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Abstract

Providing instant responses for product questions in E-commerce sites can significantly improve
satisfaction of potential consumers. We propose a new framework for automatically respond-
ing product questions newly posed by users via exploiting existing QA collections and review
collections in a coordinated manner. Our framework can return a ranked list of snippets serv-
ing as the automated response for a given question, where each snippet can be a sentence from
reviews or an existing question-answer pair. One major subtask in our framework is question-
based response review ranking. Learning for response review ranking is challenging since there
is no labeled response review available. The collection of existing QA pairs are exploited as
distant supervision for learning to rank responses. With proposed distant supervision paradigm,
the learned response ranking model makes use of the knowledge in the QA pairs and the corre-
sponding retrieved review lists. Extensive experiments on datasets collected from a real-world
commercial E-commerce site demonstrate the effectiveness of our proposed framework.

1 Introduction

Many E-commerce sites provide product information on product pages. Under a particular product
page, users can ask questions about the corresponding product. Other experienced or qualified users can
voluntarily provide answers. Thus, for each product, a product-specific question-answer (QA) collection
is commonly available in E-commerce sites. However, the amount of QA pairs in the QA collection
associated with a product is small since it is product-specific. In addition to the QA collection, users may
write reviews about the product and a product-specific review collection is also commonly available.
Figure 1 depicts an example, from a real-world E-commerce site, of a product page of a bluetooth car
device. In this product page, the middle region contains the question-answer collection. The bottom
region contains the review collection. Users may browse those two information sources for obtaining
useful or insightful information about the corresponding product.

Both information sources mentioned above would be helpful for providing instant responses to ques-
tions newly posed by users about the corresponding product. Consider a new question “Is this device
compatible with 2004 VW Jetta SportWagen?”, a semantically similar question can be found in the exist-
ing QA collection of this product. Specifically the first question is a good match with the new question.
Thus, the user posed answer for that question can be extracted as the response. On the other hand, con-
sider another new question “Can I use iPhone 4s with it?”. This new question cannot match any existing
question well. In spite of that, the review sentence “My iPhone 4S connected with the unit and uploaded
my contacts with no issues.” found in the review collection of the corresponding product can provide
informative content which can be retrieved as a response.

In this paper, we investigate the problem of responding E-commerce product questions newly posed
by users. We aim at providing responses before any answer is posed by other users. Such kind of in-
stant responses can improve user satisfaction. As aforementioned, two commonly available information
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Parrot MKi9000 Advanced Bluetooth hands-free car kit for iPod

» Made for iPod

» Made for iPhone

» Wireless Remote Control

» Hands Free Driving and Music Streaming
_* Integrates with your Car

A Question: Does it work with a 2004 VW Jetta SportWagen
0
Answer: Yrs, it should.
votes .
By Brian Carroll on December 21, 2014
v
A Question: | have a signum 2002 will this help me play music through bluetooth?
0
votes Answer: No, | never could get mine to work at all
v By Keith E. McGehe on October 22, 2015

See all 2 answers

See all questions (16)*

v Perfect hands free solution
By S Bailey on September 2, 2013

Package Type: Standard Packaging Verified Purchase

Anyone considering this unit has to buy a connection wire harness. With the Quickconnect wire harness | was able
to install this unit in my 2009 Dodge Ram in less the 30 minutes. My iPhone 4S5 connected with the unit and
uploaded my contacts with no issues. The mute work flawlessly with incoming and outgoing calls. I've been using
_the MKi9000 for 3 weeks now, and have received no complaints from listeners on the other end.

777 Good for receive phone call but not call out

By Pat on February 15, 2013
Package Type: Standard Packaging = Verified Purchase

The voice dialing is a joke, you have a 50/50 chance to get the name right and they pronounce the name really
bad. The command module is not always working, a 70/30 chance. The bluetooth connection is good, work
100%, so, it is only good on answering phone call when you are driving.

