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Abstract

Neural network approaches to Named-Entity Recognition reduce the need for carefully hand-
crafted features. While some features do remain in state-of-the-art systems, lexical features have
been mostly discarded, with the exception of gazetteers. In this work, we show that this is unfair:
lexical features are actually quite useful. We propose to embed words and entity types into a low-
dimensional vector space we train from annotated data produced by distant supervision thanks
to Wikipedia. From this, we compute — offline — a feature vector representing each word.
When used with a vanilla recurrent neural network model, this representation yields substantial
improvements. We establish a new state-of-the-art F1 score of 87.95 on ONTONOTES 5.0, while
matching state-of-the-art performance with a F1 score of 91.73 on the over-studied CONLL-2003
dataset.

1 Introduction

Named-Entity Recognition (NER) is the task of identifying textual mentions and classifying them into
a predefined set of types. Various approaches have been proposed to tackle the task, from hand-crafted
feature-based machine learning models like conditional random fields (Finkel et al., 2005) and percep-
tron (Ratinov and Roth, 2009), to deep neural models (Collobert et al., 2011; Ma and Hovy, 2016;
Strubell et al., 2017).

Word representations (Turian et al., 2010; Mikolov et al., 2013), also known as word embeddings, are
a key element for multiple NLP tasks including NER (Collobert et al., 2011). Due to the small amount of
named-entity annotated data, embeddings are used to extend, rather than replace, hand-crafted features
in order to obtain state-of-the-art performance (Lample et al., 2016). Recent studies (Yang et al., 2017;
Søgaard and Goldberg, 2016) have explored methods for supplying deep sequential taggers with com-
plementary features to standard embeddings. Peters et al. (2017) and Tran et al. (2017) tested special
embeddings extracted from a neural language model (LM) trained on a large corpus. LM embeddings
capture context-dependent aspects of word meaning using future (forward LM) and previous (backward
LM) context words. When this information is added to standard features, it leads to significant im-
provements in NER. Also, Chiu and Nichols (2016) showed that external knowledge resources (namely
gazetteers) are crucial to NER performance. Gazetteer features encode the presence of word n-grams in
predefined lists of NEs.

In this work, we discuss some of the limitations of gazetteer features and propose an alternative lexical
representation which is trained offline and that can be added to any neural NER system. In a nutshell, we
embed words and entity types into a joint vector space by leveraging WiFiNE (Ghaddar and Langlais,
2018), a ressource which automatically annotates mentions in Wikipedia with 120 entity types. From this
vector space, we compute for each word a 120-dimensional vector, where each dimension encodes the
similarity of the word with an entity type. We call this vector an LS representation, for Lexical Similarity.
When included in a vanilla LSTM-CRF NER model, LS representations lead to significant gains. We
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establish a new state-of-the-art F1 score of 87.95 on ONTONOTES 5.0, while matching state-of-the-art
performance on the over-studied CONLL-2003 dataset.

In the rest of this paper, we motivate our work in Section 2. We describe how we compute LS vectors
in Section 3. We present our system in Section 4 and report results in Section 5. In Section 6, we discuss
related works before concluding in Section 7.

2 Motivation

Gazetteers are lists of entities that are associated with specific NE categories. They are widely used as a
feature source in NER, and have been successfully included in feature-based (Ratinov and Roth, 2009)
and neural (Chiu and Nichols, 2016) models. Typically, lists of entities are compiled from structured
data sources such as DBpedia (Auer et al., 2007) or Freebase (Bollacker et al., 2008). The surface form
of the title of a Wikipedia article, as well as aliases and redirects are mapped to an entity type using the
object type attribute of the related DBpedia (or Freebase) page. Ratinov and Roth (2009) use this
methodology to compile 30 lists of fine-grained entity types extracted from Wikipedia, while Chiu and
Nichols (2016) create 4 gazetteers that map to CoNLL categories (PER, LOC, ORG and MISC). Despite
their importance, gazetteer-based features suffer from a number of limitations.

• Binary representation. Gazetteer features encode only the presence of an n-gram in each list and
omit its relative frequency. For example, the word “France” can be used as a person, an organization,
or a location, while it likely refers to the country most of the time. Binary features cannot capture
this preference.

