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Abstract

Bayesian linguistic phylogenies are standardly based on cognate matrices for words referring to
a fix set of meanings—typically around 100-200. To this day there has not been any empirical
investigation into which datasize is optimal. Here we determine, across a set of language families,
the optimal number of meanings required for the best performance in Bayesian phylogenetic
inference. We rank meanings by stability, infer phylogenetic trees using first the most stable
meaning, then the two most stable meanings, and so on, computing the quartet distance of the
resulting tree to the tree proposed by language family experts at each step of datasize increase.
When a gold standard tree is not available we propose to instead compute the quartet distance
between the tree based on the n-most stable meaning and the one based on the n + 1-most
stable meanings, increasing n from 1 to N − 1, where N is the total number of meanings. The
assumption here is that the value of n for which the quartet distance begins to stabilize is also the
value at which the quality of the tree ceases to improve. We show that this assumption is borne
out. The results of the two methods vary across families, and the optimal number of meanings
appears to correlate with the number of languages under consideration.

1 Introduction

Phylogenetic methods—both distance-based and character-based methods (specifically Bayesian phy-
logenetic inference)—from computational biology are being widely used in historical linguistics and
typology, for phylogenetic inference, for triangulating homelands of proto-languages (Wichmann et
al., 2010b), for investigating rates of lexical change (Greenhill et al., 2017), dating and spread of lan-
guage families (Gray et al., 2009; Holman et al., 2011; Bouckaert et al., 2012), reconstruction of proto-
languages (Bouchard-Côté et al., 2013), and for investigating typological universals (Dunn et al., 2011).

Most of the above studies require cognate matrices based on wordlists annotated by experts for cog-
nacy. Each column in such a matrix represents a cognate class, with 1’s and 0’s indicating whether or
not a form in the shared ancestral language has a reflex in the descendant languages with a given pre-
defined meaning pertaining to the fixed list of meanings. Such cognate matrices are fed to Bayesian
phylogenetic software such as MrBayes (Ronquist et al., 2012b), BEAST (Drummond et al., 2012) or
BayesPhylogenies (Pagel and Meade, 2004). An alternative approach is to apply distance-based methods
(Wichmann et al., 2010a; Jäger, 2013; Rama and Borin, 2015). Such methods have the advantage that
they do not necessarily require labor-intensive cognate identification or the assumption which goes with
cognate identification, namely that the languages analyzed are actually related. Instead, an aggregate
phonetic distance can be computed. As in biology, the most popular algorithm for inferring phylogenies
from linguistic distance data has been Neighbor-Joining (Saitou and Nei, 1987). All the above meth-
ods have typically been applied using variants of Swadesh meaning lists (Swadesh, 1952), sometimes
adapted for the language family in focus.

Some information is already available concerning the optimal word list size for distance-based
linguistic phylogenetic inference. The pertinent literature is reviewed in the next section. As for
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character-based methods, such as Bayesian ones, there is no study investigating the optimal meaning
list length when inferring linguistic phylogenies. One reason for this could be the computational costs
involved in inferring millions of trees for each of the cumulative meaning lists. To the best of our
knowledge the present paper represents the first known computationally intensive study in this direction.
We infer trees for eleven language families (a total of 313 languages) using Bayesian phylogenetic
inference procedure and apply two methods to determine whether the quality of trees stops changing as
the size of the word list increases. The first method requires expert phylogenetic trees for validation. It
is similar in nature to one applied by Holman et al. (2008), described in the next section. The second
method is entirely novel and does not require expert trees. Both methods are applied to the five language
families in our sample for which reasonably reliable expert trees were available, and we show that the
results are similar. Thus support is found for also including results for the second method, which does
not require expert trees. Thereby results could be added the remaining six language families and more
reliable statistics was obtained.

In this paper, we ask the following research questions:

• Is there any optimal list length after which there is no improvement in the trees inferred from
Bayesian phylogenetic inference procedure?

• Is there any procedure to determine the optimal list length when there is sparse historical linguistic
research regarding the genetic tree for a language family?

The structure of the paper is as follows. We discuss some work related to determining ranks of item
stability in section 2. The problem and our approach are described in section 3. Section 4 presents the
datasets and outlines how Bayesian phylogenetic inference is applied. Section 5 presents and discusses
the implications of our results and is followed by conclusion in section 6.

