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Abstract

An important component of achieving language understanding is mastering the composition of
sentence meaning, but an immediate challenge to solving this problem is the opacity of sentence
vector representations produced by current neural sentence composition models. We present a
method to address this challenge, developing tasks that directly target compositional meaning
information in sentence vector representations with a high degree of precision and control. To
enable the creation of these controlled tasks, we introduce a specialized sentence generation sys-
tem that produces large, annotated sentence sets meeting specified syntactic, semantic and lexical
constraints. We describe the details of the method and generation system, and then present results
of experiments applying our method to probe for compositional information in embeddings from
a number of existing sentence composition models. We find that the method is able to extract use-
ful information about the differing capacities of these models, and we discuss the implications of
our results with respect to these systems’ capturing of sentence information. We make available
for public use the datasets used for these experiments, as well as the generation system.1

1 Introduction

As natural language processing strives toward language understanding, it is important that we develop
models able to extract and represent the meaning of sentences. Such representations promise to be
applicable across a variety of tasks, and to be more robust than non-meaning-based representations for
any given task requiring meaning understanding. To accomplish meaning extraction, a particular need is
that of mastering composition: systematic derivation of the meaning of a sentence based on its parts.

In this paper we tackle compositional meaning extraction by first addressing the challenge of evalua-
tion and interpretability: after all, in order to improve meaning extraction, we need to be able to evaluate
it. But with sentence representations increasingly taking the form of dense vectors (embeddings) from
neural network models, it is difficult to assess what information these representations are capturing—and
this problem is particularly acute for assessing abstract content like compositional meaning information.

Here we introduce an analysis method for targeting and evaluating compositional meaning informa-
tion in sentence embeddings. The approach builds on a proposal outlined in Ettinger et al. (2016),
and involves designing classification tasks that directly target the information of interest (e.g., “Given
a noun n, verb v, and an embedding s of sentence s: is n the agent of v in s?”). By contrast to re-
lated work analyzing surface variables like word content and word order in sentence embeddings (Adi
et al., 2016), we specifically target compositional meaning information relevant to achieving language
understanding—and in order to isolate this more abstract information, we exert careful control over our
classification datasets to ensure that we are targeting information arrived at by composition of the source

1Code for the generation system, as well as a pointer to the classification datasets, can be found at
https://github.com/aetting/compeval-generation-system

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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sentence, rather than general statistical regularities. Our approach is informed by methods in cognitive
neuroscience and psycholinguistics, where such controls are standard practice for studying the brain.

In particular, to ensure validity of our tests we introduce three mechanisms of control. First, to create
controlled datasets at the necessary scale, we develop a generation system that allows us to produce large
sentence sets meeting specified semantic, syntactic and lexical constraints, with gold-standard mean-
ing annotation for each sentence. Second, we control the train-test split so as to require more robust
generalization in order to perform the tasks successfully. Third, we employ a sanity check leveraging
known limitations of bag-of-words (BOW) composition models: for any tasks requiring order informa-
tion from the source sentence, which BOW models cannot logically retain, we check to ensure that BOW
composition models are at chance performance.

These controls serve to combat a problem that has gained increasing attention in recent work: many
existing evaluation datasets contain biases that allow for high performance based on superficial cues,
thus inflating the perceived success of systems on these downstream tasks (Gururangan et al., 2018;
Bentivogli et al., 2016). In the present work, our first priority is careful control of our tasks such that
biases are eliminated to the greatest extent possible, allowing more confident conclusions about systems’
compositional capacities than are possible with existing metrics.

The contributions of this paper are threefold. 1) We introduce a method for analyzing compositional
meaning information in sentence embeddings, along with a generation system that enables controlled
creation of datasets for this analysis. 2) We provide experiments with a range of sentence composition
models, to demonstrate the capacity of our method to shed light on compositional information captured
by these models. 3) We make available the classification datasets used for these experiments, as well
as the generation system used to produce the sentence sets, to allow for broader testing of composition
models and to facilitate creation of new tasks and classification datasets.