• Generation. At test time, we need to match every n-gram (up to the length of the longest lexicon
entry) in a sentence against entries in the lexicons, which is time consuming. In their work, Chiu
and Nichols (2016) use 4 lists that count over 2.3M entries.

• Non-entity words. Gazetteer features do not capture signal from non-entity words, while earlier
feature-based models strived to encode that some words (or n-grams) trigger specific entity types.
For instance, words such as “eat”, “directed” or “born” are words that typically appear after a
mention of type PER.

To overcome those limitations, we propose an alternative approach where we embed annotations mined
from Wikipedia into a vector space from which we compute a feature vector that represent words. This
vector compactly and efficiently encodes both gazetteer and lexical information. Note that at test time,
we only have to feed our model with this feature vector, which is efficient.

3 Our Method

3.1 Embedding Words and Entity Types
Turning Wikipedia into a corpus of named-entities annotated with types is a task that received continu-
ous attention over the years (Nothman et al., 2008; Al-Rfou et al., 2015; Ghaddar and Langlais, 2017).
It consists mainly in exploiting the hyperlink structure of Wikipedia in order to detect entity mentions.
Then, structured data from a knowledge base (for instance Freebase) are used to map hyperlinks to entity
types. Because the number of anchored strings in Wikipedia is no more than 3% of the text tokens, Ghad-
dar and Langlais (2017) proposed to augment Wikipedia articles with mentions unmarked in Wikipedia,
thanks to a mix of heuristics that benefit the Wikipedia structure (Ghaddar and Langlais, 2016a), as well
as a coreference resolution system adapted specifically to Wikipedia (Ghaddar and Langlais, 2016b).

The authors applied their approach on English Wikipedia and produce coarse (4 classes) and fine-
grained (120 labels) named-entity annotations, leading to WiNER (Ghaddar and Langlais, 2017)
and WiFiNE (Ghaddar and Langlais, 2018). In this work, we adopt WiFiNE which is publicly
available at http://rali.iro.umontreal.ca/rali/en/wifiner-wikipedia-for-et
as our source of annotations. Each entity mention is mapped (via its Freebase object type at-
tribute) to a pre-defined set of 120 entity types. Types are stored in a 2-level hierarchical structure
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(e.g. /person and /person/musician). The corpus consist of 3.2M Wikipedia articles, compris-
ing 1.3G tokens that we annotated with 157.4M named-entity mentions and their types. We used this
very large quantity of automatically annotated data for jointly embedding words and entity types into the
same low-dimensional space. The key idea consists in learning an embedding for each entity type using
its surrounding words. For instance, the embedding for /product/software will be trained using
context words that surround all entities that were (automatically) labelled as /product/software
in Wikipedia. In practice, we found that simply concatenating a sentence (v1) with its annotated version
(v2), as illustrated in Figure 1, offers a simple but efficient way of combining words and entity types so
that embeddings can make good use of them.

(v1) On October 9, 2009, the Norwegian Nobel Committee announced that Obama had won the
2009 Nobel Peace Prize.
(v2) On /date, the /organization/government agency announced that
/person/politician had won the /award.

Figure 1: Example of the two variants of a given sentence.

We use the FastText toolkit (Bojanowski et al., 2016) to learn the uncased embeddings for both words
and entity types. We train a skipgram model to learn 100-dimensional vectors with a minimum word
frequency cutoff of 5, and a window size of 5. This configuration (recommended by the authors) performs
the best in the experiments described in Section 5. Since FastText learns representations of character n-
grams, it has the ability to produce vectors for unknown words.
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Figure 2: Two-dimensional representation of the vector space which embeds both words and entity types.
Big Xs indicate entity types, while circles refer to words (i.e. named-entities, here).