2 Related work

Holman et al. (2008) used 245 100-item word lists from languages of 69 families previously compiled
for another paper (Brown et al., 2008) and then devised a stability measure quantifying the resistance
of a meaning to undergo lexical replacement. The authors ranked the 100 meanings by the order of
stability and then created lists consisting of the 5, 6 . . . 100 most stable meanings. They then proceeded
to infer linguistic trees from the meaning lists, computing the fit of the trees to expert trees. The authors
found that the quality of the trees ceased to improve when using more than the 40 most stable meanings
(and subsequently 40-item lists were collected for as many languages of the world as possible, ultimate
leading to the so-called ASJP database of Wichmann et al. (2018), covering more than two thirds of the
world’s languages). Evaluation studies (Wichmann et al., 2010a; Pompei et al., 2011; Jäger, 2013; Rama
and Borin, 2015) have suggested that the quality of the phylogenetic trees inferred from 40-item word
lists is quite high when compared to gold standard phylogenetic trees.

Another investigation of the effect of the number of meanings on the quality of a phylogeny is rep-
resented by Petroni and Serva (2010). The authors rank 200-item meaning lists of 50 Austronesian and
50 Indo-European languages through a stability measure derived from the Levenshtein distance between
synonyms across word lists. They then infer a distance-based tree for each cumulative meaning list and
compare the tree with the Levenshtein distance tree inferred from the full dataset using the Robinson-
Foulds distance (Robinson and Foulds, 1979). The authors observe that the Robinson-Foulds distance
drops as the length of meaning list changes from 1 to 200. The authors do not compare the inferred trees
from subsets to the gold standard family tree. Neither do the authors use the cognate information to infer
trees. Instead, the distance between two languages is based on aggregate Levenshtein distance computed
between synonyms in the word lists.

In another work, Rama and Borin (2013) computed phoneme n-gram entropy for synonyms belong-
ing the 100-item meaning lists from 245 languages used by Holman et al. (2008). Then they rank the
meanings in order of increasing entropy. The meaning with the lowest entropy is the most stable item.
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The authors find that the entropy-ordered meaning lists’ ranks correlate highly with the order inferred by
Holman et al. (2008).

In a related work, which uses Bayesian inference, Pagel and Meade (2006) employ a Bayesian phylo-
genetic inference model where each meaning is treated as a separate partition within the complete dataset
(cf. table 2). Each partition or meaning has a separate weight that contributes to the likelihood calcula-
tion. The weight for each meaning is inferred through an MCMC procedure (cf. section 4.2 for details
on Bayesian phylogenetic inference procedure). Then the authors correlated the mean weight for each
meaning estimated from the posterior samples with the number of cognate classes in the meaning for
87 Indo-European languages and 95 Bantu languages. The authors find a positive correlation (r > 0.6)
between the mean weights and the number of cognate classes for both language families.

In a follow-up paper, the same authors Pagel et al. (2007) interpreted the inferred weight from posterior
samples as an index for lexical replacement and found a negative correlation with corpus-based estimates
of the frequency of words representing the different meanings. In essence, meanings with low frequency
undergo lexical replacement more easily than meanings with high frequency. In the present paper, we
also apply Bayesian inference procedure to cumulative datasets ranked by the diachronic lexical stability.

3 Problem and approach

To investigate the influence of the datasize on the quality of a Bayesian phylogeny, word lists of different
sizes must be produced. In doing so, it is necessary to take the differential stabilities of the words
corresponding to different meanings into account, because more stable items are expected to lead to
better phylogenies and the influence of stability can thus mask the influence of the number of items. It
is well known that the words for some meanings tend to be more quickly replaced than words for some
other meanings.

Different methods and datasets discussed in section 2 lead to somewhat different assessments of rela-
tive stabilities, but not to such a degree that any major controversies have arisen. The measure of stability
used in the present paper is based on the simple and quite old idea idea (cf. Thomas (1960), Kroeber
(1963), and Oswalt (1970)) that words for more stable items can be identified by their greater tendency
to yield cognates within groups of closely related languages than words for less stable items. Here we
use the number of cognate classes as a measure of stability: the smaller the number of cognate classes
found for a given meaning is, the fewer word substitutions there would have been, and thus the greater
the stability. Having ranked the meanings in this way for a given language family we can go on to define
word lists of different sizes, n, each consisting of words for the n-most stable meanings. As a note, in
case of ties—two or more equally stable meanings—these meanings will be arbitrarily ranked.