_See all 64 reviews

Figure 1: A product page of a bluetooth car device.

sources, namely, question-answer collections and review collections contain valuable information for
generating instant responses for product questions. Consequently, given a question, our framework can
return a ranked list of snippets serving as the automated response, where each snippet can be a sentence
from reviews or an existing question-answer pair.

Community Question Answering (CQA) approaches can be employed, but they can only make use
of the QA collection of the corresponding product, which typically contains just a small amount of QA
pairs. Furthermore, similar questions associated with other products are not helpful due to different
product specifications. Another limitation of CQA methods is that they cannot make use of the review
collection which is another important information source for generating responses. Another possible
approach is to employ a question answering learning approach such as QA-LSTM (Tan et al., 2016). But
these QA models typically cannot effectively exploit reviews due to the heterogeneous nature of answer
collections and review collections. Recently a chatbot for E-commerce sites known as SuperAgent has
been developed (Cui et al., 2017). SuperAgent considers both QA collections and reviews when an-
swering questions. However, it employs separated modules for each of the information sources without
mutual coordination. Moreover, it requires external knowledge and a large volume of annotated data.
Some models based on Mixture of Expert (MoE) (McAuley and Yang, 2016; Wan and McAuley, 2016)
are proposed for handling product questions. Although the learning procedures of these models involve
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QA collections and reviews, these models assume that the candidate answer set only comes from existing
QA pairs containing the correct answers. Such setting is not practical for instant response generation.

We propose a new framework which is able to automatically respond product questions newly posed
by users via exploiting question-answer collections and review collections in a coordinated manner. One
major subtask in our framework is question-based response review ranking which aims at extracting
reviews that are suitable for providing the response to the given question. Learning for response review
ranking in this problem setting is challenging since no labeled review sample is available. The existing
QA pairs in the corresponding QA collection contains knowledge for response ranking. These QA pairs
and the corresponding retrieved review lists can be exploited as distant supervision for question-based
response ranking. The relationship between such available QA pairs and reviews can be modeled for
facilitating the learning of question-based review ranking.

2 Related Work

Product question answering is an emerging topic. Yu et al. (2012) extract hierarchical structure from
the product review collection, and then select sentences from reviews based on the structure. Their
model only focuses on review collections. Community Question Answering (CQA) (Zhou et al., 2011)
approaches can be adopted to tackle this problem. For example, Zhou et al. (2015) propose to learn
continuous word embeddings based on the QA corpus incorporating metadata such as category informa-
tion, and the learned word embedding can be applied for question retrieval in CQA platform. Chen et
al. (2018) encode the question text together with users’ social interactions for handling the lexical gap
among questions. A random walk based learning method is designed to facilitate the similarities eval-
uation via the recurrent neural network. One shortcoming of these CQA methods for tackling the task
of E-commerce product questions is that they can only make use of the typically small QA collection of
the corresponding product, and similar questions associated with other products are not helpful due to
different specifications.

QA models (Shen et al., 2017; Yang et al., 2016) try to capture the relation between questions and
answers. QA-LSTM (Tan et al., 2016) is developed for question answer matching via bidirectional LSTM
with max pooling. The QA model proposed in (Wang and Jiang, 2016) also utilizes LSTM. Learning-to-
rank model has also been adopted in some method for question-answer matching, such as in (Surdeanu et
al., 2008). Generally existing QA models cannot handle the heterogeneous nature of answer collections
and review collections in the problem setting investigated in this paper. McAuley and Yang (2016)
propose to exploit product reviews for answer prediction via a Mixture of Expert (MoE) model. This
MoE model makes use of a review relevance function and an answer prediction function. One restriction
of this model is that it can only be used for answer selection given a candidate answer set. Although the
QA collections and review collections are involved in the learning procedures, one assumption is that
a candidate answer set containing the correct answers is available for answer selection. Such setting is
not practical for instant response generation. In addition, both the above mentioned models only make
use of information from reviews, while existing question-answer pairs of the corresponding product are
ignored. A chatbot for E-commerce sites known as SuperAgent has been developed (Cui et al., 2017).
SuperAgent considers both QA collections and reviews when answering questions. However, there is
no mutual coordination for the response generation from different information sources, and the response
from SuperAgent cannot be presented as a ranked list of snippets. Moreover, the training procedures of
some modules in this system require external knowledge and a large volume of annotated data, including
a set of similar question pairs.