Figure 2 illustrates a T-SNE (van der Maaten, 2014) two-dimensional projection of the embedding of
6 entity types and a sample of 1500 words. Entity type embeddings are marked by big Xs, while circles
indicate words. For visualization proposes, we only plot single-word mentions that were annotated in
WiFiNE with one of those 6 types. Words were randomly and proportionally sampled according to the
frequency of each entity type. In addition, words have the color associated with the most frequent type
they were annotated with in WiFiNE.
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We observe that mentions often annotated by a given type in our resource tend to cluster around this
entity type. For instance, “firefox” is close to the type /product/software, while “enzyme” is
close to the /biology entity type. We also notice that words that are labelled with different types
tend to appear between types they were annotated with. For instance, “gpx2”, which is used both as a
software and as a gene, has its embedding in between /product/software and /biology. We
inspected some of the words plotted in Figure 2, and found that “jrun” and “xp” are incorrectly labelled
as /product/weapon in WiFiNE. But since these words are seen in a software context, their em-
beddings are closer to the /product/software embedding than the /product/weapon one. We
feel this tolerance to noise is a desirable feature, one that hopefully allows a more efficient use of distant
supervision. Last, we also observe the tendency of rare words to cluster around their entity type. For
instance, “iota” and “x.org” are embedded near their respective types, despite the fact that they appear
less than 30 times in the version of Wikipedia used to compile WiFiNE.

3.2 LS Representation

This joint vector space only serves the purpose of associating to each word a LS representation, that is,
a 120-dimensional vector where the ith coefficient is a value in the [−1,+1] interval, equal to the cosine
similarity1 between the word embedding and the embedding of the ith entity type (we have 120 types).

Word Entity Type Sim Word Entity Type Sim

hilton
/building/hotel 0.58

located
/location 0.47

/building/restaurant 0.46 /location/city 0.44
/person/actor 0.37 /building 0.40

gpx2
/biology 0.69

directed
/person/director 0.60

/product/software 0.56 /art/film 0.55

jrun
/product/software 0.64

in
/date 0.58

/product/weapon 0.23 /location/city 0.54

dammstadt
/location/city 0.45

won
/award 0.53

/location/railway 0.44 /event/sports event 0.53

Table 1: Topmost similar entity types to a few single-word mentions (left table) and non-entity words
(right table).

Table 1 shows the topmost similar entity types for proper names (left column) and common words
(right column). We observe that ambiguous mentions (those annotated with several types) are adequately
handled. For instance, the LS representation of the word “hilton” encodes that it more often refers to a
hotel or a restaurant than to an actress. Also, we observe that entity words that are either not or rarely
annotated in WiFiNE are still adequately associated with their right type. For instance, “dammstadt”,
which appears only 5 times in WiFiNE, and which refers to the Damm city in Germany, is most similar
to /location/city and /location/railway. Interestingly, this mention does not have its page
in English Wikipedia. Furthermore, we observe that non-entity context words have a strong similarity to
types they precede or succeed. For instance the verb “directed” is very close to /person/director,
an entity type that usually precedes it, and to /art/film, that usually follows it. Likewise, the prepo-
sition “in” is near /date and /location/city, which frequently follow ”in”.

3.3 Strength of the LS Representation

To summarize, we propose a compact lexical representation which is computed offline, therefore incur-
ring no computation burden at test time This representation encodes the preference of an entity-mention
word for a given type, an information out of reach of binary gazetteer features. It also lends itself nicely
to the inclusion of lexical features that have been successfully used in earlier feature-based systems (Rati-
nov and Roth, 2009; Luo et al., 2015). Also, because entity types are well represented in WiFiNE, their

1The cosine similarity outperforms other metrics in our experiments.
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embeddings are robust: Our representation does accommodate unfrequent words and seems tolerant to
the inherent noise of distant supervision.

4 Our NER System

In order to test the efficiency of our lexical feature representation, we implemented a state-of-the-art
NER system we now describe.

4.1 Bi-LSTM-CRF Model

We adopt the popular Bi-LSTM-CRF architecture (Figure 3), a de facto baseline in many sequential
tagging tasks (Lample et al., 2016; Søgaard and Goldberg, 2016; Chiu and Nichols, 2016).

Figure 3: Left Figure: Main architecture of our NER system. Right Figure: Character representation
of the word “Roma” given to the word-level bi-LSTM.