We propose two tests for comparing the quality of trees based on two meaning lists differing by the
number of items they contain. In the first test, for each of the two meaning lists, we report the average of
the generalized quartet distances (GQD) between the posterior tree distribution and a gold standard tree.
We hypothesize that after reaching a certain size, n, of meaning list, the difference between the average
GQD distance between the list having n meanings and the one having n + 1 meanings will stabilize.
This first test is designed for cases where the gold standard family tree is reasonably well established
and uncontroversial. This is not always the case, since the amount of historical linguistic work dedicated
to language families throughout the world varies greatly (Campbell and Poser, 2008). For cases where
expert classifications are lacking or not very trustworthy we propose a second test that does not depend on
the gold standard tree. This test consists in computing the GQD’s between trees inferred from meaning
lists of size n and n+ 1, where n ranges from 1 to the next to largest number of meanings covered in the
dataset used, and then plot the average quartet distance for each such pair. Our hypothesis is that after a
point, the difference of average quartet distances will begin to stabilize.

4 Materials and Methods

In this section, we describe the datasets, tree inference procedure, and the evaluation procedure.
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Family Languages Meanings Sources

Austronesian 96 210 Gray et al. (2009)
Mayan 30 100 Wichmann and Holman (2013)
Mixe-Zoque 10 100 Cysouw et al. (2006)
Indo-European 52 208 Dunn (2012)
Uto-Aztecan 31 100 Miller (1984)
Afro-Asiatic 25 100 Militarev (2000)
Bai 9 110 Wang (2006)
Chinese 18 180 Dàxué (1964)
Mon-Khmer 16 100 Peiros (1998)
Ob-Ugrian 21 110 Zhivlov (2011)
Tujia 5 109 Starostin (2013)

Table 1: Number of languages, meanings, and sources for each dataset.

4.1 Datasets
The experiments involving expert trees are performed on datasets belonging to five different language
families: Austronesian, Mayan, Mixe-Zoque, Indo-European, and Uto-Aztecan. In addition to this
dataset we draw on another six language families or subfamilies: Afro-Asiatic, Bai, Chinese, Mon-
Khmer, Ob-Ugrian, and Tujia. The number of languages, number of meanings, and sources for each
dataset is given in Table 1. In case of Austronesian and Indo-European, we use a subset of languages
provided in Jäger et al. (2017).

Each of the above datasets is a multilingual word list with expert annotated cognate judgments con-
cerning the words representing each meaning. An excerpt of a multilingual word list from Indo-European
is shown in table 2a. The meanings are ordered by the number of cognate classes. We also show the
corresponding binary matrix in table 2b. The binary matrix has 2 columns and 3 columns for the mean-
ings ALL and AND since there are, respectively, two and three cognate classes for the meanings ALL
and AND. In contrast, the meaning NAIL, for instance, has only one cognate class since all the daugh-
ter languages show words that can be traced back to the Proto-Indo-European stage. The meanings are
accumulated at each rank and converted to a binary matrix of dimensions L× C where L is the number
of languages and C is the number of cognate sets in the list of meanings accumulated. We explain the
Bayesian phylogenetic inference and the tree evaluation algorithms below.

Language ALL AND . . .

English O:l1 aend1 . . .
German al@1 Unt1 . . .
French tu2 e2 . . .
Spanish toDo2 i2 . . .
Swedish "al:a1 Ok:3 . . .

(a) Forms and cognate classes

Language ALL AND

English 1 0 1 0 0
German 1 0 1 0 0
French 0 1 0 1 0
Spanish 0 1 0 1 0
Swedish 1 0 0 0 1

(b) Binary Matrix

Table 2: Excerpt from meaning list showing cognate classes (table 2a) and the binary cognate matrix
(table 2b) for ALL and AND in Germanic and Romance subfamilies of Indo-European. The superscript
indicates words that are cognate.

