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Abstract

Recent advances in language modeling using recurrent neural networks have made it viable to
model language as distributions over characters. By learning to predict the next character on the
basis of previous characters, such models have been shown to automatically internalize linguistic
concepts such as words, sentences, subclauses and even sentiment. In this paper, we propose
to leverage the internal states of a trained character language model to produce a novel type of
word embedding which we refer to as contextual string embeddings. Our proposed embeddings
have the distinct properties that they (a) are trained without any explicit notion of words and
thus fundamentally model words as sequences of characters, and (b) are contextualized by their
surrounding text, meaning that the same word will have different embeddings depending on its
contextual use. We conduct a comparative evaluation against previous embeddings and find that
our embeddings are highly useful for downstream tasks: across four classic sequence labeling
tasks we consistently outperform the previous state-of-the-art. In particular, we significantly
outperform previous work on English and German named entity recognition (NER), allowing us
to report new state-of-the-art F1-scores on the CONLL03 shared task.

We release all code and pre-trained language models in a simple-to-use framework to the re-
search community, to enable reproduction of these experiments and application of our proposed
embeddings to other tasks: https://github.com/zalandoresearch/flair

1 Introduction

A large family of NLP tasks such as named entity recognition (NER) and part-of-speech (PoS) tagging
may be formulated as sequence labeling problems; text is treated as a sequence of words to be labeled
with linguistic tags. Current state-of-the-art approaches for sequence labeling typically use the LSTM
variant of bidirectional recurrent neural networks (BiLSTMs), and a subsequent conditional random field
(CRF) decoding layer (Huang et al., 2015; Ma and Hovy, 2016).

A crucial component in such approaches are word embeddings, typically trained over very large collec-
tions of unlabeled data to assist learning and generalization. Current state-of-the-art methods concatenate
up to three distinct embedding types:

1. Classical word embeddings (Pennington et al., 2014; Mikolov et al., 2013), pre-trained over very
large corpora and shown to capture latent syntactic and semantic similarities.

2. Character-level features (Ma and Hovy, 2016; Lample et al., 2016), which are not pre-trained, but
trained on task data to capture task-specific subword features.

3. Contextualized word embeddings (Peters et al., 2017; Peters et al., 2018) that capture word seman-
tics in context to address the polysemous and context-dependent nature of words.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: High level overview of proposed approach. A sentence is input as a character sequence into a pre-trained bidirec-
tional character language model. From this LM, we retrieve for each word a contextual embedding that we pass into a vanilla
BiLSTM-CRF sequence labeler, achieving robust state-of-the-art results on downstream tasks (NER in Figure).

Contextual string embeddings. In this paper, we propose a novel type of contextualized character-
level word embedding which we hypothesize to combine the best attributes of the above-mentioned
embeddings; namely, the ability to (1) pre-train on large unlabeled corpora, (2) capture word meaning
in context and therefore produce different embeddings for polysemous words depending on their usage,
and (3) model words and context fundamentally as sequences of characters, to both better handle rare
and misspelled words as well as model subword structures such as prefixes and endings.

We present a method to generate such a contextualized embedding for any string of characters in a
sentential context, and thus refer to the proposed representations as contextual string embeddings.
Neural character-level language modeling. We base our proposed embeddings on recent advances
in neural language modeling (LM) that have allowed language to be modeled as distributions over se-
quences of characters instead of words (Sutskever et al., 2011; Graves, 2013; Kim et al., 2015). Recent
work has shown that by learning to predict the next character on the basis of previous characters, such
models learn internal representations that capture syntactic and semantic properties: even though trained
without an explicit notion of word and sentence boundaries, they have been shown to generate grammat-
ically correct text, including words, subclauses, quotes and sentences (Sutskever et al., 2014; Graves,
2013; Karpathy et al., 2015). More recently, Radford et al. (2017) showed that individual neurons in a
large LSTM-LM can be attributed to specific semantic functions, such as predicting sentiment, without
explicitly trained on a sentiment label set.

We show that an appropriate selection of hidden states from such a language model can be utilized to
generate word-level embeddings that are highly effective in downstream sequence labeling tasks.
State-of-the-art sequence labeling. Based on this, we propose the sequence tagging architecture illus-
trated in Figure 1: each sentence is passed as a sequence of characters to a bidirectional character-level
neural language model, from which we retrieve for each word the internal character states to create a
contextual string embedding. This embedding is then utilized in the BiLSTM-CRF sequence tagging
module to address a downstream NLP task (NER in the Figure).