Although we focus on neural composition models and sentence embeddings in the present paper—due
to the current dominance of these methods and the need to evaluate their compositional capacities—
it is important to note that this analysis method can also be applied more broadly. Since the method
simply operates by classification of sentence representations, it can be applied to any format of sentence
representation that can be input as features to a classifier.

2 Meaning and composition

In this section we will briefly explain the concepts of meaning and composition, which are the central
targets of our analyses in this work.

Our approach assumes there to be identifiable components of meaning that we can expect in well-
formed sentence representations. For instance, the sentence “the dog chased the girl” contains the infor-
mation that there was a chasing event, and a dog was the chaser (agent of chasing) and a girl the chasee
(patient of chasing). The sentence “the dog did not bark” conveys that a barking event did not happen.

Humans are able to extract meaning with remarkable robustness, and a key factor in human language
understanding is composition: the productive combinatory capacity that allows sentence meaning to be
derived systematically based on the meanings of its parts (Heim and Kratzer, 1998). To illustrate the
power of this systematicity, consider a nonsensical sentence like the following:

The turquoise giraffe recited the sonnet but did not forgive the flight attendant.

Though this sentence describes an entirely implausible scenario, and though nothing like it should ever
have occurred in any corpus or conversation, any English speaker is able to extract the meaning of this
sentence without difficulty. This is because language is highly systematic, and the meanings of the parts
of the sentence can be combined predictably to arrive at the full meaning.

Regardless of how closely NLP systems should draw on human strategies for language processing, the
need for composition is clear: if systems do not construct meanings of sentences based on their parts,
then the alternative is memorization of all possible sentences, which is neither practical nor possible.

In this work, critically, we are focused on the results of systematic compositional processes, to be
distinguished from biases based on general statistical regularities. The importance of this distinction is
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highlighted by the result reported in Adi et al. (2016), which shows a BOW composition model attain-
ing 70% accuracy on a binary word order classification task. This result is surprising given that BOW
models (which simply average together word-level representations) necessarily sacrifice any order infor-
mation from the source sentence. This suggests that the above-chance performance relies on statistical
regularities of word ordering in the data as a whole, independent of the source sentence—that is, the
model’s above-chance performance must be dependent on some correspondence between word orders
being tested and word orders seen when training the word embeddings.

Although sensitivity to such regularities is often useful, in this work we are concerned with systematic
composition of the source sentence itself, abstracting away from general statistical regularities. This is
critical for our purposes: to master composition, models must be able to construct the meaning of a
sentence not only when it matches commonly-seen patterns (e.g., “the cat chased the mouse”) but also
when it deviates from such patterns (e.g., “the mouse chased the cat”). This is the reasoning behind our
BOW sanity check, discussed in Section 3.3, which serves to ensure that our tests cannot be solved by
simple averaging. Additionally, the biases in naturally-occurring data, further highlighted by the Adi et
al. result, motivate our use of generated data for the sake of maintaining the necessary level of control.

3 The present method

3.1 Approach

The approach that we take to probe for compositional meaning information in sentence embeddings is
inspired by the neuroscience technique of multivariate pattern analysis (Haxby et al., 2014), which tests
for encoding of information in patterns of neural data by means of classification tasks designed to be
contingent on the information of interest. Our use of careful control in implementing this approach is
also informed more generally by the methodologies of cognitive neuroscience and psycholinguistics,
which standardly use these kinds of controls to draw conclusions about information in human brain
activity. The approach that we develop here builds on the proposal of Ettinger et al. (2016)—which
described the basic form of the method and provided a simple validation with a small set of active and
passive sentences. In the present work we flesh out and strengthen the method with a number of more
rigorous controls aimed at better isolating the information of interest, and we substantially expand the
scope of the tests through the use of a more sophisticated sentence generation system.