The meanings ranked by the number of cognate classes in each of the five families for which we make
use of expert trees are provided below. A number in a square bracket introduces meanings for which
there are as many cognate classes as the number indicates. The lists have some interest in their own
right since they contribute to the available empirical data on word stabilities across different language
families. For reasons of page limitations we do not include the remaining six families.
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Austronesian : [1] fifty, [2] twenty, six, [3] stickwood, seven, louse, five, [4] to yawn, breast, ten,
eye, [5] two, that, to die/be dead, three, fruit, eight, nine, [6] one thousand, father, [7] liver, [8] we,
to vomit, they, new, four, i, to pound/beat, [9] thou, who, one hundred, [10] name, to dig, to choose,
stone, he/she, branch, when, to come, above, [11] thin, what, wife, mother, to hide, to grow, one, to buy,
[12] dust, worm/earthworm, root, star, salt, toeat, [13] person/human being, in/inside, this, to drink, leaf,
woman/female, feather, needle, to dream, [14] fog, head, where, lake, bird, rain, ear, thick, to hear, if,
to fear, bad/evil, road/path, [15] fire, to sleep, right, blood, hair, tongue, to climb, sky, moon, to chew,
[16] to kill, you, to shoot, to burn, man/male, to throw, child, and, to steal, thatch/roof, house, ash, [17]
shoulder, how, night, tail, to cry, bone, to blow, nose, spider, other, shy/ashamed, tooth, to open/uncover,
year, [18] flower, to swell, to think, to say, water, below, sea, to bite, to hunt, to count, to swim, to walk,
to plant, [19] to suck, fish, old, back, egg, rope, dry, to stand, narrow, to flow, heavy, day, all, [20] to see,
far, mosquito, to cook, painful/sick, wide, black, dull/blunt, snake, to spit, fat/grease, skin, green, [21]
rat, sand, hand, intestines, to sew, at, to live/be alive, to turn, cold, white, to fall, to split, [22] correct/true,
warm, wet, sharp, to squeeze, to hold, smoke, leg/foot, grass, [23] to sniff/smell, to lie down, to scratch,
left, near, woods/forest, to stab/pierce, earth/soil, husband, [24] short, no/not, to hit, to cut/hack, wing,
mouth, dog, [25] to work, lightning, meat/flesh, wind, small, to laugh, to fly, cloud, [26] to tie up/fasten,
red, yellow, [27] big, neck, belly, to breathe, to sit, [28] rotten, long, [29] to know/be knowledgeable,
good, [30] dirty, thunder.

Mayan: [1] green, white, tail, two, water, [2] tongue, path, die, yellow, bone, rain, tree, red, [3] name,
tooth, mouth, mountain, hand, one, louse, sleep, foot, dry, [4] person, fire, ash, [5] claw, flesh, heart,
blood, dog, sun, [6] neck, black, ear, fish, moon, I, [7] smoke, walk, see, earth, seed, breasts, man, skin,
drink, [8] we, grease, kill, night, nose, cloud, leaf, hair, [9] head, star, stone, say, horn, woman, come,
give, [10] sand, hot, cold, hear, full, [11] eat, egg, you, feather, new, bird, fly, stand, [12] bark, big, bite,
eye, [13] not, [14] liver, this, burn, belly, good, swim, long, [15] know, knee, [16] round, who, [17] many,
[18] all, root, [19] that, [20] lie, small, [21] what, [24] sit.

Mixe-Zoque: [1] ear, tooth, green, see, star, yellow, earth, stone, what, blood, bone, rain, white, leaf,
thou, hair, drink, road/path, dry, water, red, [2] name, black, eat, head, person, bark, ashes, tongue,
feather, walk, mountain, die, night, liver, new, moon, I, hand, tree, louse, hear, one, come, sun, tail, skin,
good, no, clawnail, stand, [3] we, neck, sand, fire, smoke, mouth, kill, horn, knee, seed, round, give, eye,
who, two, meat, root, [4] egg, fish, big, know, heart, say, bird, this, nose, fly, woman, sleep, man, [5]
warm, sit, breast, belly, cloud, long, [6] cold, bite, that, dog, full, small, swim, many, [7] fat, foot, [8] lie,
all, burn.