We experimentally verify our approach in the classic sequence labeling tasks of named entity recog-
nition for English and German, phrase chunking and part-of-speech tagging, and find that our approach
reliably achieves state-of-the-art results. In particular, for both German and English NER, our approach
significantly improves the state-of-the-art. But even for highly saturated tasks such as PoS tagging and
chunking we find slight improvements over the already strong state-of-the-art (see Table 1).

We also find that our proposed embeddings on some tasks subsume previous embedding types, en-
abling simplified sequence labeling architectures. In addition to this, the character-level LM is compact
and relatively efficient to train in comparison to word-level models. This allows us to easily train models
for new languages or domains.
Contributions. To summarize, this paper proposes contextual string embeddings, a novel type of word
embeddings based on character-level language modeling, and their use in a state-of-the-art sequence
labeling architecture. Specifically, we

• illustrate how we extract such representations from a character-level neural language model, and
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Task PROPOSED Previous best

NER English 93.09±0.12 92.22±0.1
(Peters et al., 2018)

NER German 88.32±0.2 78.76
(Lample et al., 2016)

Chunking 96.72±0.05 96.37±0.05
(Peters et al., 2017)

PoS tagging 97.85±0.01 97.64
(Choi, 2016)

Table 1: Summary of evaluation results for best configuration of proposed architecture, and current best published results.
The proposed approach significantly outperforms previous work on the CONLL03 NER task for German and English and
slightly outperforms previous works on CONLL2000 chunking and Penn treebank PoS tagging.

integrate them into a simplified sequence labeling architecture;

• present experiments in which we quantiatively evaluate the usefulness and inherent semantics of the
proposed embeddings against previous embeddings and their stacked combinations in downstream
tasks;

• report a new state-of-the-art on the CONLL03 NER task for English (93.09 F1, ↑0.87 pp vs. pre-
vious best) and German (88.33 F1, ↑9.56 pp vs. previous best), and state-of-the-art scores for
chunking and PoS;

• release all code and pre-trained language models in a simple-to-use framework to the research com-
munity, to enable reproduction of these experiments and application of our proposed embeddings to
other tasks.

This paper is structured as follows: we present our approach for extracting contextual string embed-
dings from character-level language models in Section 2. We evaluate our approach against prior work
in Section 3. We then discuss the results and present an outlook into future work in Section 4.

2 Contextual String Embeddings

Our proposed approach passes sentences as sequences of characters into a character-level language model
to form word-level embeddings. Refer to Figure 2 for an example illustration.

2.1 Recurrent Network States

Like recent work, we use the LSTM variant (Hochreiter and Schmidhuber, 1997; Graves, 2013; Zaremba
et al., 2014) of recurrent neural networks (Sutskever et al., 2011) as language modeling architecture.
These have been shown to far outperform earlier n-gram based models (Jozefowicz et al., 2016) due to the
ability of LSTMs to flexibly encode long-term dependencies with their hidden state. We use characters as
atomic units of language modeling (Graves, 2013), allowing text to be treated as a sequence of characters
passed to an LSTM which at each point in the sequence is trained to predict the next character1. This
means that the model possesses a hidden state for each character in the sequence.

Formally, the goal of a character-level language model is to estimate a good distribution P (x0:T )
over sequences of charaters (x0,x1, . . . ,xT ) =: x0:T reflecting natural language production (Rosenfeld,
2000). By training a language model, we learn P (xt|x0, . . . ,xt−1), an estimate of the predictive distri-
bution over the next character given past characters. The joint distribution over entire sentences can then
be decomposed as a product of the predictive distribution over characters conditioned on the preceeding
characters:

P (x0:T ) =
T∏
t=0

P (xt|x0:t−1) (1)

1Note that character-level LM is different from character-aware LM (Kim et al., 2015) which still operates on the word-
level, but also takes into account character-level features through an additional CNN encoding step.
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rWashington

Figure 2: Extraction of a contextual string embedding for a word (“Washington”) in a sentential context. From the forward
language model (shown in red), we extract the output hidden state after the last character in the word. This hidden state
thus contains information propagated from the beginning of the sentence up to this point. From the backward language model
(shown in blue), we extract the output hidden state before the first character in the word. It thus contains information propagated
from the end of the sentence to this point. Both output hidden states are concatenated to form the final embedding.