3 Our Proposed Framework

3.1 Framework Overview

Our proposed framework exploits QA collections and review collections for instant responses of E-
commerce product questions newly posed by users. The output is a ranked list of snippets providing
relevant information related to the response of the question. Each snippet can be a sentence from reviews
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or an existing QA pair. There are two main components in our framework, namely, response review
ranking component and response generation component.

The response review ranking component tackles a major subtask whose aim is to extract response
reviews that are suitable for providing the response to the given question. Learning for response review
ranking in this problem setting is challenging and it cannot be handled by supervised learning. The
reason is that there is no ground truth question-based reviews which can be used for training. The existing
QA pairs and the corresponding retrieved review lists contains knowledge for response review ranking.
To learn a question-based review ranking model, the relationship between the available QA pairs and
reviews needs to be modeled. To this end, we develop a distant supervision paradigm for incorporating
the knowledge contained in QA collections into response review ranking. An adapted Learning to Rank
(LTR) method is designed in this distant supervision paradigm.

The aim of the response generation component is to generate a list of snippets which serve as the
response of a given question newly posed by a user. Both the existing question-answer pairs in the QA
collection of the corresponding product and question-based ranked reviews from the review collection of
the corresponding product are considered in a coordinated manner. Semantically similar questions are
extracted, if exist, via processing the question-answer pairs in the QA collection. The retrieved question-
answer pairs are reformulated based on the corresponding review collection, and then integrated into the
response review ranking model.

3.2 Response Review Ranking Model

As mentioned above, the aim of response review ranking is to extract reviews that can provide the re-
sponse to a given question. Consider a E-commerce product ¢ with the corresponding review collection
R;. Given a new question g associated with this product, we wish to obtain the score S(qo, ) for each
review 1 € R;. Based on this score, a ranked list of response reviews L4, = (rl‘ 000 T2/q0 ...) can be ob-
tained. A learning model is designed for tackling this subtask. Different from answer selection in CQA,
response review ranking cannot be tackled via supervised learning. Suppose we have an existing question
¢ in the question collections, the only available data is the question-answer pair (¢, a) while no ground
truth question-review pair (g, r) is available for the learning of this component. This setting makes this
subtask challenging. Thus, we model the relationship between (g, a) pairs of the corresponding product
t and the review set R;. Such modeling can be regarded as a distant supervision paradigm based on the
knowledge in the existing QA pairs for the learning of question-based response review ranking. In this
way, we exploit the knowledge in QA pairs in the corresponding QA collection and learn the response
review ranking model p(r|q) £ S(q,r), where S(q,r) is the ranking score of the review r given the
question ¢q. An adapted Learning to Rank (LTR) method is designed in this distant supervision paradigm,
with various types of features are designed.

3.2.1 Distant Learning Paradigm

Training Instance Preparation for Question-based Response Review Ranking. From the QA col-
lections, we can obtain question-answer pairs. Each question-answer pair can provide knowledge about
the corresponding product, and neither the question nor the answer alone is adequate for conveying the
same semantics as the question-answer pair. We use question-answer pairs as queries for retrieving and
ranking reviews, and the top ranked reviews are utilized as the training data for the question-based LTR
model.