Indo-European: [1] name, four, three, fingernail, five, two, [2] we, what, I, who, tongue, when, ant,
[3] how, new, egg, sun, tooth, one, [4] where, give, heart, thou, mother, full, drink, [5] sit, die, night, ear,
not, star, horn, salt, day, [6] you, spit, root, snow, father, knee, [7] know, fish, this, seed, flower, eye, sew,
water, long, foot, [8] warm, there, nose, other, dry, hear, sleep, [9] fly, sand, hand, bone, wind, leaf, stand,
he, feather, right side, [10] eat, ice, far, old, that, liver, louse, sing, swim, with, smoke, wing, sea, moon,
live, suck, [11] head, they, fire, all, rain, small, flow, blow, some, wash, dog, skin, grass, here, [12] lake,
freeze, blood, bird, see, hold, red, cold, bark, laugh, green, and, breathe, lie, snake, year, meat, [13] rub,
dig, sharp, tie, man, person, heavy, fall, sky, yellow, worm, cloud, straight, [14] burn, thin, short, stone,
round, river, black, mouth, animal, think, fruit, in, come, [15] few, bite, neck, leg, breast, tree, play, left,
guts, earth, woman, white, [16] fog, count, big, rotten, float, dust, hair, wide, thick, narrow, near, say,
mountain, ashes, [17] wet, smooth, fear, pull, smell, cut, vomit, [18] right, turn, at, split, many, [19] road,
belly, hunt, good, [20] fat, back, kill, hit, wipe, if, [21] stab, scratch, walk, dull, wife, [24] tail, swell,
throw, woods, stick, [25] rope, fight, [26] child, [28] squeeze, husband, [29] dirty, [32] bad, push, [37]
because.

Uto-Aztecan: [1] tooth, bite, [2] path, liver, water, [3] ear, moon, breasts, horn, sun, tail, eye, heavy,
two, dry, [4] eat, tongue, smoke, stone, salt, nose, drink, [5] name, neck, die, knee, blood, hand, bone,
[6] star, night, earth, one, sleep, clawnail, stand, [7] fire, mouth, kill, sky, dog, louse, hear, wind, root,
[8] fish, grease, heart, no, cold, mountain, seed, [9] person, snow, see, bellybutton, give, ash, [10] head,
know, sit, snake, egg, belly, bark, hair, leaf, meat, long, [11] black, foot, sand, hot, big, tree, white, [12]
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lie, feather, vomit, sing, man, many, red, [13] skin, walk, rain, [14] burn, green, yellow, new, fly, [15]
year, cloud, small, [16] bird, [17] woman, good, [18] old, come, [19] rope.

4.2 Phylogenetic inference

The Bayesian phylogenetic inference (Ronquist and Huelsenbeck, 2003) is based on the following Bayes
rule:

f(τ,T, θ|X) =
f(X|τ,T, θ)f(τ,T, θ)

f(X)
, (1)

where X is the binary data matrix of dimensions L × C, τ is the tree topology, θ is the substitution
model parameters, T is the branch length vector of the tree. The posterior distribution f(τ,T, θ|X) is
difficult to calculate analytically since one has to sum over all the possible rooted topologies ( (2L−3)!

2L−2(L−2)! ).
Therefore, Markov Chain Monte Carlo (MCMC) methods are used to calculate the posterior probability
of the parameters τ,T, θ. The Metropolis-Hastings algorithm (a MCMC algorithm) is used to sample
the parameters from the posterior distribution. This algorithm constructs a Markov chain by proposing
change to one or a block of parameters and then accepts the proposal with the following probability:

r =
f(X|τ, t∗, θ)
f(X|τ, t, θ)

f(t∗)

f(t)

q(t|t∗)
q(t∗|t)

(2)

We assume that the parameters τ,T, θ are independent of each other. Therefore, the joint prior probabil-
ity f(τ,T, θ) can be decomposed into f(τ)f(T)f(θ). In equation 2, the inference program proposes a
change to a branch length t to generate a new branch length t∗. Subsequently, the likelihood of the data
to the new parameters is computed using the pruning algorithm (Felsenstein, 2004), which is a special
case of the Sum-Product algorithm (Jordan, 2004).

All our Bayesian analyses use binary datasets with states 0 and 1 (cf. table 2b). We employ the
Generalized Time Reversible Model (Yang, 2014) for computing the transition probabilities between
individual states. The rate variation across sites is modeled using a four category discrete Γ distribution
(Yang, 1994). We follow Lewis (2001) and Felsenstein (1992) in correcting the likelihood calculation for
ascertainment bias resulting from unobserved 0 patterns. We used a uniform tree prior (Ronquist et al.,
2012a) in all our analyses which constructs a rooted tree and draws internal node heights from a uniform
distribution. All our experiments are performed using MrBayes 3.2.6 (Zhang et al., 2015).