4.2 Features

In addition to the LS vector, we incorporate publicly available pre-trained embeddings, as well as
character-level, and capitalization features. Those features have been shown to be crucial for state-
of-the-art performance.

4.2.1 Word Embeddings
We experimented with several publicly available word embeddings, such as Senna (Collobert et al.,
2011), Word2Vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), and SSKIP (Yulia et al., 2015).
We find that the latter performs the best in our experiments. SSKIP embeddings are 100-dimensional
case sensitive vectors that where trained using a n-skip-gram model (Yulia et al., 2015) on 42B tokens.
These embeddings were previously used by (Lample et al., 2016; Strubell et al., 2017), who report
good performance on CONLL, and state-of-the-art results on ONTONOTES respectively. Note that these
pre-trained embeddings are adjusted during training.

4.2.2 Character Embeddings
Following (Lample et al., 2016), we use a forward and a backward LSTM to derive a representation of
each word from its characters (right part of Figure 3). A character lookup table is randomly initialized,
then trained at the same time as the Bi-LSTM model sketched in Section 4.1.

4.2.3 Capitalization Features
Similarly to previous works, we use capitalization features for characterizing certain categories of
capitalization patterns: allUpper, allLower, upperFirst, upperNotFirst , numeric or
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noAlphaNum. We define a random lookup table for these features, and learn its parameters during
training.

4.2.4 LS Vectors
Contrarily to previous features, lexical vectors are computed offline and are not adjusted during training.
We found useful in practice to apply a MinMax scaler in the range [−1,+1] to each LS vector we
computed; thus, [.., 0.095, .., 0.20, .., 0.76, ..] becomes [..,−1, ..,−0.67, .., 1, ..].

5 Experiments

5.1 Data and Evaluation
We consider two well-established NER benchmarks: CONLL-2003 and ONTONOTES 5.0. Table 2
provides an overview of the two datasets. As we can see, ONTONOTES is much larger. For both datasets,
we convert the IOB encoding to BILOU, since Ratinov and Roth (2009) found the latter to perform
better. In keeping with others, we report mention-level F1 score using the conlleval script2.

The CONLL-2003 NER dataset (Tjong Kim Sang and De Meulder, 2003) is a well known collection
of Reuters newswire articles that contains a large portion of sports news. It is annotated with four entity
types: Person (PER), Location (LOC), Organization (ORG) and Miscellaneous (MISC). The four entity
types are fairly evenly distributed, and the train/dev/test datasets present a similar type distribution.

Dataset Train Dev Test
CONLL-2003 #tok 204,567 51,578 46,666

#ent 23,499 5,942 5,648
ONTONOTES 5.0 #tok 1,088,503 147,724 152,728

#ent 81,828 11,066 11,257

Table 2: Statistics of the CONLL-2003 and ONTONOTES 5.0 datasets. #tok stands for the number of
tokens, and #ent indicates the number of named-entities gold annotated.

The ONTONOTES 5.0 dataset (Hovy et al., 2006; Pradhan et al., 2013) includes texts from five different
genres: broadcast conversation (200k), broadcast news (200k), magazine (120k), newswire (625k), and
web data (300k). This dataset is annotated with 18 entity types, and is much larger than CONLL. Follow-
ing previous researches (Chiu and Nichols, 2016; Strubell et al., 2017), we use the official train/dev/test
split of the CoNLL-2012 shared task (Pradhan et al., 2012). Also, we exclude (both during training and
testing) the New Testaments portion as it does not contain gold NE annotations.

5.2 Training and Implementation
Training is carried out by mini-batch stochastic gradient descent (SGD) with a momentum of 0.9 and
a gradient clipping of 5.0. The mini-batch is 10 for both datasets, and learning rates are 0.009 and
0.013 for CONLL and ONTONOTES respectively. More sophisticated optimization algorithms such as
AdaDelta (Zeiler, 2012) or Adam (Kingma and Ba, 2014) converge faster, but none outperformed SGD
with exponential learning rate decay in our experiments.

