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Abstract

Enabling a mechanism to understand a temporal story and predict its ending is an interesting
issue that has attracted considerable attention, as in case of the ROC Story Cloze Task (SCT).
In this paper, we develop a multi-attention based neural network (MANN) with well-designed
optimizations, like Highway Network, and concatenated features with embedding representations
into the hierarchical neural network model. Considering the particulars of the specific task, we
thoughtfully extend MANN with external knowledge resources, exceeding state-of-the-art results
obviously. Furthermore, we develop a thorough understanding of our model through a careful
hand analysis on a subset of the stories. We identify what traits of MANN contribute to its
outperformance and how external knowledge is obtained in such an ending prediction task.

1 Introduction

The prediction on story endings is an important and interesting application because it is involved with
several essential issues, such as textual semantic understanding, logical reasoning and natural text gen-
eration. Most previous studies on the subject of common sense story understanding mainly focus on
generating guesses for a missing event, such as matching explicit information in a given context (Cham-
bers and Jurafsky, 2008), paying attention to specific types of common sense knowledge, like event
schema (Chambers and Jurafsky, 2009), or concentrating on unsupervised learning (Chambers and Ju-
rafsky, 2008). Although numerous studies have addressed the issue, training machines to be able to
understand underlying narrative structures is still a challenging task. Previous research is limited at the
shallow technique requirement of evaluation and noisy knowledge resources.

To facilitate the evaluation and benchmark the problem in the literature, the Story Cloze Task (SCT)
has been introduced to predict what should be the “right” ending to a story (Mostafazadeh et al., 2016),
which consists of daily events. The common strategies utilized to perform the task can be classified into
two kinds of approaches: (1) traditional machine learning techniques with optimal feature engineering;
and (2) deep learning-based models with effective strategies (Cai et al., 2017). The task is published with
an unlabeled training set that consists of one-correct-ending stories, which is a notable impediment for
further research. Some studies investigated fake ending generation, which obtained far more satisfying
results. Most supervised learning approaches are trained from the finite evaluation set, ignoring the sheer
volume of training corpus.

Understanding daily stories requires not only common sense experience sharing, but also a thorough
understanding of text learned from common sense knowledge resources. We propose an effective multi-
attention based neural network (MANN) and broaden our model with external knowledge. The model is
superior in three aspects: (i) it adds features of sentences as embedding representations; (ii) it features
a self-matched attention mechanism that functions through one sentence of the story, while interaction
attention functions across the story plot and ending option to obtain word-level interaction; and (iii) it
involves external knowledge to augment text coherence understanding.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



1755

The proposed model is comprehensively evaluated by comparing it with state-of-the-art approaches.
Results show that the performance of the MANN strategy is superior to that of its competitors by up to
7% in terms of accuracy.

Furthermore, we conduct ablation experiments to illustrate the effect of each component in the MANN
framework. Through elaborate evaluation, we demonstrate the superiorities and different characteristics
of the components in the proposed model and the beneficial effect of the external knowledge utilized.

The contributions of this work are as follows:

• We build a MANN with deliberately devised structures, consisting of components that were not
previously applied in this task, such as synthesis embeddings, multiple attentions and Highway, to
characterize the semantic coherence of temporal stories from SCT.

• Unlike previous work on generating fake options or that trained only on the labeled set, we extend
our model by regarding the unannotated corpus as proportions of external knowledge to enrich
insufficient information to remedy the issue of limited resources.

• We conduct comprehensive analysis by manually labeling a subset of 300 stories to further study
how our method performs in the story ending prediction task. We demonstrate that the proposed
model outperforms the state-of-the-art methods by up to 7%. We will provide the full list of these
annotated samples for further research.

2 Related Work

The issue of story ending prediction is related to several other research topics, such as reading compre-
hension and common sense learning, which will be briefly surveyed as follows.

Reading comprehension is the ability to read and understand text, and it has attracted much attention
in natural language processing (NLP) to evaluate the level a machine can reach in understanding text.
Two popular forms of evaluation tasks exist in this field: cloze-style query and text-span matching.
Cloze-style query, such as SQuAD published by Stanford University, focuses on predicting existing text
from the original corpus when given a relevant context. Text-span matching is different from selecting a
possible word from the provided text to replenish the blank areas, such as CNN/DailyMail by Hermann
and Hinton. Existing tasks are constructed with fragments, whereas examples from SCT are complete
and independent stories that has short and meaningful sentence. SCT is also different in that it requires
the prediction of development of a story, which is not provided in the given hypothesis. This novel task
calls for stronger relation extraction and external inferential capability to identify the correct ending. Our
model paid attention on through structure and proved to be effective during experiments.