Given a question-answer pair (g, a), the review collection of the corresponding product is processed.
We employ the Positional Language Model (PLM) (Lv and Zhai, 2009) to rank the reviews using (g, a)
as the query. Formally, given a review r and a term position k, the PLM of r at this position is:

d(w, k)

wey ¢ (W k)

p(wlr, k) = 5 ey
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where ¢ (w, k) is the pseudo word count of the word w at the position k:

||

d(w, k) = clw, §)f(k, ) 2)

=1

and f(k,7) is a weight given to another position. Basically, the closer are the position k& and j, the
larger value is assigned by f(k, 7). In our implementation, we use the Gaussian kernel for f(k,7) as
mentioned in (Lv and Zhai, 2009). To obtain an available relevant review ranking list, we design a
modified relevance score of PLM:

5((g,a),r) = max {S(q,r,i) + S(a,r,1)} 3)
i€[L,|r]]
p(wlq p(wla
= max {— 3 plulg)log 22D S pufa)log L9 @
ielLlrl | 4 p(w|r,i) = p(w|r, i)
We denote the review ranking list based on (g, a) as
Lyjga = (T1)g,a: T2lg,a5 -+ Tnlg,a) o)
where r;), o is the i-th review sentence ranked by the question-answer pair (g, a). The top ranked reviews

in this QA-based review ranking list L,, , are more relevant to (¢, a) and are useful for capturing the
knowledge of response review ranking. Thus, we truncate the review ranking list via retaining only the
top M ranked reviews as the response reviews.

Since our goal is question-based review ranking, each L, , , is integrated with the question ¢ and
a training instance is packaged as (¢, Ly|q,)- Here the answer is removed from the training instance
even though it participates in the generation of L,|, ,. The reason is that there is no available answer
for questions newly posed by users during operation or testing. The response review ranking ability of
the question-answer pair (g, a) is captured in the response review ranking list L, o, and this training
instance can be utilized to guide the review ranking based on only the question text. Another issue about
the training instance preparation is that different answers have different quality in regard to the question,
and the instance based on answers with high quality should have more influence on the learning of the
response review ranking model. To achieve this goal, for each question ¢, we sample training instances
from its related response review ranking set { Lyig.a1s Lrig,azs ...}. The sampling probability of the ranking
list L |4 4, is the probability of the answer a given the question g, namely p(a|q). We utilize a learning-to-
rank model trained with the QA collections to generate p(a|q), and this model makes use of the features
as described in Section 3.2.2.

Question-based Learning to Rank. Based on the sampled L, |, , instances, we utilize the pair-wise
learning to rank model to make use of these response review ranking lists to the maximum extent. For
each question-review pair, we make use of the features presented in Section 3.2.2. These features are
concatenated as a vector denoted as f9(r). The details about this designed features will be described in
Section 3.2.2.

Suppose for two response review r; and 7;, we obtain the feature vectors f9(r;) and f9(r;). The
probability that the review r; is ranked higher than the review r; is formulated as:

1
1 4 e=BUari)=fa(rj)]

Pl =P(rivry) = (6)

To learn a probability model for question-base review ranking, we minimize the cross entropy of the
ranking probability generated from the model and the ranking probability from the training instances.
Formally, the objective function can be written as:

O = —Pim‘ log Pz'j — (1 — P;j) log(l — P”) (7)

In our implementation, we utilize the training method with boosting in LambdaMART (Wu et al., 2010)
to update the parameters in our response review ranking model.
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3.2.2 Feature Design
We describe the features utilized in our LTR models.

e Features based on Likelihood. Generation likelihood (Jin et al., 2002) plays an important role
in information retrieval. Two related features are designed, namely, the question likelihood given
review and the review likelihood given question. For a question ¢ and a review r, the question
likelihood can be computed by multiplying the likelihood of query terms w given r, denoted as
pa(w]r). The likelihood is smoothed by Jelinek-Mercer method:

pa(wlr) = (1 = Np(w|r) + Ap(w|C:) (8)

where p(w|C,) is the probability of the term w in the review collection. Similarly, we can formulate
the second feature about the likelihood of the reviews given the question q.