Our system uses a single Bi-LSTM layer at the word level whose hidden dimensions are set to 128
and 256 for CONLL and ONTONOTES respectively. For both models, the character embedding size was
set to 25, and the hidden dimension of the forward and backward character LSTMs are set to 50. To
mitigate overfitting, we apply a dropout mask (Srivastava et al., 2014) with a probability of 0.5 on the
input and output vectors of the Bi-LSTM layer. For both datasets, we set the dimension of capitalization
embeddings to 25 and trained the models up to 50 epochs.

We tuned the hyper-parameters by grid search, and used early stopping based on the performance on
the development set. We varied dropout ([0.25, 0.5, 0.65]), hidden units ([50, 128, 256, 300]), capitaliza-
tion ([10, 20, 30]) and char ([25, 50, 100]) embedding dimensions, learning rate ([0.001, 0.015] by step

2http://www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
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0.002), and optimization algorithms and fixed the other hyper-parameters. We implemented our system
using the Tensorflow (Abadi et al., 2016) library, and ran our models on a GeForce GTX TITAN Xp
GPU. Training requires about 2.5 hours for CONLL and 8 hours for ONTONOTES.

5.3 Results on the Development Set

Table 3 shows the development set performance of our final models on each dataset compared to the work
of Chiu and Nichols (2016). The authors use an architecture similar to ours, but use a binary gazetteer
feature set, while we use our LS representation. Since our systems involve random initialization, we
report the mean as well as the standard deviation over five runs. The improvements yielded by our model
on the CONLL dataset are significant although modest, while those observed on ONTONOTES are more
substantial. We also observe a lower variance of our system over the 5 runs.

CONLL ONTONOTES
(Chiu and Nichols, 2016) 94.03 (± 0.23) 84.57 (± 0.27)

Our model 94.80 (± 0.10) 86.44 (± 0.14)

Table 3: Development set F1 scores of our best hyper-parameter setting compared to the results reported
in (Chiu and Nichols, 2016).

5.4 Results on CONLL

Table 4 reports our model’s performance3on the CONLL test set, as well as the performance of systems
previously tested on this test set (the figures are those published by the authors). Because of the small size
of the training set, some authors (Chiu and Nichols, 2016; Yang et al., 2017; Peters et al., 2017; Peters et
al., 2018) incorporated the development set as a part of training data after tuning the hyper-parameters.
Consequently, their results are not directly comparable, so we do not report them.

Model LEX GAZ CAP EMB CHE LME LS F1
(Finkel et al., 2005) + + + • • • • 86.86
(Ratinov and Roth, 2009) + + + • • • • 90.88
(Lin and Wu, 2009) + + + • • • • 90.90
(Luo et al., 2015) + + + • • • • 91.20
(Collobert et al., 2011) • + + + • • • 89.56
(Huang et al., 2015) • • + + + • • 90.10
(Lample et al., 2016) • • + + + • • 90.94
(Ma and Hovy, 2016) • • + + + • • 91.21
(Shen et al., 2017) • • + + • • • 90.89
(Strubell et al., 2017) • • + + • • • 90.54
(Tran et al., 2017) • • + + + + • 91.69
(Liu et al., 2017) • • + + + + • 91.71
This work • + + + + • + 91.73

Table 4: F1 scores on the CONLL test set. The first four systems are feature-based, the others are
neuronal. The feature configuration of each system is encoded with: LEX which stands for LEXical
feature, GAZ for GAZetteers, CAP for CAPitalization, EMB for pre-trained EMBeddings, CHE for CHaracter
Embeddings, LME for Language Model Embeddings, and LS for the proposed LS feature representation.
+ indicates that the model uses the feature set.

First, we observe that our model significantly outperforms models that use extensive sets of hand-
crafted features (Ratinov and Roth, 2009; Lin and Wu, 2009) as well as the system of (Luo et al.,

3Standard deviation on the test set is reported in Table 7
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2015) that uses NE and Entity Linking annotations to jointly optimize the performance on both tasks.
Second, our model outperforms as well other NN models that only use standard word embeddings,
which indicates that our lexical feature vector is complementary to standard word embeddings. Third,
our system matches state-of-the-art performances of models that use either more complex architectures
or more elaborate features. Tran et al. (2017) use three layers of stacked residual RNN (Bi-LSTM) with
bias decoding. Our model is much simpler and faster. They report a performance of 90.43 when using
an architecture similar to ours. The two systems that have slightly higher F1 scores on the CONLL
dataset both use embeddings obtained from a forward and a backward Language Model trained on the
One Billion Word Benchmark (Chelba et al., 2013). They report gains between 0.8 and 1.2 points by
using such LM embeddings, which suggests that LS vectors are indeed efficient. Unfortunately, due to
time and resource constraints,4 we were not able to measure whether both features complement each
other. This is left for future investigations.