Common sense learning is a challenging aspect in NLP. The limitation of other rich knowledge
structures is that they mostly either focus on shallower representations, such as semantic roles like
PropBank (Palmer et al., 2005), or pay attention to specific types of knowledge, i.e., unsupervised
co-reference in the text (Chambers and Jurafsky, 2009) and event temporal relation (Modi and Titov,
2014). Learning from structural event knowledge is proposed to enrich this field, including narrative
schema (Chambers and Jurafsky, 2009) and event frames (Sha et al., 2016). Unlike the above tasks,
SCT (Mostafazadeh et al., 2016) provides large-scale supervised training stories of temporal and causal
relations, ensuring a high-quality evaluation for common sense knowledge understanding of mecha-
nisms.

However, the published ROCStories could not be used directly in supervised learning. Considering
the use of the training set without negative endings, researchers proposed strategies to generate incorrect
options. A conditional generative adversarial network has been proposed, achieving a moderate result
with an accuracy of 60.9% (Wang et al., 2017). Roemmele (Roemmele et al., 2017) designed four
generative models for fake options, namely, random, backward, nearest-ending and language model.
The best result is produced from samples of all four types of endings (67.2%).

Other researchers have attempted to learn from the limit-scale validation set and augment the capability
of the relation extractor. Schwartz (Schwartz et al., 2017) is the champion of the LSDSem 2017 Shared



1756

Figure 1: Architecture of our model.1

Task, which achieved a score of 75.2% by associating writing style features in endings and training
a linear regression. HCM (Chaturvedi et al., 2017) trained a joint model with feature engineering to
obtain representations of event sequence, sentiment, and topic from validation set and a hidden variable
approach as a voter, thereby obtaining 77.6%. The previous NN-based models did not perform well.
Cai (Cai et al., 2017) constructed a model with hierarchical long short-term memory network (LSTM) to
encode plot and an ending2sentence attention, then concatenated the two representations through feed-
forward network and outputting the final prediction, obtaining 74.7% accuracy. We pursue the same
strategy to construct our principal model MANN and see opportunity to utilize external knowledge in
the technique of combining semantic sequence information.

3 Proposed Model

This study aims to deduce the right ending given its previous context in the story. Formally, the story
ending prediction task is defined as follows: given the story 〈P,E〉, where P=〈s1, . . . , sn〉 is a story plot,
and the ending options E=〈e1, . . . , ek〉, the task is to select an appropriate ending ei (1 ≤ i ≤ k) from
E. We address the task as a regression problem, mapping the right ending as 1 and the wrong ending as
0. We identify the highest-scored option as the answer. We first introduce the MANN model, followed
with the extension of the model; this extension is constructed to learn from external knowledge. The
whole model is shown in Fig.1.

3.1 Multi-attention Neural Network Model

The proposed MANN model consists of four layers. The embedding layer maps each word to a
high-dimension vector representation. Then, the encoding layer encodes the representation of the
context, and the feature amalgamation layer extracts features from the interaction between plot and the
ending. Finally, the output layer provides the probability of the right ending.

Embedding Layer: We concatenate five representations: (i) word embedding; (ii) character feature; (iii)
part-of-speech (POS) tagging; (iv) sentiment polarity of a word; and (v) negation.

Word embedding is conducted by converting a token to a high-dimensional vector space, and we
obtain a fixed word embedding of each word by using pre-trained vocabulary. The character feature is
obtained by mapping each word to a high-dimensional vector space to better handle out-of-vocab or rare
words. We abstract character-level representations for tokens through a one-dimension convolutional
neural network(CNN). The vectors embedded from characters have the same size as the input channel
size of the CNN. By max-pooling the outputs of the CNN over the entire width, we obtain fixed-size
vectors for words. By utilizing pre-processing tools, we tackle the last three aspects of a word as one-
hot representations, while we collect the POS tagging feature with a natural language toolkit, sentiment
polarity of a word with a look-up from pre-trained sentiment lexica, and negation with a corpus of

1w for word, c for character, p for POS, s for sentiment polarity, n for negation.
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negation words (i.e., “not”, “neither”, “nor” and “n’t”). The concatenation of the five representations
of a word is then passed through a two-layer Highway Network (Srivastava et al., 2015) to fuse the
information of features, which is processed as follows:

trans = ReLU(wtx+ bt) (1)

gate = σ(wgx+ bg) (2)

H(x) = gate ∗ trans+ x(1− gate) (3)
where wg, wt ∈ RD×D and bt, bg ∈ RD, D is the dimension of input.