o Features based on Aspect-based Similarity. For text data from E-commerce platforms, aspects
are an important concept which captures features or attributes about products. Two features related
to aspects are designed. The first feature is derived from the aspect discovery model based on Latent
Dirichlet Allocation (LDA) (Zhao et al., 2010). Trained with the text collection containing reviews,
questions and answers, this model can transform each given text into an aspect representation. Let
the representations for a question ¢ and a review r be denoted as v(q) and v(r). We employ the
cosine similarity score of these two representations to model the aspect-based similarity between the
question and the review. The second feature is based on the Restricted Boltzmann Machine (RBM)
(Wang et al., 2015) trained as an aspect modeling. The learned hidden representation from RBM
contains aspect information and can be obtained efficiently. Similar to the aspect-based similarity
in the first feature, we can also compute a similarity score based on the RBM as the second feature.

e Features based on Word Embedding Word embedding techniques map each term to a distributed
representation capturing semantics of text. Three features are designed according to different type-
s of word embedding. For the first two features, we adopt a set of pre-trained word embedding,
known as Global Vectors for word representation (GloVe)(Pennington et al., 2014). Given a ques-
tion ¢ = (t,¢1,...), each term ¢! in ¢ can be represented as a word embedding denoted as v(¢}).
Then the question g can be represented as the average of each term representation. The review sen-
tence is also represented in the same way. Then the first feature is obtained by computing the inner
product of these two representations reflecting the semantic similarity between the question ¢ and
the review r. Another representation of question is to use the largest value in each dimension among
all the term vectors as the value of the corresponding dimension in the question representation. Then
the second feature can be obtained in a similar manner. Besides the pre-trained word embedding,
we also implement an autoencoder with the reconstruction function as the objective function. This
autoencoder is trained via the collection of reviews, questions and answers, for capturing the intrin-
sic elements of text useful for reconstruction. In this way, we obtain a new embedding of questions
and reviews, and the corresponding similarity score can be obtained as the third embedding-based
feature.

e Features based on Word Count Some simple features also contribute to some extent. These fea-
tures include the word count of a review, the ratio of the review word count and the question word
count, and the number of matched words between the question and the review.

3.3 Response Generation

As mentioned above, the aim of the response generation component is to generate a ranked list of snippets
treated as the response to the given question. The snippets are extracted from the existing QA collection
and the review collection of the corresponding product. To obtain this snippet ranking list, we integrate
the question-answer pair result and the review ranking result in a unified ranking model so that the
heterogeneous nature between these two collections can be handled in a coordinated manner.
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Consider an E-commerce product ¢ with the QA collection @); and the review collection R;. Given a
question gg associated with this product newly posed by a user, we retrieve semantically similar questions
from the QA collection (); via searching the question-answer pairs. Specifically, we utilize the Positional
Language Model (PLM) (Lv and Zhai, 2009) for question retrieval and obtain a ranked list of retrieved
existing questions denoted by Lgx ,+4. The next step is to utilize the trained LTR model described in
Section 3.2 to reformulate each retrieved QA pair (g;,a;) € Ly« q+q- The rationale is to narrow the
syntactic gap between the QA pairs and the review collection so that QA pairs and reviews can be ranked
in a unified model. Suppose that given the new question, we retrieve a similar QA pair (¢1,a;1). We
then use (¢1, a1) as the query to retrieve and rank the reviews in the review collection R;, and obtain the
top ranked reviews {Tl\ql,awrZIql,au vy TM|q1,a1} in Ly|4, 4, The reformulation method is designed as
follows:

Tgiai =< i @i A T1lgi,a;0 A T2l gi,a;s -+ > )

where < a, A - b > stands for concatenating the bag-of-word model of the two text a and b, and A is the
weight of b for the concatenation. Then we use the trained response review ranking model described in
Section 3.2 to rank all the snippets in the set:

T =A{rqia1 Tepazs -+ Tawan {71} (10)
where 7y, 4, is the pseudo review based on the reformulated QA pairs.