5.5 Results on ONTONOTES

Table 5 reports the F1 score of our system compared to the performance reported by others on the
ONTONOTES test set. To the best of our knowledge, we surpass previously reported F1 scores on this
dataset. In particular, our system significantly outperforms the Bi-LSTM-CNN-CRF models of (Chiu
and Nichols, 2016) and (Strubell et al., 2017) by an absolute gain of 1.68 and 0.96 points respectively.
Less surprisingly, it surpasses systems with hand-crafted features, including Ratinov and Roth (2009)
that use gazetteers, and the system of Durrett and Klein (2014) which uses coreference annotation in
ONTONOTES to jointly model NER, entity linking, and coreference resolution tasks.

Model LEX GAZ CAP EMB CHE LME LS F1
(Finkel and Manning, 2009) + + + • • • • 82.42
(Ratinov and Roth, 2009) + + + • • • • 84.88
(Passos et al., 2014) + + + • • • • 82.24
(Durrett and Klein, 2014) + + + • • • • 84.04
(Chiu and Nichols, 2016) • + + + + • • 86.28
(Shen et al., 2017) • • + + + • • 86.52
(Strubell et al., 2017) • • + + + • • 86.99
This work • + + + + • + 87.95

Table 5: F1 scores on the ONTONOTES test set. The first four systems are feature-based, the following
ones are neuronal. See Table 4 for an explanation of the column of features.

The ONTONOTES benchmark is annotated with 18 types (e.g. LAW, PRODUCT) and contains many
rare words, especially in the Web data collection. Chiu and Nichols (2016) note that the 4-class gazetteer
they used yielded marginal improvements on ONTONOTES, contrarily to CONLL. In particular, they
observe that mentions that match LOC entries in their gazetteer often match GPE, NORP and FAC lists.

Model BC BN MZ NW TC WB
(Finkel and Manning, 2009) 78.66 87.29 82.45 85.50 67.27 72.56
(Durrett and Klein, 2014) 78.88 87.39 82.46 87.60 72.68 76.17
(Chiu and Nichols, 2016) 85.23 89.93 84.45 88.39 72.39 78.38
This work 86.33 90.46 85.91 89.75 75.41 80.39

Table 6: Per-genre F1 scores on ONTONOTES (numbers taken from Chiu and Nichols (2016)). BC
= broadcast conversation, BN = broadcast news, MZ = magazine, NW = newswire, TC = telephone
conversation, WB = blogs and newsgroups.

4LM embeddings are not publicly available, and according to Jozefowicz et al. (2016), they require three weeks to train on
32 GPUs.
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They suggest that a finer-grained gazetteer could improve the performance of their system on
ONTONOTES. Our results confirm this, since we use 120 types. We further detail the gains we ob-
served for each sub-collection of texts in the test set. Table 6 reveals that major improvements over the
model of (Chiu and Nichols, 2016) are on noisier collections such as telephone conversations (+3 points)
and blogs or newsgroups (+2 points). Those type of texts are characterized by a large set of infrequent
words, for which classical embeddings are typically poorly trained. Our approach does not seem to suffer
from this problem as severely, as discussed in Section 2.

5.6 Ablation Results

In this experiment, we directly compare the LS representation with the SSKIP word-embedding feature
set. In order to maintain a high level of performance, both character and capitalization features are used
in all configurations. We want to point out that LS vectors are not adapted during training, contrarily to
the SSKIP embeddings. Similarly to Section 5.3, we report in Table 7, for each feature configuration, the
average F1 score as well as the standard deviation over five runs.