3.2 Classification tasks

As proposed by Ettinger et al. (2016), we target two meaning components as our starting point: semantic
role and negation. These components are priorities because they are fundamental to the meaning of a
sentence, having bearing on the key questions of “what happened (and what didn’t)” and “who did what
to whom”. Additionally, they represent information types that can be heavily distorted with respect to
surface variables like word content and order: to know semantic role and negation information, it is not
enough to know which words are in the sentence or which words come earlier in the sentence.

We formulate the semantic role classification task (“SemRole”) as follows: “Given representation n
of probe noun n, representation v of probe verb v, and embedding s of sentence s (with s containing
both n and v), does n stand in the AGENT relation to v in s?” For example, an input of {n: “professor”,
v: “help”, s: “the professor helped the student”} would receive a positive label because professor is
AGENT of help in the given sentence.

We formulate the negation classification task (“Negation”) as follows: “Given a representation v of a
probe verb v, and an embedding s of sentence s (with s containing v, one negation, and one other verb),
is v positive or negated in s?” For example, an input of {v: “sleep”, s: “the professor is not actually
helping the student who is totally sleeping”} receives a positive label because sleep is not negated in that
sentence. To decouple this from a simpler task of identifying adjacency between negation and a verb, we
insert variable-length adverb sequences (e.g., not really, actually helping) before the verbs in the dataset
(negated and non-negated), to ensure that the negation is not always adjacent to the verb that it affects.

These formulations differ from those in the original Ettinger et al. (2016) proposal, instead making
use of variable word probes as employed by Adi et al. (2016). This adjustment was made to maximize
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the generalization required for strong performance on the tasks, and to further reduce vulnerability to
biasing cues in the datasets. More detail on our implementation of this formulation is given in Section 5.

3.3 Means of control
The most critical consideration in this work is ensuring that we can draw valid conclusions about compo-
sition from performance on our classification tasks. To this end, we take a number of measures to control
our data, to avoid biasing cues that would make the tasks solvable independent of the information of
interest—a problem observed in many existing datasets, as mentioned above (Gururangan et al., 2018).

Generation system A critical component of isolating abstract meaning information is employing syn-
tactic variation, such that the meaning information of interest is the single underlying variable distin-
guishing label categories. For instance, we might use sentences like “the professor helped the student”,
“the student was helped by the professor”, and “the student that the professor helped was sleeping”—
which vary in structure, but which share an underlying event of a professor helping a student.

In order to produce sentence sets that exhibit this level of variation—and that reach the necessary scale
for training and testing classifiers—without allowing the statistical biases of naturally-occurring data, we
developed a generation system that takes as input lexical, semantic and syntactic constraints, and that
produces large sentence sets meeting those constraints. In addition to allowing us to produce controlled
datasets, this system also ensures that the generated datasets are annotated with detailed semantic and
syntactic information. This generation system is described in greater detail in Section 4.

Train/test splits To be confident that the classifier is picking up on underlying meaning information
and not simply a union of different superficial cues across syntactic structures, we make careful provi-
sions in our train/test split to ensure generalization (beyond the obvious split such that sentences in test
do not appear in training). For our semantic role task, certain (n,v) probe combinations are held out for
test, such that no combinations seen at test time have been seen during training. This is done to ensure
that the classifier cannot rely on memorized sequences of words. For our negation task, which uses only
one probe, we hold out certain adverbs from training (as described above, adverbs are used as material
to separate the negation and the verb), such that at test time, the material separating the negation and the
verb (or preceding the non-negated verb) has never been seen in training.

BOW as control As described above, it is logically impossible for BOW models to encode information
that requires access to word order from the source sentence itself. We leverage this knowledge to create
a sanity check baseline for use in monitoring for lexical biases: if, for any task requiring access to word
order information, the BOW baseline performs above chance, we know that the datasets contain lexical
biases affecting the classification results, and we can modify them accordingly.

4 Generation system

In this section we describe the generation system that we use to create large, controlled datasets for our
classification tasks. As described above, this system takes input constraints targeting semantic, syntactic,
and lexical components, and produces diverse, meaning-annotated sentences meeting those constraints.