In the LSTM architecture, the conditional probability P (xt|x0:t−1) is approximately a function of the
network output ht.

P (xt|x0:t−1) ≈
T∏
t=0

P (xt|ht; θ) (2)

ht represents the entire past of the character sequence. In an LSTM in particular, it is computed recur-
sively, with the help of an additional recurrent quantity ct, the memory cell,

ht (x0:t−1) = fh (xt−1,ht−1, ct−1; θ)

ct (x0:t−1) = fc (xt−1,ht−1, ct−1; θ) ,

where θ denotes all the parameters of the model. h−1 and c−1 can be initialized with zero or can be
treated as part of the model parameters θ. In our model, a fully conected softmax layer (without bias) is
placed ontop of ht, so the likelihood of every character is given by

P (xt|ht;V) = softmax (Vht + b) (3)

=
exp (Vht + b)

‖exp (Vht + b)‖1
(4)

where V and b, weights and biases, are part of the model parameters θ (Graves, 2013; Jozefowicz et al.,
2016).

2.2 Extracting Word Representations
We utilize the hidden states of a forward-backward recurrent neural network to create contextualized
word embeddings. This means, alongside with the forward model (2), we also have a backward model,
which works in the same way but in the reversed direction:

P b (xt|xt+1:T ) ≈
T∏
t=0

P b
(
xt|hb

t , θ
)

(5)

hb
t = f bh

(
xt+1,h

b
t+1, c

b
t+1; θ

)
(6)

cbt = f bc

(
xt+1,h

b
t+1, c

b
t+1; θ

)
(7)

Note that, in the following, we will use the superscript ·f to define hf
t := ht, c

f
t := ct for the forward

model described in the previous section.
From this forward-backward LM, we concatenate the following hidden character states for each word:

from the fLM, we extract the output hidden state after the last character in the word. Since the fLM
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is trained to predict likely continuations of the sentence after this character, the hidden state encodes
semantic-syntactic information of the sentence up to this point, including the word itself. Similarly,
we extract the output hidden state before the word’s first character from the bLM to capture semantic-
syntactic information from the end of the sentence to this character. Both output hidden states are con-
catenated to form the final embedding and capture the semantic-syntactic information of the word itself
as well as its surrounding context.

Formally, let the individual word-strings begin at character inputs with indices t0, t1, . . . , tn, then we
define contextual string embeddings of these words as:

wCharLM
i :=

[
hf
ti+1−1
hb
ti−1

]
(8)

We illustrate our approach in Figure 2 for a word in an example sentence, with the fLM in red and the
bLM shown in blue.

Our approach thus produces embeddings from hidden states that are computed not only on the char-
acters of a word, but also the characters of the surrounding context, since it influences the LM’s ability
to predict likely continuations of a sentence. As we later illustrate in Section 3.4, our proposed approach
thus produces different embeddings for the same lexical word string in different contexts, and is able to
accurately capture the semantics of contextual use together with word semantics itself.

2.3 Sequence Labeling Architecture
In the default configuration of our approach, the final word embeddings are passed into a BiLSTM-CRF
sequence labeling module as proposed by Huang et al. (2015) to address downstream sequence labeling
tasks. Then let us call the inputs to the BiLSTM gl: w0, . . . ,wn. Then we have that:

ri : =

[
rfi
rbi

]
(9)

Where rfi and rfi are the forward and backward output states of the BiLSTM gl. The final sequence
probability is then given by a CRF over the possible sequence labels y:

P̂ (y0:n|r0:n) ∝
n∏

i=1

ψi(yi−1, yi, ri) (10)

Where:

ψi(y
′, y, r) = exp(Wy′,yr+ by′,y) (11)

Alternatively, we also experiment with directly applying a simple feedforward linear architecture (es-
sentially multinomial logistic regression (Menard, 2018)). This configuration simply linearly projects
the hidden states of the neural character LM to make predictions:

ri = Wrwi + br (12)

Then the prediction of the label is given by:

P (yi = j|ri) = softmax(ri)[j] (13)

Stacking Embeddings. Current sequence labeling models often combine different types of embeddings
by concatenating each embedding vector to form the final word vectors. We similarly experiment with
different stackings of embeddings; for instance in many configurations it may be benficial to add classic
word embeddings to add potentially greater latent word-level semantics to our proposed embeddings. In
this case, the final words representation is given by

wi =

[
wCharLM

i

wGloV e
i

]
(14)