Encoding Layer: The encoding layer encodes the sequence and semantic abstraction of a single sentence
and then compromises them, which are from an identical plot to obtain a fusion premise.

Sentence encoding constructs an LSTM in both directions on top of the embeddings provided by
the previous layer and concatenate the outputs of forward and backward LSTMs, to learn high-level
abstractions from time-sequence features of the context. We obtain slj,(j=1,...,n) = [

−−−−→
LSTM ;

←−−−−
LSTM ]

where ; represents the concatenation between two directional LSTM thus slj ∈ RT×2d denotes each
sentence in plot and eli ∈ RG×2d denotes the ending.

The new representations are passed into self-matched attention to model the temporal interactions
between words. Taking vector V as example, self-matched attention Ṽ = att(V ) is defined as follows:

Mij =WT[Vi;Vj ;Vi ◦ Vj ] (4)

ai = softmax(Mi) (5)

Ṽi =
∑
j

aijVj (6)

where W T ∈ R6d is a weight matrix and ◦ is element-wise multiplication. The higher-level semantics
can directly tackled from encoded sequences through the attention mechanism.

Plot encoding compounds the interacted representation of sentences from the same story context. We
studied several commonly used implementations for sentence combination, such as LSTM, summation,
weighted summation, and concatenation operations. We find simple concatenation useful. The encod-
ings of the story plot is concatenated as P̂ = [att(sl1); · · · ; att(sln)], P̂ ∈ RnT×2d , while the ending is
simply represented as ê = att(eli), ê ∈ RG×2d.

Feature Amalgamation Layer: We focus on characterizing diverse interaction information among rep-
resentations of the plot and the ending, thus extracting feature from them. This layer is inspired by
the IIN model (Gong et al., 2018). We combine the plot vectors and ending representations to create a
word-by-word interaction attention tensor, in which each channel represents the interaction of the word
in one dimension. We tried processing, such as Fij = P̂i ◦ êj , Fij = P̂i + êj and Fij = |P̂i − êj | and
found that the most effective one is Fij = P̂i ◦ êj , where we define i ∈ [1, . . . , nT ], j ∈ [1, . . . , G], ◦ is
element-wise multiplication and F ∈ RnT×G×2d.

Then, we adapt a feature extractor on F to extract semantic features from word-by-word inter-
action.Unlike extractors (i.e., VGG and ResNets (He et al., 2016)), DenseNet (Huang et al., 2017)
strengthens feature propagation and reduces information disappearance through time because of the
structure of pre-activation.

Output Layer: A multi-feedforward neural layer is used. We apply three tanh layers to calculate a
score for prediction support.

3.2 Extension of MANN
Labeling large-scale examples requires considerable expertise and manpower. With the pattern of super-
vised learning, MANN can merely use limited annotated examples to train finite information, thereby
preventing us from obtaining more powerful statistical model. To eliminate the restriction of labeled data
scarcity and ensure the robustness of our model, we introduce semantic sequence information extracted
from external knowledge onto MANN, thus building an extended model, i.e., sequence based MANN
(SeqMANN).
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External knowledge is mostly used to enrich word implication, thereby ensuring that semantic infor-
mation can be extracted. To address the combination of external knowledge and the neural network
model, Chen (Chen et al., 2017) added extra relation informations of word pair into the encoder. Other
researchers studied embedding representations (Bordes et al., 2013) to learn complex reasoning capac-
ities. Considering specific ending-prediction task, we aim to further derive coherence among sentences
from stories. Directly working on the large-scale ROCStories is not easy due to its deficiency of negative
samples. We use SemLM (Peng and Roth, 2016) to model the distribution over a meaningful sequence
chain, with ROCStories regarded as portion of our extra resources while the other are from news data.