4.1 Event/sentence representations
As a framework for specifying semantic and syntactic constraints, we use a class of event representations
that contain both lexicalized semantic information and necessary syntactic information, such that there is
a deterministic mapping from a fully-populated event representation to a corresponding surface sentence
form. These representations fall roughly within the category of “lexicalized case frame” outlined by
Reiter and Dale (2000) for natural language generation. Figure 1 shows an example representation, in
fully-specified textual form, and in simplified graphical form.

Our representations are currently restricted to events denoted by transitive and intransitive verbs, with
the arguments of those verbs and optional transitive or intransitive relative clauses on those arguments.

These representations are comparable in many ways to abstract meaning representation (AMR) (Ba-
narescu et al., 2012), but rather than abstracting entirely away from syntactic structure as in AMR, our
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Figure 1: Event representation for “The student who is sleeping was not helped by the professor”

event representations encode syntactic information directly, along with the more abstract meaning in-
formation, in order to maintain a deterministic mapping to surface forms. Relatedly, while AMR uses
PropBank frames (Palmer et al., 2005) to encode meaning information, we encode information via En-
glish lemmas, to maintain control over lexical selection during generation.

These representations can be partially specified to reflect a desired constraint, and can then be passed
in this partial form as input to the generation system—either as a required component, or as a prohibited
component. This allows us to constrain the semantic and syntactic characteristics of the output sentences.
In addition to partial events, the system can also take lists of required or prohibited lexical items.

4.2 Event population

The system uses a number of structural templates into which partial events can be inserted. Structural
templates vary based on the transitivity of verbs and the presence or absence of relative clauses on
arguments—for instance, if the nodes in the right side of Figure 1 were unpopulated, it would depict
an empty structural template consisting of a transitive main verb with an intransitive relative clause on
arg1. Once we have inserted a partial event into a subsection of an empty structural template (events can
be inserted into either the main clause or a relative clause), the system populates the remainder of the
event components by iterating through available verbs and nouns of the vocabulary, and through available
values for unfilled syntactic characteristics (such as polarity, tense, voice, etc.).

For simplicity, we control plausibility of argument/predicate combinations by setting the system vo-
cabulary such that it contains only animate human nouns, and only verbs that can take any of those
nouns in the relevant argument slots. This is a reasonable task due to the capacity of the system to gen-
erate thousands of sentences from only a handful of nouns and verbs. We leave incorporation of more
sophisticated selectional preference methods (Van de Cruys, 2014; Resnik, 1996) for future work.

Our goal is to find the optimal balance between the critical need of this method for structurally vari-
able, carefully controlled sentences, and the practical need to avoid substantial deviation from sentence
types to which systems will have been exposed during training. To this end, we draw our vocabu-
lary from comparatively frequent words, and we impose structural constraints to limit the complexity
of sentences—specifically, in the current experiments we restrict to sentences with no more than one
relative clause, by omitting templates that include relative clauses on both arguments of a main verb.

4.3 Syntactic realization

Once an event representation is fully populated, it is submitted to a surface realization module that maps
from the event to a surface sentence via a simple rule-based mapping. Since the representations specify
syntactic information and use lexicalized meaning information, there is no significant process of lexical
selection required during surface realization—only morphological inflection derivable from syntactic
characteristics. As a result, the event representations map deterministically to their corresponding surface
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forms. We use a grammar specified using the NLTK feature grammar framework (Bird et al., 2009).
Morphological inflections are drawn from the XTAG morphological database (Doran et al., 1994).

4.4 Sentence quality

To ensure the quality of generation system output, we manually inspected large samples of generated
sentences throughout development and after generation of the final sets, to confirm that sentences were
grammatical and of the expected form. Table 1 shows a representative sample of generated sentences.2

the men were sleeping
the woman followed the lawyer that the student is meeting
the women were being helped by the lawyers
the student called the man
the scientist that the professors met is dancing
the doctors that helped the lawyers are being recommended by the student

Table 1: Example generated sentences

5 Implementation of lexical variability

As discussed above, we adopt the variable probe formulation used by Adi et al. (2016). This adds a
dimension to the learning task that is not present in the original Ettinger et al. (2016) task formulation:
the classifier needs not only to identify meaning information in the input sentence—it needs to identify
meaning information contingent on the identities of the particular probe words.