Here wGloV e
i is a precomputed GLOVE embedding (Pennington et al., 2014). We present different

configurations of stacked embeddings in the next section for the purpose of evaluation.
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3 Experiments

We conduct an experimental evaluation to assess in how far our proposed contextual string embeddings
are useful for sequence labeling, and how they compare to existing embedding types. In addition, we
aim to gain insights into the inherent semantics of the proposed embeddings.
Tasks. To this end, we evaluate our embeddings in four classic sequence labeling tasks in their de-
fault evaluation setups, namely named entity recognition in the CONLL03 setup (Tjong Kim Sang and
De Meulder, 2003), chunking in the CONLL2000 setup (Tjong Kim Sang and Buchholz, 2000) and PoS
tagging in the default Penn treebank setup described by Collins (2002). We evaluate NER to determine
in how far our embeddings are helpful for shallow semantic tasks, while we use chunking and PoS to
determine in how far they are helpful for shallow syntactic tasks. We also include the German NER task
from the CONLL03 setup to evaluate our embeddings in a language with richer morphology.

3.1 Experimental Setup
We utilize the BiLSTM-CRF sequence labeling architecture proposed by Huang et. al (2015) in all con-
figurations of our comparative evaluation. In this architecture, we evaluate our proposed contextual
string embeddings in stacked combinations with the three types of previous embeddings discussed in
Section 1; namely (1) pre-trained static (“classic”) word embeddings (Pennington et al., 2014), (2) task-
trained (i.e. not pre-trained) static character features (Ma and Hovy, 2016; Lample et al., 2016), and (3)
pre-trained contextual word embeddings (Peters et al., 2018).
Baselines. We also evaluate setups that involve only previous word embeddings. These are effectively
reimplementations of state-of-the-art approaches within our sequence labeling architecture. We conduct
these experiments to isolate the impact of our proposed embeddings vis-a-vis earlier approaches. The
setups are as follows:

HUANG : A standard BiLSTM-CRF setup with pre-trained word embeddings, and thus a reimplemen-
tation of Huang et al. (2015).

LAMPLE : A hierarchical BiLSTM-CRF setup with pre-trained word embeddings, in which task-trained
character features are additionally computed by a character-level BiLSTM for each word. It is thus
a reimplementation of Lample et al. (2016).

PETERS : A BiLSTM-CRF setup that utilizes the release of Peters et al. (2018) in the ALLENNLP
library to produce contextualized word embeddings, and thus is effectively a reimplementation of
Peters et al. (2018) in our framework. Note that only English embeddings are provided, so we use
this baseline only on the English tasks.

Proposed approach. We evaluate our proposed contextual string embeddings in the following configu-
rations:

PROPOSED : The simplest setup of our proposed approach that relies solely on our proposed contex-
tual string embeddings, passed to a standard BiLSTM-CRF architecture. This configuration thus
matches the illustration in Figure 1.

PROPOSED+WORD : An extension of PROPOSED in which we concatenate pre-trained static word em-
beddings with our contextual string embeddings as per Equation (14), to determine whether they
complement or subsume our proposed embeddings.

PROPOSED+CHAR :A similar extension in which we concatenate task-trained character features in a hi-
erarchical BiLSTM-CRF architecture to our contextual string embeddings, to determine whether
they complement or subsume our proposed embeddings.

PROPOSED+WORD+CHAR : We also evaluate a setting in which we add both pre-trained word and task-
trained character embeddings.

PROPOSED+ALL : Finally, we evaluate a setup that uses all four embeddings. Since Peters et al. (2018)
embeddings are only distributed for English, we use this setup only on the English tasks.
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NER-English NER-German Chunking POS
Approach F1-score F1-score F1-score Accuracy

proposed
PROPOSED 91.97±0.04 85.78 ± 0.18 96.68±0.03 97.73±0.02
PROPOSED+WORD 93.07±0.10 88.20 ± 0.21 96.70±0.04 97.82±0.02
PROPOSED+CHAR 91.92±0.03 85.88 ± 0.20 96.72±0.05 97.8±0.01
PROPOSED+WORD+CHAR 93.09±0.12 88.32 ± 0.20 96.71±0.07 97.76±0.01
PROPOSED+ALL 92.72±0.09 n/a 96.65±0.05 97.85±0.01