SemLM is a language model that first uses FrameNet to split sentences by semantic sequence, and
then represents these pieces of sequence with semantic frames and discourse markers from an extended
vocabulary. The abstraction of a sentence is [f1, dis1, f2, · · · , o] where fi denotes semantic frames, disi
denotes discourse markers and o denotes period symbol. The SemLM is trained with a log-bilinear
model (Mnih and Hinton, 2007) on ROC corpus and news data, and obtains the probability of two words
appearing simultaneously in a sentence. The log-bilinear model computes the sequence probability of
the next word wi given the previous words (context), which is defined as follows:

p(wi|c(wi)) =
exp(v(wi)

Tu(c(wi)) + b(wi))∑
w∈V exp(v(w)

Tu(c(wi)) + b(w))
(7)

We define v(w) as the target vector, v′(w) as the context vector, and b(w) as a bias of a token. Here,
V is the vocabulary, u(c(wi)) =

∑
ct∈c(wi)

qt ◦ v′(ct), ◦ is element-wise multiplication and qi is a
model parameter that depends on the position of a token in the context. The final sequence probability is∏k

i=1 p(wi|c(wi)).
The trained language model is then used to calculate the conditional probability of semantic frames

from each option when given the same hypothesis, inspired by HCM (Chaturvedi et al., 2017). For each
ending ei with frames represented as fei and 〈f1, f2, · · · , fT 〉, T ≥ n indicating semantic frames evoked
in the story plot, the following features are captured considering the sequence of frames in corresponding
story plot: P (fei |fT ), P (fei |fT , fT−1), . . . , P (fei |fT , fT−1, · · · , f1).

Finally we learn the semantic sequence feature of plot-ending pairs which represents the interaction
information between the plot and the ending of stories, extending the study on external knowledge. We
fuse it with features extracted from DenseNet in the feature amalgamation layer through concatenation.

4 Experiments

4.1 Data
As described in (Mostafazadeh et al., 2016), SCT was constructed based on ROCStories. The ROC
corpus consists of 100,000 five-sentence cases, each of which was written as a logically meaningful
story. After eliminating original endings, writers develop both a “right” ending and a “wrong” ending for
the context of examples which are randomly chosen from the corpus. The published SCT is constructed
with ROCStories as a large training set, an evaluation set, and a test set, which have the same structure
and a size of 1,871.

We evaluate our model by using the benchmark SCT (Mostafazadeh et al., 2016). Notably, the training
set contains four-sentence articles with one correct ending, while the evaluation set consists of four-
sentence stories with two ending options.

4.2 Training details
To train our neural algorithm, we apply word embeddings of a look-up from 100-d GloVe pre-trained
on Wikipedia and Gigaword (Pennington et al., 2014). We set hiddensize = 100 for LSTM. An Adam
optimizer with a mini-batch size of 120 and an initial learning rate of 0.01 is applied. In the feature
amalgamation layer, DenseNet consists of three pairs of dense blocks with a following transition block.
The number of layers in a dense block is set as 10, and a ReLU activation function is applied for the whole
convolutions. In the output layer, we use three full-connected layers with ReLU activation function. We
use mean squared error as the loss function. We decide the model based on the average accuracy of the
held-out folds through 5-fold cross validation.
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Table 1: Performance comparison.

Acc.

Machine Learning Algorithm
Acoli (Schenk and Chiarcos, 2017) 70.0%
Schwartz (Schwartz et al., 2017) 75.2%
HCM (Chaturvedi et al., 2017) 77.6%

Neural Network Algorithm
DSSM (Mostafazadeh et al., 2016) 58.5%
CGAN (Wang et al., 2017) 60.9%
Lin (Lin et al., 2017) 67.0%
LSTM (Mihaylov and Frank, 2017) 72.8%
Cai (Cai et al., 2017) 74.7%
MANN 78.3%
SeqMANN 84.7%

Human Performance 100%

Table 2: Ablation study.