To identify the probe word(s) in the input features, Adi et al. (2016) use the source word embeddings,
but this is problematic for our purposes, given that we want to test a wide variety of models, which use
word embeddings of different types and sizes. To avoid this variability, it would be preferable to use one-
hot vectors to identify word probes. To this end, we performed a series of experiments testing whether
classification accuracy was affected by use of one-hot probe representations by comparison to embedding
probes, in a replication of the word content task of Adi et al. (2016). Finding almost equivalent accuracies
between the two input types, we use one-hot probe representations in all subsequent experiments.

Note that as a result, by contrast to Adi et al. (2016) we are not assuming the classifier to identify
words in the sentence representation based on resemblance to their original word embeddings—this may
not in fact be a safe assumption, given that the word’s representation may distort during composition
of the sentence. Instead, the classifier must learn a mapping from each one-hot representation to its
manifestation in sentences. This means that all words must appear as probes in training. To facilitate the
learning of this mapping, we restrict to a small (14-lemma) vocabulary of noun and verb probes in these
experiments.3 Because the generation system is able to produce thousands of sentences from even such
a restricted vocabulary as this, this limitation does not prevent generation of adequately large datasets.

A note about the size and selection of the vocabulary: some composition tests will surely be sensitive
to specific idiosyncrasies of individual words, in which case the choice of vocabulary will be of great
importance. However, for the particular semantic role and negation tasks described here, the focus is
on identification of structural dependencies between words, which are not in this case sensitive to the
specific nouns/verbs used. Consequently, for these tasks—as long as vocabulary words are not out-of-
vocabulary for the models (which we confirm below)—the important thing should be not what the words
themselves are, but whether dependencies between them have been captured in the sentence embeddings.

6 Surface tasks: word content and order

Though our ultimate interest is in abstract meaning information, part of the goal of these experiments
is to get a clear picture of the information currently captured by existing systems. For this reason, we

2More sentences can be found in the publicly available classification datasets.
3Sentences themselves contain various morphological inflections of these lemmas.



1796

include the content and order experiments as performed by Adi et al. (2016), to see how encoding of
these surface variables compares to encoding of meaning information—and to compare with the results
of Adi et al. (2016) after the more rigorous controls used in our datasets.

We structure these tasks to be maximally parallel with our meaning tasks. To this end, we have two
content tasks: one-probe (“Content1Probe”) and two-probe (“Content2Probe”), with the one-probe
task using verb probes as in the negation task, and two-probe using noun-verb probe pairs, as in the
semantic role task. Similarly, for the order task (“Order”) we use only noun-verb pairs. The order task
is thus formulated as “Given representation n of probe noun n, representation v of probe verb v, and
embedding s of sentence s (with s containing both n and v), does n occur before v in s?”. The two-word
content task is formulated as “Given representation n of probe noun n, representation v of probe verb v,
and embedding s of sentence s, do both n and v occur in s?”, and the one-word content task is formulated
as “Given representation v of probe verb v, and embedding s of sentence s, does v occur in s?”

7 Classification experiments

To demonstrate the utility of our analysis, we use it to test several existing sentence composition models.
Following Adi et al. (2016), for our classifier we use a multi-layer perceptron with ReLU activations and
a single hidden layer matching the input size. For each of the above tasks we construct train/test sets
consisting of 4000 training items and 1000 test items.4 No tuning is necessary, as the hyperparameters
of hidden layer number and size are fixed in accordance with the architecture used by Adi et al. (2016).

It is important to note that the training of the classifier, which uses the 4000 items mentioned above,
is to be distinguished from the training of the sentence embedding methods. The sentence embedding
models are pre-trained on separate corpora, as described below, such that they map sentence inputs to
embeddings. Once these models are trained, they are used to produce the 4000 sentence embeddings that
will serve as training input to the classifier (and the 1000 sentence embeddings used for testing).