4 Experiments

4.1 Data Collections

We conduct our experiments using two datasets from a real-world E-commerce site, namely Ama-
zon.com'. The first dataset is from the product category “Cell Phones & Accessories” and the second
dataset is from the category “Clothing, Shoes & Jewelry”. These two datasets were originally collected
by McAuley et al. (McAuley and Yang, 2016; Wan and McAuley, 2016) containing a large number of
products, question-answer pairs 2, and reviews >. For each product category, we randomly select around
50 questions to form the testing set, and conduct annotations so that these questions can be used for
evaluation purpose. The remaining questions are retained as the training set. Regarding the annotation
of the testing questions, consider each testing question, we collect the existing QA collection of the cor-
responding product. Then we examine each QA pair and annotate whether it is semantically similar to a
given testing question. Similarly we collect the existing review collection of the corresponding product.
We examine each review and annotate whether it can be used as a response for a given testing question.
The detailed statistics of the datasets is depicted in Table 1.

Table 1: Statistics of the Datasets

Category Cell Phones & Accessories | Clothing, Shoes & Jewelry
# of product 10320 2871

# of question 60791 17233

# of review 3447249 5748920

Ave. length of question 124 15.2

Ave. length of review sentence 13.9 14.1

# of question for testing 53 55

# of question w/ response reviews 53 55

# of question w/ similar QA Pairs 12 20

"https://www.amazon.com
2http://jmcauley.ucsd.edu/data/amazon/qa/
*http://jmcauley.ucsd.edu/data/amazon/
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4.2 Experiment Settings

We conduct sentence segmentation for the reviews. Terms in text such as review sentences, questions,
and answer are lemmatized. Stopwords and punctuations are removed. The parameter value of M in
Section 3.2 is set to 50. In Jelinek-Mercer smoothing method for LM, the interpolation parameter A is
set to 0.8. For both LDA and RBM in Section 3.2.2, the dimension of hidden layer is set to 10. For pre-
trained word embedding, 300-dimension GloVe embeddings are utilized. In the autoencoder for word
embedding, the dimension of hidden layer is set to 10.

We implement several baseline and state-of-the-art models to compare with our proposed framework.

e Language Model (LM)(Jin et al., 2002). We regard the given new question as the query, and cal-
culate the query likelihood from each review and each question-answer pair via a language model.
The list of output snippets are ranked by the question likelihood.

e Positional Language Model (PLM) (Lv and Zhai, 2009). Similar to LM, PLM models each docu-
ment and provides query likelihood considering positional information. The list of output snippets
are ranked by the positional question likelihood.

e QA-LTR (Surdeanu et al., 2008). QA-LTR is a supervised learning-to-rank model for answer
selection, making use of a large volume labeled question-answer pairs. The original QA-LTR model
is designed for online QA collections. Hence some features are not suitable. We implement QA-
LTR with features replaced by our designed features described in Section 3.2.2. We expand the
existing collection of question-answer pairs by including some relevant reviews to form the positive
instance training set. Specifically, given a question ¢ in the training set with its answer set A,, we
add similar reviews as candidate answers into A,. For each a € A,, we retrieve k review sentences
that have the largest similarity to a, denoted as {r{,rg, ..., 7’,‘;} These retrieved reviews are added
into the answer set A, of the question g. We set k to 2 which yields the best performance.

e QA-LSTM (Tan et al., 2016). QA-LSTM is one of the state-of-the-art representation learning mod-
els for question answering matching. Equipped with bidirectional LSTM and maximum pooling,
QA-LSTM has been applied to answer selection. In our experiment, we utilize this model to obtain
semantic representation of questions and reviews, and to estimate the matching score given a ques-
tion gp and a review r. Similar as in the training of QA-LSTM, the positive instances also include
reviews via expanding the existing answer set for each question.

e Ours. It denotes our proposed framework.

The evaluation metrics are Normalized Discounted Cumulative Gain (NDCG), Mean Average Preci-
sion (MAP), and Mean Reciprocal Rank (MRR). We conduct the ¢-test for the results to compare the
performance improvement over QA-LSTM and QA-LTR, with the significance level being 0.05.

4.3 Product Question Response Performance

Table 2: Response Performance. T, § indicate that Ours is statistical significant at the significance level
of 0.05 over QA-LSTM and QA-LTR respectively.