baselines
HUANG 88.54±0.08 82.32 ± 0.35 95.4±0.08 96.94±0.02
LAMPLE 89.3±0.23 83.78 ± 0.39 95.34±0.06 97.02±0.03
PETERS 92.34±0.09 n/a 96.69±0.05 97.81± 0.02

best published
92.22±0.10 78.76 96.37±0.05 97.64
(Peters et al., 2018) (Lample et al., 2016) (Peters et al., 2017) (Choi, 2016)
91.93±0.19 77.20 95.96±0.08 97.55
(Peters et al., 2017) (Seyler et al., 2017) (Liu et al., 2017) (Ma and Hovy, 2016)
91.71±0.10 76.22 95.77 97.53±0.03
(Liu et al., 2017) (Gillick et al., 2015) (Hashimoto et al., 2016) (Liu et al., 2017)
91.21 75.72 95.56 97.30
(Ma and Hovy, 2016) (Qi et al., 2009) Søgaard et al. (2016) (Lample et al., 2016)

Table 2: Summary of evaluation results or all proposed setups and baselines. We also list the best published scores for each
task for reference. We significantly outperform all previous works on NER, and slightly outperform the previous state-of-the-art
in PoS tagging and chunking.

3.2 Model Training and Parameters

Character-level language models. We train our LMs using SGD to perform truncated backpropagation
through time (BPTT) with a window length of 250, a non-annealed learning rate of 20.0, a batch size
of 100, clipping gradients at 0.25 and dropout probabilities of 0.25. We prepare the data by unking-the
rarest 0.0001 percent of characters. We set the number of hidden states of the (one-layered) LSTM to
2048. We halt training by tracking the performance on the validation set, stopping when negligible gains
were observed, or after 1 week, whichever came first.

We train our English models on the 1-billion word corpus (Chelba et al., 2013) and our German
models on a corpus of half a billion words aggregated from various open source corpora in the OPUS

project2. After training, we find the models trained for the full week achieve character level perplexity
on the supplied test-set of 2.42 for English and 2.38 for German. Resources did not allow us to train for
longer or on larger language model variants. We hypothesize that more resources and time would permit
learning an even better model.
Sequence tagging model. We train the sequence tagging model using vanilla SGD with no momentum,
clipping gradients at 5, for 150 epochs. We employ a simple learning rate annealing method in which we
halve the learning rate if training loss does not fall for 5 consecutive epochs. Following recommendations
of Reimers et al. (2017)’s in-depth analysis of hyperparameters in sequence labeling, we utilize varia-
tional dropout, set the number of hidden states per-layer of the LSTM to 256, set the number of LSTM
layers to 1, and perform model selection over the learning rate ∈ {0.01, 0.05, 0.1} and mini-batch size
∈ {8, 16, 32}, choosing the model with the best F-measure (for NER and chunking) or accuracy (for
PoS) in the best epoch as judged by performance on the validation set. Following Peters et al. (2017),
we then repeat the experiment for the model chosen 5 times with different random seeds, and train using
both train and development set, reporting both average performance and standard deviation over these
runs on the test set as final performance.
Classic word embeddings. Following Reimers et al. (2017), we use GLOVE embeddings for English
NER and KOMNIOS embeddings (Komninos and Manandhar, 2016) for PoS tagging and chunking. For
German, we use the German FASTTEXT embeddings (Grave et al., 2018). In configurations that train
character features, we apply a BiLSTM with 25 hidden states to each word separately and extract the
final hidden output states (see Lample et al. (2016)).

2We aggregate over the PARACRAWL, EUROPARL, OPENSUBTITLES2018, and WIKIPEDIA releases in OPUS for versatile
text and to allow reproduction of our results.
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NER-English NER-German Chunking POS
Embedding + Architecture F1-score F1-score F1-score Accuracy

PROPOSED+WORD

+BiLSTM-CRF 93.07 ± 0.10 88.20 ± 0.21 96.70 ± 0.04 97.82 ± 0.02
+Map-CRF 90.17 ± 0.06 85.17 ± 0.04 96.05 ± 0.04 97.62 ± 0.01
+Map 79.86 ± 0.12 76.97 ± 0.16 90.55 ± 0.05 97.35 ± 0.01

PROPOSED
+BiLSTM-CRF 91.97 ± 0.04 85.78 ± 0.18 96.68 ± 0.03 97.73 ± 0.02
+Map-CRF 88.62 ± 0.15 82.27 ± 0.22 95.96 ± 0.05 97.53 ± 0.02
+Map 81.42 ± 0.16 73.90 ± 0.09 90.50 ± 0.06 97.26 ± 0.01

