimension size on the performance of the enriched embeddings as well as the use of Aff2Vec for complex
tasks such as text generation.
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Appendix A Generalization of Affect and Emotion Dimensions

Apart from the Warriner’s lexicon (Warriner et al., 2013) which is in the VAD space, we experimented
with the NRC Affect Intensity lexicon by Mohammad (2013) and Ekman’s Six emotions from IMS
EmoInt Norms dataset13(Köper et al., 2017; Ekman, 1992). The NRC lexicon has 4 dimensions whereas
the Ekman has 6 dimensions. Table A.1 shows the intrinsic word similarity measures for both these affect
spaces. The enriched embeddings reported here are based on Affect-APPEND. We report variants of the
lexica with vanilla embeddings and their retrofitted and counterfitted versions. The intrinsic metrics
improve over the vanilla embeddings with the Aff2Vec versions. Note that the improvement achieved
here is slightly lower than those achieved with the VAD space.

This analysis supports the hypothesis that Aff2Vec is generalizable to other dimension spaces and not
restricted to a specific affect distribution.

Table A.1: Intrinsic Evaluation: Word Similarity–We report the Spearman’s correlation coefficient (ρ)
against NRC as well as Ekman’s dimensions. The results show that Aff2Vec variants improve

performance consistently

Model Word Similarity
SL SV WS RG RW SCWS MC MEN

GloVe 0.41 0.28 0.74 0.77 0.54 0.64 0.80 0.80
⊕ Ekman’s Six 0.46 0.34 0.77 0.78 0.58 0.67 0.80 0.83
+ Retrofitting ⊕ Ekman’s Six 0.57 0.42 0.79 0.83 0.61 0.70 0.82 0.85
+ Counterfitting ⊕ Ekman’s Six 0.61 0.50 0.60 0.83 0.61 0.64 0.80 0.80
⊕ NRC Affect 0.47 0.34 0.78 0.78 0.58 0.67 0.81 0.84
+ Retrofitting ⊕ NRC Affect 0.58 0.43 0.79 0.82 0.61 0.70 0.81 0.85
+ Counterfitting ⊕ NRC Affect 0.61 0.50 0.70 0.84 0.61 0.64 0.81 0.80
Word2Vec 0.45 0.36 0.70 0.76 0.59 0.67 0.80 0.78
⊕ Ekman’s Six 0.46 0.38 0.69 0.80 0.59 0.67 0.82 0.79
+ Retrofitting ⊕ Ekman’s Six 0.57 0.45 0.73 0.85 0.61 0.70 0.85 0.82
+ Counterfitting ⊕ Ekman’s Six 0.59 0.52 0.65 0.80 0.60 0.65 0.77 0.76
⊕ NRC Affect 0.47 0.38 0.69 0.79 0.59 0.67 0.82 0.79
+ Retrofitting ⊕ NRC Affect 0.58 0.46 0.72 0.84 0.62 0.71 0.85 0.82
+ Counterfitting ⊕ NRC Affect 0.59 0.52 0.65 0.79 0.60 0.65 0.77 0.76
Paragram 0.69 0.54 0.73 0.78 0.59 0.68 0.80 0.78
⊕ Ekman’s Six 0.69 0.55 0.72 0.79 0.59 0.68 0.77 0.79
+ Retrofitting ⊕ Ekman’s Six 0.69 0.56 0.72 0.81 0.59 0.68 0.80 0.79
+ Counterfitting ⊕ Ekman’s Six 0.74 0.63 0.69 0.83 0.60 0.65 0.85 0.76
⊕ NRC Affect 0.70 0.55 0.72 0.78 0.59 0.68 0.77 0.79
+ Retrofitting ⊕ NRC Affect 0.69 0.55 0.72 0.80 0.59 0.68 0.80 0.79
+ Counterfitting ⊕ NRC Affect 0.74 0.63 0.70 0.82 0.60 0.65 0.84 0.76

Appendix B Model and Architecture Details

The architecture and hyperparameter details of various models used in the extrinsic evaluation tasks are
presented here.

B.1 Sentiment Analysis

We use a Deep Average Network (https://github.com/miyyer/dan) with default parameters
on binary Stanford Sentiment Treebank (Manning et al., 2014) for this task. Results reported in the paper
are accuracies averaged across 5 independent runs.

13http://www.ims.uni-stuttgart.de/forschung/ressourcen/experiment-daten/IMS_emoint_
norms.tar.gz
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B.2 Personality Detection
A Convolutional Neural Network(CNN)-based model proposed by Mujumder et al (2017) is
used in this paper to evaluate the performance of Aff2Vec embeddigns on the Personality De-
tection task. We use their Github implementation (https://github.com/SenticNet/
personality-detection) with Filter = True, Classifier = MLP, Convolution-Filter = [1,2,3] and
Cross-Validation = 10.

B.3 Emotion Intensity Task (WASSA)
For the WASSA EmoInt-2017, we train a BiLSTM-CNN model with word embeddings as input features.
The model is trained separately for each emotion. The network architecture is explained in Table B.1. We
use Adam as the optimizer and report Pearson’s correlation coefficient(ρ), averaged across 5 independent
runs.

Table B.1: BiLSTM-CNN Architecture for WASSA
EmoInt-2017

Layer Properties
1D Convolution filters = 200, kernel size = 3
Activation relu
1D Max pooling pool size = 2
Dropout 0.3
BiLSTM units = 150
Activation relu
Dropout 0.2
BiLSTM units = 80
Dense size = 50
Activation relu
Dropout 0.3
Dense size = 1

Table B.2: CNN architecture for FFP-Prediction

Layer Properties
2D Convolution filters = 5, kernel size = 10X5
Activation relu
2D Max pooling pool size = 5X5, sride = 5
Dense size = 50
Activation relu
Dropout 0.2
Dense size = 1

B.4 Affect Prediction (FFP-Prediction)
We implement a basic CNN-based model for Formality, Frustration and Politeness prediction on Enron-
FFP dataset introduced in the paper. The network architecture is shown in Table B.2. We use Rectified
Linear Unit (ReLU) as the activation throughout and Stochastic Gradient Descent(SGD) as the optimizer.
A mean squared loss is used for regression. We report mean square error averaged across 10 independent
runs. Standard deviation for the reported MSE values is of the order of 10−3.