MANN SeqMANN

Embedding Ablation
-character feature 76.5% 84.3%
-sentiment polarity 75.7% 84.3%
-POS 77.5% 84.5%
-negation 76.3% 84.4%
-word embedding 73.4% 82.9%

Component Ablation
-Highway 76.3% 83.0%
-biLSTM 74.3% 82.3%
-self matched attention 75.1% 82.4%
-interaction attention 74.6% 80.0%
-MANN — 71.3%

Full 78.3% 84.7%

4.3 Results on Our Model

We compare our model with some distinctive methods and approaches that rank high in LSDSem 2017
Shared Task (Mostafazadeh et al., 2017) in Tabel 1. Cai (Cai et al., 2017) is state-of-the-art model in NN-
methods while HCM (Chaturvedi et al., 2017) is state-of-the-art model in all published methods. Under
the condition in which external resources are not used, MANN outperforms Cai by 3% and even performs
better than the highest-level method. Benefiting from external knowledge, SeqMANN achieves a 6.4%
improvement over MANN. Nevertheless, the superiority of SeqMANN does not rely on only the external
resources utilized, but the correlated effect between MANN and the external resources, as we can see
that after removing MANN from SeqMANN (as shown in Table 2 and will described in Section 4.4), the
remaining external resources based model only obtained 71.3%1.

4.4 Ablation Study

We conduct an ablation study on the proposed model to evaluate the effectiveness of each feature and
component involved. Results are shown in Table 2.
Embedding Ablation: All embedding features contribute to MANN. However, the influence is not
as crucial in SeqMANN. We conjecture that contextual information in the embedding process partly
overlaps with the features in external knowledge.
Component Ablation: We respectively remove each component to study their contribution. For interac-
tion attention ablation, we replace it with flattening between plot and ending representations, followed by
removing DenseNet and replacing a three-layer tanh operation as feature extractor. For MANN ablation,
we only retain the extraction of external knowledge and the output layer (we model SemanticSequence
by the same way as MANN ablation processing in Section 5).

5 Data Analysis

To further analyze the model, we seek to determine the abilities required to predict the right ending,
and which aspects of questions among the specific dataset are solved by our model. We sample 300
examples from the validation set randomly and annotate them manually from two cognitive chunks,
namely, by labeling samples with the difficulty degree in human-understandable rationale for prediction
and by tagging samples according to the linguistic phenomena they contain.

1Code and the annotated samples are available at https://github.com/StoryDevelopment/SCT.
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Table 3: Some examples from each human-understandable difficulty labeling category.
Category Story plot Ending options
Relevant
Word

Kyle invited everyone he works with bowling one night. Most
people could not go but Matt and John showed up. Matt had
never been bowling before so they had to show him how to.
After a few games, Matt picked up how to play better.

e1: Now Matt and Kyle can go bowling
more then. e2: Kyle took the children
shopping for a gift for their mother.

Compatible
Sentence

It was the last day of our vacation.We were eating lunch on the
patio of the hotel. We laughed and smiled because it was a great
vacation.Then we packed our bags and drove to the airport.

e1: We want to revisit someday. e2: We
all vowed to never go back again.

Plot-level
Paraphras-
ing

Rory was allergic to gluten and strawberries.One day she sat
down to eat lunch at school.She opened her lunch box, and
stared at a sandwich with strawberries.Her new step mom had
packed her lunch for the first time.

e1: Rory had to buy a school lunch that
day. e2: Rory ate the sandwich.

Ambiguous
Inference

Tina always wore a red bikini when she went to the beach. She
was known for it and everyone expected to see her in one. One
day she met her friends in a blue bikini and surprised them.
They could not understand why she would wear something dif-
ferent.

e1: They liked the new bikini though.
e2: Tina’s friends knew how unpre-
dictable she was.

5.1 Human-understandable Difficulty Labeling
We classify the 300 samples into the following categories (as shown in Table 3, where the right ending
is e1 and the wrong ending is e2):
Relevant Word. The verbs and noun phases in e1 are more relevant to the plot than those in e2. This
category includes examples that are thought to be correctly predicted at the word level.
Compatible Sentence. We could derive the correct answer by understanding a single sentence in the
hypothesis, which means that the answer is similar to some sentence in an earlier context.
Plot-level Paraphrasing. It requires a full understanding of multiple sentences to infer the answer.
Ambiguous Inference. It includes examples in which we think both endings are logically reasonable
for the story, while the correct one is more answerable. This category consists of poorly designed cases,
which we consider miscarriage examples in this task.

(a) The proportion of each category. (b) Results in each category.