CLASSIC WORD EMBEDDINGS
+BiLSTM-CRF 88.54 ± 0.08 82.32 ± 0.35 95.40 ± 0.08 96.94 ± 0.02
+Map-CRF 66.53 ± 0.03 72.69 ± 0.12 91.26 ± 0.04 94.06 ± 0.02
+Map 48.79 ± 0.27 57.43 ± 0.12 65.01 ± 0.50 89.58 ± 0.02

Table 3: Additional ablation experiment in which we evaluate our approach without BiLSTM and CRF. Here, we instead use
a simple linear map over the embeddings to determine their direct information content.

3.3 Results

Our experimental results are summarized in Table 2 for each of the four tasks. We find that our approach
either slightly or strongly surpasses all previously published results. This shows that our proposed con-
textual string embeddings are indeed highly useful for sequence labeling. In more detail, we make the
following observations:
New state-of-the-art for NER. We find that our approach performs particularly well on the task of
named entity recognition. For English, we surpass the previous state-of-the-art approach by a significant
margin (93.09 F1, ↑0.87 pp vs. Peters et al. (2018)). For German in particular, we significantly raise the
state-of-the-art (88.33 F1, ↑9.56 pp vs. Lample et al. (2016)). We hypothesize that pre-trained contextual
character-level features are particularly helpful for this task, since entities are an open vocabulary of
names that are often indicated by character features (such as capitalization or endings), as well as their
contextual use. In addition, the CONLL03 shared task data set contains many sentences (such as article
titles) that are in all-caps; since most traditional embeddings perform lower casing to manage vocabulary
size, we assume that our character model can better capture the features of such sentences.
Good performance on syntactic tasks. We also find that our approach slightly outperforms the latest
state-of-the-art approaches for chunking and PoS tagging. We do not however see the same improve-
ments as for NER, which we mainly attribute to the fact that syntactic tasks are already solved by current
approaches to very high accuracy, making it difficult to record further strong improvements (see Man-
ning et al. (2014) for a discussion of this issue).
Traditional word embeddings helpful. Additionally, we observe that the added use of classic word
embeddings in setup PROPOSED+WORD often produces the best results. Especially for NER, the use of
classic word embeddings increases average F1 score by 1.1 pp to 93.07, compared with 91.97 for PRO-
POSED. We hypothesize that classic word embeddings capture word-level semantics that complement
the strong character-level features of our proposed embeddings. We therefore recommend the setup
PROPOSED+WORD as default setup for sequence labeling tasks.
Task-specific character features unnecessary. Another observation is that setups with task-specific
character features (PROPOSED+CHAR and PROPOSED+WORD+CHAR) do not perform better than those with-
out. This indicates that they are largely subsumed by our proposed embeddings, and are thus no longer
required. A positive side-effect of this is that this simplifies training of the sequence labeler (see Sec-
tion 3.5).

3.4 Inherent Semantics
Quantiative investigation (Table 3). To gain additional insight into the content of the contextual string
embeddings relative to the task, we replace the standard BiLSTM-CRF in the sequence labeling architec-
ture with a direct feedforward map as per Equation (12), with and without a CRF decoder. This simplified
approach makes predictions directly on the basis of the proposed embeddings without additional learning
of the BiLSTM recurrence. The results for this simplified architecture are displayed in Table 3 for the
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word context selected nearest neighbors

Washington (a) Washington to curb support for [..] (1) Washington would also take [..] action [..]
(2) Russia to clamp down on barter deals [..]
(3) Brazil to use hovercrafts for [..]

Washington (b) [..] Anthony Washington (U.S.) [..] (1) [..] Carla Sacramento ( Portugal ) [..]
(2) [..] Charles Austin ( U.S. ) [..]
(3) [..] Steve Backley ( Britain ) [..]

Washington (c) [..] flown to Washington for [..] (1) [..] while visiting Washington to [..]
(2) [..] journey to New York City and Washington [..]
(14) [..] lives in Chicago [..]

Washington (d) [..] when Washington came charging back [..] (1) [..] point for victory when Washington found [..]
(4) [..] before England struck back with [..]
(6) [..] before Ethiopia won the spot kick decider [..]