Our use of a relatively simple classifier with a single hidden layer builds on the precedent not only
of Adi et al. (2016), but also of related methods in neuroscience, which in fact typically use linear classi-
fiers (an option that we could not employ due to our use of the variable probes). An important reason for
use of simpler classifiers is to test for straightforward extractability of information from embeddings—
if a complex classifier is necessary in order to extract the information of interest, then this calls into
question the extent to which we might consider this information to be “captured” in the embeddings,
as opposed to the information being somehow reconstructable from the embeddings’ encoding of other
information. That said, the question of how the complexity of the classifier relates to the encoding of the
target information in these sentence embeddings is an interesting issue for future work.

For each experiment, we also run two corresponding experiments, in which random vectors are used
in place of the sentence vectors and the probes, respectively. This serves as an additional check for biases
in the datasets, to ensure that neither the sentence vectors nor the probe vectors alone are sufficient to
perform above chance on the tasks. For all tasks, these random vectors produce chance performance.

7.1 Sentence encoding models

We test a number of composition models on these classification tasks. These models represent a range
of influential current models designed to produce task-general sentence embeddings. They employ a
number of different architectures and objectives, and have shown reasonable success on existing metrics
(Hill et al., 2016; Conneau et al., 2017).

All sentence embeddings used are of 2400 dimensions. Because our pre-trained models (SDAE, Skip-
Thought) are trained on the Toronto Books Corpus (Zhu et al., 2015), we use this as our default training
corpus, except when other supervised training data is required (as in the case of InferSent). Before
sentence generation, the chosen vocabulary was checked against the training corpora to ensure that no
words were out-of-vocabulary (or below a count of 50).

4See footnote 1 for link to all classification datasets used in these experiments.
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Accuracy
Content1Probe Content2Probe Order SemRole Negation

BOW 100.0 97.1 55.0 51.3 50.9
SDAE 100.0 79.8 92.9 63.7 99.0

ST-UNI 100.0 88.1 93.2 62.3 96.6
ST-BI 96.6 79.4 88.7 63.2 74.7

InferSent 100.0 70.1 86.4 50.1 97.2

Table 2: Classification results

BOW averaging Our first sentence embedding model (“BOW”) is a BOW averaging model, for which
we use the skip-gram architecture of the word2vec model (Mikolov et al., 2013) to learn word embed-
dings. As discussed above, the BOW model serves primarily as a sanity check for our purposes, but it is
important to note that this model has had competitive results on various tasks, and is taken seriously as a
sentence representation method for many purposes (Wieting et al., 2016; Arora et al., 2016).

Sequential Denoising Autoencoder Our second model (“SDAE”) is an autoencoder variant from
Hill et al. (2016) for unsupervised learning of sentence embeddings. The model uses an LSTM-based
encoder-decoder framework, and is trained to reconstruct input sentences from their vector representa-
tions (last hidden state of encoding LSTM) despite noise applied to the input sentence. We use a pre-
trained model provided by the authors. This model has the advantage of an unsupervised objective and
no need for sequential sentence data, and it shows competitive performance on a number of evaluations.

Skip-Thought Embeddings Our next two models are variants of the Skip-Thought model (Kiros et al.,
2015), in which sentences are encoded with gated recurrent units (GRUs), with an objective of using the
current sentence representation to predict the immediately preceding and following sentences. Following
the model’s authors, we use both the uni-skip (“ST-UNI”) and bi-skip (“ST-BI”) variants: uni-skip
consists of an encoding based on a forward pass of the sentence, while bi-skip consists of a concatenation
of encodings of the forward and backward passes of the sentence (each of 1200 dimensions, for 2400
total). We use the publicly available pre-trained Skip-Thought model for both of these variants.5

Skip-Thought sentence embeddings have been used as pre-trained embeddings for a variety of tasks.
They have proven to be generally effective for supervised tasks and passable for unsupervised tasks (Hill
et al., 2016; Triantafillou et al., 2016; Wieting et al., 2016). Like the SDAE model, the Skip-Thought
model is able to use unsupervised learning, though it requires sequential sentence data. However, more
than the SDAE model, the Skip-Thought model uses an objective intended to capture semantic and
syntactic properties, under the authors’ assumption that prediction of adjacent sentences will encourage
more syntactically and semantically similar sentences to map to similar embeddings.