Figure 2: Results of human understandable difficulty labeling.
Fig.2a shows the proportion of each category. The second and third cases have the highest proportion,

followed by the first and the least “Ambiguous Inference” cases. We observe that deeper information
processing, which means sentence understanding (for “Compatible Sentence” case) and plot-level un-
derstanding (for “Plot-level Paraphrases” case), is crucial to good performance in this task. The low
proportion of “Ambiguous Inference” shows the satisfactory quality of this task.

To further analyze the depth of prediction from our models compared with other methods, we repro-
duce the other methods and test the 300 annotated examples based on the above categorization. Results
are presented in Fig.2b. We conclude the following: (i) The comparison between MANN and semantic
sequence shows that semantic sequence is superior in shallow natural language comprehension, such
as word-level understanding, while MANN performs better in deep contextual comprehension, such as
sentence and plot level understanding; (ii) Successfully, SeqMANN combines the two advantages to out-
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Table 4: Linguistic phenomena tagging results.
Phenomena Tag Label

Freq-
uency

Cai Schw-
artz

HCM Seman-
ticSeq-
uence

MANN Seq-
MANN

CONDITIONAL 2.0 83.3 83.3 83.3 66.7 66.7 100.0
NEGATION 42.7 70.3 67.9 69.5 64.1 70.3 76.6
SENTENCE LENGTH 42.0 76.1 76.5 75.3 70.3 72.2 81.7
QUANTITY/TIME REASONING 21.0 73.0 60.3 66.7 65.1 74.6 82.5
COREF 39.3 83.1 75.4 78.0 75.4 77.1 88.1
QUANTIFIER 31.3 73.4 69.1 67.0 61.7 74.6 82.5
MODAL 27.0 75.3 76.5 75.3 70.3 69.1 80.2
BELIEF VERBS 5.0 53.3 53.3 60.0 60.0 73.3 73.3
CONVERSATIONAL PIVOTS 31.3 76.6 69.1 74.5 75.5 70.0 84.0
ANTO 24.7 73.5 66.3 74.7 67.5 68.7 83.1
EMOTIONAL COMMONALITY 68.7 73.7 72.3 74.3 71.3 78.2 86.9
ENDING ONLY 4.0 58.3 76.5 60.0 60.0 91.6 83.3
ACCURACY — 72.3 71.3 73.3 71.0 74.0 83.3

perform other methods on this task. (iii) The model is a stable one with external knowledge resources,
thus still maintaining high accuracy under decreasing training data.

5.2 Linguistic Phenomena Tagging
To obtain an idea of the linguistic phenomena in SCT and to conduct a detailed analysis of the semantical
performance of these models, imitating MultiNLI (Williams et al., 2018), we design a set of annotation
tags to label the subset as follows:

CONDITIONAL: Whether the example contains the word “if”.
NEGATION: Whether the example contains negation words, e.g., not, none, neither.
SENTENCE LENGTH: Whether the right ending is longer than the other endings.
QUANTITY/TIME REASONING: Whether understanding the ending options contains quantity or
time reasoning that needs to be explained from the plot.
COREF: Whether ending options contain referring expressions.
QUANTIFIER: Whether the example contains quantifier words, e.g., more, most, enough.
MODAL: Whether the example contains modal verbs.
BELIEF VERBS: Whether the example contains belief verbs such as think, believe and doubt.
CONVERSATIONAL PIVOTS: Whether the example contains discourse cohesion, e.g., but, yet,
however, though, while.
ANTO: Whether the example contains an antonym pair.
EMOTIONAL COMMONALITY: Whether the sentiment throughout the plot is consistent with that
through the right ending.
ENDING ONLY: Whether the ending options contradict themselves.
Results are shown in Table 4, and we observe the following: (i) The poor performances on SENTENCE

LENGTH indicates that such feature, which is regarded as valuable bias (Cai et al., 2017; Schwartz et al.,
2017), does not have an influential contribution to our model. (ii) Examples with ENDING ONLY tag
shows that our attention components recognize not only paraphrases in relation among sentences but also
the intra-semantic implications of each sentence. (iii) The model outperforms in terms of EMOTIONAL
COMMONALITY, which shows effects of adding sentiment polarity in embedding representation.

6 Conclusion

In this paper, we proposed a MANN model with external knowledge. The results of this model out-
performed state-of-the-art results by 7%. We carefully examined a subset of the corpora from SCT to
analyze the performance of our models. The competitive model benefits not only from our thoughtfully
designed structure but also from the combination of semantic relations learned from external resources.
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