Washington (e) [..] said Washington [..] (1) [..] subdue the never-say-die Washington [..]
(4) [..] a private school in Washington [..]
(9) [..] said Florida manager John Boles [..]

Table 4: Examples of the word “Washington” in different contexts in the CONLL03 data set, and nearest neighbors using
cosine distance over our proposed embeddings. Since our approach produces different embeddings based on context, we
retrieve different nearest neighbors for each mention of the same word.

setups PROPOSED and PROPOSED+WORD, as well as for a setup that involves only traditional word em-
beddings (GLOVE for English NER, KOMNIOS for English PoS and chunking, FASTTEXT for German
NER).

We find that the effect of removing the BiLSTM layer on downstream task accuracy is far lower for
the proposed embeddings than for classic embeddings. For the setups PROPOSED and PROPOSED+WORD,
we record only an average drop of 3% in F-score/accuracy between the BiLSTM-CRF and Map-CRF
architectures. This stands in contrast to classic embeddings in which we find an average drop of 20%
from BiLSTM-CRF to Map-CRF. This indicates that the inherent semantics of the proposed embeddings
are meaningful enough as to require much less powerful learning architectures on top to perform down-
stream sequence labeling tasks. In particular, for PoS tagging, the simple feedforward map is competitive
to BiLSTM and much more effective to train.
Qualitative inspection (Table 4). To illustrate the contextualized nature of our proposed embeddings,
we present example embeddings of the polysemous word “Washington” in different contexts. We com-
pute contextual string embeddings for all words in the English CONLL03 corpus and compute nearest
neighbors in the embedding space using the cosine distance. We then look up nearest neighbors for
different mentions of the word “Washington”.

As Table 4 shows, the embeddings successfully pry apart person, place, legislative entity and team
(a-d). For instance, “Washington” used as last name in context (b) is closest to other last names, many of
which are also place names (“Carla Sacramento”); “Washington” used as a sport team name in context
(d) is closest to other place names used in sports team contexts. We include a negative example (e) in
Table 4 in which the context is not sufficient to determine the type of mention. We hypothesize that
modeling semantics in context is a key feature that allows our proposed embeddings to better address
downstream sequence labeling task.

3.5 Discussion

Our proposed approach is one of the first to leverage hidden states from a language model to im-
prove sequence labeling performance. Two prior works have suggested related approaches: The first
is Liu et al. (2017) that jointly train a character-level language model together with the sequence labeling
BiLSTM. In effect, this means that the language model is trained only on labeled task data and therefore
has orders of magnitude fewer data available than our proposed approach (which we can pre-train on
basically unlimited amounts of unlabled data). We hypothesize that this is the main reason for why our
approach outperforms Liu et al. (2017) across all tasks.

A second approach is the method by Peters et. al (2017) which proposed to extract hidden states from
pre-trained word-level language models as features for downstream NLP tasks. They report new state-
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of-the-art results for NER (Peters et al., 2018) and chunking (Peters et al., 2017), but require the training
of massive word-level language models: their best configuration uses a language model that was trained
for 5 weeks on 32 GPUs (Jozefowicz et al., 2016), and still requires lower casing of all words to deal
with the large vocabulary size. Their approach is the strongest baseline against which we compared.

We similarly propose to utilize trained LMs to generate embeddings, but consider LM at the character
level. This has a number of advantages: First, character-level LM is independent of tokenization and
a fixed vocabulary. Second, they produce stronger character-level features, which is particularly useful
for downstream tasks such as NER. Finally, such models have a much smaller vocabulary size (distinct
characters vs. distinct words) and are thus significantly easier to train and deploy in applications: the LM
parameter-count scales according to nlayers n2hidden (not true for word-level LM since these contain many
inputs) and may be trained in 1 week on 1 GPU (e.g. significantly less than the 5 weeks on 32 GPUs
used by Peters et al. (2017)). This allowed us to train models for other languages such as German with
moderate resources, and thus allows our method to more effectively scale to new languages or domains.

4 Conclusion
We have proposed novel contextual string embeddings and a method for producing them using neural
character LM. We find that they capture syntactic-semantic word features and disambiguate words in
context, resulting in state-of-the-art performance in classic NLP sequence labeling tasks. To facilitate
reproduction of our experiments, and enable application of our proposed embeddings to other tasks, we
release all code and pre-trained language models in a simple-to-use framework to the research commu-
nity3. Future work will focus on applying these embeddings to additional sentence level tasks such as
image-retrieval and neural translation.
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