InferSent Our final model is the InferSent model (Conneau et al., 2017), which uses multi-layer BiL-
STM encoders with max pooling on the hidden states of the last layer to produce vector representations
of the sentences. This model is trained with a natural language inference (NLI) objective, and for this
reason we train it on the SNLI dataset (Bowman et al., 2015).

The InferSent model is intended to produce “universal” sentence representations, and has been shown
to outperform unsupervised methods like Skip-Thought on a number of tasks (Conneau et al., 2017).
More generally, the NLI objective is believed to encourage learning of compositional meaning informa-
tion, given that inference of entailment relations should require access to meaning information.

7.2 Results and Discussion

Table 2 shows the accuracy of the different models’ sentence embeddings on our classification tasks.
The first thing to note is that our BOW control allows us to confirm nearly complete lexical balance in

5https://github.com/ryankiros/skip-thoughts
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the sentence sets: the averaged word embeddings perform roughly at chance on all but the content tasks.6

By contrast, BOW performs with near-perfect accuracy on the content tasks, lending support to the
intuitive conclusion: the one thing that BOW does encode is word content. The quality of performance
of the BOW model on this task exceeds that reported by Adi et al. (2016)—we speculate that this may
be due to our use of a smaller vocabulary to facilitate the learning of the mapping from one-hot probes.

While BOW has very high performance on two-probe word content, SDAE, ST-UNI, ST-BI and In-
ferSent have much lower accuracy (albeit still far above chance), suggesting that some detail with respect
to word content is sacrificed from these representations in favor of other information types. This is ex-
emplified by the order task, on which all non-BOW models show significantly higher accuracy than
on the word content tasks, supporting the intuitive conclusion that such sequence-based models retain
information about relative word position. This result is generally consistent with the Adi et al. (2016)
result, but due to the additional control that brings BOW roughly to chance, we can conclude with greater
confidence that the performance on this task pertains to order information in the source sentence itself.

Turning to our meaning information tasks, we see that with the exception of ST-BI, the sequence
models perform surprisingly well on the negation task, despite the fact that this task cannot be solved
simply by detecting adjacency between negation and the verb (due to our insertion of adverbs). Instead,
we speculate that these sequence models may be picking up on the utility of establishing a dependency
between negation and the next verb, even in the face of intervening words. This is not a complete solution
to the problem of representing the meaning and dependencies of negation, but it is a useful step in that
direction, and suggests that models may be sensitive to some of the behaviors of negation.

Interestingly, ST-BI shows markedly weaker performance on the negation task. We see two potential
reasons for this. First, it may be due to the reduced dimensionality of each of the two concatenated
encodings (recall that ST-BI involves concatenating 1200-dimensional encodings of the forward and
backward passes). Second, the reduced performance could be influenced by the inclusion of the backward
pass: while the forward pass can leverage the strategy of linking negation to the next verb, the backward
pass cannot use this strategy because it will encounter the relevant verb before encountering the negation.

Turning to the semantic role task, we see a stark contrast with the high performance for the negation
task. InferSent performs squarely at chance, suggesting that it retains as little compositional semantic
role information as does BOW. SDAE, ST-UNI and ST-BI perform modestly above chance on the se-
mantic role task at 62-63% accuracy, suggesting that they may provide some amount of abstract role
information—but no model shows any substantial ability to capture semantic role systematically.