Cell Phones & Accessories Clothing, Shoes & Jewelry
Model NDCG | MAP | MRR || NDCG | MAP | MRR
LM 0.298 | 0.137 | 0.247 0.305 | 0.146 | 0.261
PLM 0.307 | 0.148 | 0.260 0321 | 0.178 | 0.294
QA-LTR 0369 | 0.177 | 0.403 0.392 | 0.192 | 0.320
QA-LSTM 0.397 | 0.184 | 0.390 0.407 | 0.211 0.367
Ours 0.493™ [ 0.236™F | 0.532 TF || 0.424% | 0.2477F | 0.492 %

The result is shown in Table 2 for the two product categories. We can observe that our proposed
model “Ours” outperforms all the other models. It is statistical significant that our proposed framework
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is better than QA-LSTM and QA-LTR. The results indicate that traditional information retrieval method
cannot effectively handle the product question response. The reason is that our target is to find the review
sentences or existing question-answer pairs that can answer the given question, instead of just retrieving
relevant text for the question. The semantic relationship between questions and reviews cannot be mod-
eled via information retrieval models. QA models, namely, QA-LTR and QA-LSTM are not effective
as compared to our proposed framework despite the fact that QA models have been previously utilized
for review ranking. It reveals that existing QA models have limitation when handling the heterogeneous
nature of the review collections and the QA collections. In contrast, the distant supervision paradigm in
our framework is more suitable. One main advantage of our proposed paradigm is that it can exploit both
information sources in a coordinated manner.

Table 3: Response Performance with different amount of training data.

Cell Phones & Accessories || Clothing, Shoes & Jewelry
Model NDCG | MAP | MRR NDCG | MAP | MRR
Ours w/ all training data 0493 | 0.236 | 0.532 0424 | 0.247 | 0.492
Ours w/ 1/2 training data 0.483 | 0.219 | 0.521 0.421 | 0.230 | 0.479
Ours w/ 1/3 training data 0.470 | 0.201 0.492 0.401 | 0.215 | 0.440
Ours w/ 1/4 training data 0.403 | 0.189 | 0.453 0.365 | 0.157 | 0.398

In addition, we evaluate the performance of our framework under different amount of training data,
and the result is presented in Table 3. “Ours w/ 1/n training data” stands for our proposed framework
trained with only 1/n of all the training data. We can observe that even when we use a partial amount of
the training data, the performance of the response generation does not drop significantly. It demonstrates
that our proposed framework can effectively make use of the available training data including QA pairs
and QA-based review ranking.

4.4 Case Study

We present a sample case study to gain more insights. Table 4 contains a response snippet list produced
from our framework given a new question. The product is a cable and the new question is about how
to use the cable for photo transfer to a Mac. The snippets in the response are compposed of review
sentences and an existing QA pair. Specifically, the first ranked snippet is a question-answer pair talking
about transferring photos from a mobile phone to a Mac. The following snippets come from reviews and
they mention that the cable is not for data transferring. Thus, the user can receive informative response
extracted from both the review collection and the QA collection associated with the corresponding prod-
uct.

Table 4: A case study.

Newly posed question
Does anyone know if this cord will work to transfer photos by USB to a Mac? or is it just PC?
Thanks!

Response Snippet List

Q: What do I need to get to transfer photos from phone to a Mac if this cable won’t work?
A: Not quite sure to be honest but maybe if the phone supports like sending emails then you
can send your photos through email and download the photos onto your Mac from your email if
the cable doesn’t work but it should.

It would be nice if it could be used to transfer pictures, but if it can they sure do not make it easy.

Read all descriptions carefully because some of the cables are USB charging cables and do not
transfer data!

This is not a data cable.
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5 Conclusions

We propose a framework for instant product question response considering two common information
sources, namely, existing QA collections and review collections. Our framework exploits both informa-
tion sources in a coordinated manner. The distant supervision paradigm is adopted for handling a major
subtask of question-based response review ranking. Extensive experiments demonstrate the effectiveness
and stability of the proposed framework.
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