Model CONLL ONTONOTES
SSKIP 90.52 (± 0.18) 86.57 (± 0.10)
LS 89.94 (± 0.16) 85.92 (± 0.12)
all 91.73 (± 0.10) 87.95 (± 0.13)

Table 7: F1 scores of differently trained systems on CONLL and ONTONOTES 5.0 datasets. Capitaliza-
tion (Section 4.2.3) and character features (Section 4.2.2) are used by default by all models.

We observe that on both CONLL and ONTONOTES, the SSKIP model outperforms our feature vector
approach by 0.65 F1 points on average. The difference is not has high as we first expected, especially
since the SSKIP model is adjusted during training, while our representation is not. Still, LS vectors seem
to encode a large portion of the information needed to model the NER task. Also, it is worth mentioning
that our embeddings are trained on 1.3B words compared to 42B for SSKIP.

We also observe that models that use both feature sets significantly outperform other configurations.
To confirm that the gains came from our feature vector and not from increasing the number of hidden
units, we tested several SSKIP models by increasing the LSTM hidden layer dimension so that number of
parameters is the same as the model with LS vectors. We observed a degradation of performance on both
datasets, mostly due to overfitting on the training set. From those results, we conclude that our lexical
representation and the SSKIP one are complementary.

6 Related Works

Traditional approaches to NER, like CRF-based (Finkel et al., 2005) and Perceptron-based systems (Rati-
nov and Roth, 2009) have dominated the field for over a decade. They rely heavily on hand-engineered
features (Luo et al., 2015) and external resources such as gazetteers. One major drawback of such an
approach is its weak generalization power (Lample et al., 2016). Current state-of-the art systems (Chiu
and Nichols, 2016; Strubell et al., 2017) use a combination of Convolutional Neural Networks (CNNs),
Bi-LSTMs, along with a CRF decoder. CNNs are used to encode character-level features (prefix and suf-
fix), while LSTM is used to encode word-level features. Finally, a CRF is placed on top of those models
in order to decode the best tag sequence. Pre-trained embeddings obtained by unsupervised learning are
core features of those models. In this work, we show that deep NN architectures can also benefit from
lexical features, at least when encoded in the compact form we propose.

Tran et al. (2017) and Peters et al. (2017) propose an alternative approach different from ours. They
incorporate LM embeddings that were pre-trained on a large unlabelled corpus as features for NER.
These embeddings allow to generate a representation for a word depending on its context. For instance,
the LM embeddings of the word France in “France is a developed country” is different than that in
“Anatole France began his literary career”. Such embeddings are trained on very large amount of texts.
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Our feature set is crafted from distant supervision applied to Wikipedia, a much less time-consuming
process which we showed to be nevertheless adapted to rare words. Chiu and Nichols (2016) used
gazetteer features in order to establish state-of-the-art performance on both CONLL and ONTONOTES.
They mined DBPedia in order to compile 4 lists of named-entities that contain over 2.3M entries. We
show that LS representations outperform their gazetteer features.

7 Conclusion and Future Work

We have explored the idea of generating lexical features for NER out of Wikipedia data automatically
annotated with fine-grained entity types. We used WiFiNE (Ghaddar and Langlais, 2018), a Wikipedia
dump annotated with fine entity type mentions, for training a vector space that jointly embeds words
and named-entities. This vector space is used to compute a 120 dimensional vector per word, which
encodes the similarity of the word to each of the entity types. Our results show that our proposed lexical
representation, even though it is not adjusted at training time, matches state-of-the-art results compared
to more complex approaches on the well-studied CONLL dataset, and delivers a new state-of-the-art
F1 score of 87.95 on the more diversified ONTONOTES dataset. We further observe larger gains on
collections with more unfrequent words.

The source code and the data we used in this work are publicly available at http://rali.iro.
umontreal.ca/rali/en/wikipedia-lex-sim, with the hope that other researchers will re-
port gains, when using our lexical representation. As a future work, we want to investigate the usefulness
of our LS feature representation on other NER tasks, including NER in tweets where out-of-vocabulary
and low-frequency words represent a challenge; as well as finer-grained NER which suffers from the
lack of manually annotated training data.
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