These results accomplish two things. First, they lend credence to this method as a means of gaining in-
sight into the information captured by current models. Second, they give us a sense of the current capacity
of sequence-based models to capture compositional meaning information. The picture that emerges is
that sequence models are able to make non-trivial headway in handling negation, presumably based on a
sequential strategy of linking negation to the next verb—but that these sequence models fall significantly
short when it comes to capturing semantic role compositionally. Another point that emerges from these
results is that despite the fairly substantial differences in architecture, objective, and training of these
models, capacity to capture the compositional information is fairly similar across models, suggesting
that these distinct design decisions are not having a very significant impact on compositional meaning
extraction. We plan to test more substantially distinct models, like those with explicit incorporation of
syntactic structure (Bowman et al., 2016; Dyer et al., 2016; Socher et al., 2013) in future work.

8 Related work

This work relates closely to a growing effort to increase interpretability of neural network models in
NLP—including use of visualization to analyze what neural networks learn (Li et al., 2015; Kádár et al.,
2016), efforts to increase interpretability by generating explanations of model predictions (Ribeiro et al.,
2016; Lei et al., 2016; Li et al., 2016), and work submitting adversarial examples to systems in order to
identify weaknesses (Zhao et al., 2017; Jia and Liang, 2017; Ettinger et al., 2017).

6The slightly higher accuracy on the order task is most likely the result of a very slight bias due to our use of only noun-verb
order probe pairs for the sake of matching the SemRole task.
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Methodologically the most closely related work is that of Adi et al. (2016), which uses classification
tasks to probe for information in sentence embeddings. As discussed above, we depart from that work
in targeting deeper and more linguistically-motivated aspects of sentence meaning, and we incorporate
careful controls of our datasets to ensure elimination of bias in the results.

Our focus on assessing linguistically-motivated information relates to work on evaluations that aim for
fine-grained analysis of systems’ linguistic capacities (Rimell et al., 2009; Bender et al., 2011; Marelli
et al., 2014). The present work contributes to this effort with new tasks that assess composition per se,
and that do so in a highly targeted manner via careful controls. Our use of synthetically generated data to
achieve this level of control relates to work like that of Weston et al. (2015), which introduces synthetic
question-answering tasks for evaluating the capacity of systems to reason with natural language input.

Our examination of the capacity of neural sequence models to identify abstract relations in sentence
representations also relates to work by Linzen et al. (2016), who explore whether LSTMs can learn
syntactic dependencies, as well as Williams et al. (2017), who investigate the extent to which parsers that
are learned based on a semantic objective produce conventional syntax.

Finally, importantly related work is that concerned specifically with testing systematic composition.
Lake and Baroni (2017) investigate the capacity of RNNs to perform zero-shot generalization using com-
position, and Dasgupta et al. (2018) construct an entailment dataset with balanced lexical content in order
to target composition more effectively. We contribute to this line of inquiry by establishing an analysis
method that can take output embeddings from sentence composition models and query them directly for
specific types of information to be expected in properly compositional sentence representations.

9 Conclusions and future directions

We have presented an analysis method and accompanying generation system designed to address the
problem of assessing compositional meaning content in sentence vector representations. We make the
datasets for these tasks, as well as the generation system used to create them, available for public use
to facilitate broader testing of composition models. We have also presented the results of applying this
method for analysis of a number of current sentence composition models, demonstrating the capacity of
the method to derive meaningful information about what is captured in these models’ outputs.

Having established a means of analyzing compositional meaning information in sentence embeddings,
in future work we plan to apply this system to identify more precisely which design decisions lead to
effective capturing of meaning information, in order to guide system improvement. As part of this effort,
we will expand to more comprehensive testing of a diverse range of sentence embedding systems (Bow-
man et al., 2016; Subramanian et al., 2018). We also plan to investigate the potential of our generation
system to create not just evaluation data, but training data—given that it allows us to produce large,
meaning-annotated corpora. Finally, we plan to expand beyond semantic role and negation in the set of
information types targeted by our method, in order to establish more comprehensive coverage of meaning
information that can be assessed by this analysis system.
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