A Markov chain is initiated at a random starting point which consists of random tree, random branch
lengths, and random substitution model parameters. In our experiments, we run two independent chains
and sample every thousandth state in the chain and write it to the file. The runs are stopped until the
average standard deviation of split (unique bipartition in a tree) frequencies does not differ beyond a
threshold of 0.01. The size of the dataset influences the number of states needed for convergence. The
tree space required to explore grows factorially with the number of languages whereas the cost of like-
lihood calculation increases linearly with the number of languages. In the case of Austronesian, we run
the analysis for fifty million states; in the case of Indo-European and Uto-Aztecan, we run the analysis
for ten million and five million states respectively. For the rest of the datasets, we run the Markov chains
for two million states.

The Bayesian phylogenetic inference is performed on each meaning list’s binary matrix. Each meaning
list is processed cumulatively and the phylogenetic trees are stored to disk. In summary, each language
family has binary matrices equal to the number of meanings in the family. Once the inference is finished,
we proceed to evaluate the phylogenetic trees as described in the next subsection. For the evaluation we
discarded the initial 25% of the trees as part of burnin and used the rest of the trees for evaluation.
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4.3 Evaluation of inferred trees
The quality of inferred phylogenetic trees is evaluated using the quartet distance (Christiansen et al.,
2006). The quartet distance measures the distance between two trees in terms of the number of different
quartets. A quartet is a subtree consisting of four languages. A quartet for languages a, b, c, d can either
be a star quartet when there is no internal branch separating the leaves or a butterfly quartet when there
is an internal branch separating any two leaves from the two other leaves. The quartet distance measures
the total number of different butterflies and star quartets divided by the total number of possible quartets
in the tree. However, this definition of quartet distance does not work well when the gold standard tree
is unresolved and has non-binary internal nodes. Expert linguistic phylogenies often have unresolved
internal nodes due to lack of detailed knowledge causing the splits. In such a case the quartet distance
penalizes the inferred tree because a butterfly quartet in the inferred tree is a star quartet in the gold
standard tree and the former will be counted as erroneous. To remedy this, Pompei et al. (2011) proposed
an extension to quartet distance known as Generalized Quartet Distance (GQD), which measures the
distance between a binary tree and the gold standard tree as the number of different butterflies divided
by the number of butterflies in the gold standard tree. We extract the gold standard trees from Glottolog
(Hammarström et al., 2017)—a publicly available repository of language references and phylogenetic
trees.

5 Results and Discussion

5.1 Comparison with gold standard trees
The results of the first test are given in Figure 1. Here, we plot the GQD as a function of number of
meanings in each meaning list. Each point in the graph presents the GQD score for each meaning list.
We fit a LOESS curve for each language family.1 For all families but Austronesian the most drastic effect
of list length size is seen for the first 50 or so items. For Mayan and Uto-Aztecan the GQDs appear to
fluctuate not far after this point, whereas for Indo-European the drop continues to somewhat beyond 100
items. For Austronesian the regime with the most drastic drop is for the first 100 or so items, and then a
slower drop sets in, continuing for the remainder of the curve.

0 50 100 150 200
Rank

0

0.2

0.4

0.6

0.8

GQ
D

Family
Austronesian
Indo-European
Mayan
Mixe-Zoque
Uto-Aztecan

Figure 1: Lineplot of GQD of meaning lists sorted by the number of cognate classes when compared
with gold standard trees. The trendlines are drawn using LOESS smoothing.

5.2 Comparison between successive trees
The second method is designed for related languages where the gold standard tree is not determined to
the fullest satisfaction of the language family experts. Following this method, we compute the GQD
between the inferred trees from successive meaning lists and then plot the GQD. The results, shown in
Figure 2 are remarkably similar to the ones making reference to a gold standard tree, displayed in Figure

1All the plots are generated using plotnine python library available at http://plotnine.readthedocs.io/
en/stable/index.html.
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1. The visual impression of similarities in the shape of the curves is supported by Pearson correlations,
which all lie in the range 0.890 > R2 > 0.967.
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Figure 2: Lineplot of GQD between two successive meaning lists. We show the LOESS fit for each
family.

Finally, we provide Figure 3, which shows plots for the remaining six language groups in our sample
for which expert trees are generally absent or less reliable.
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Tujia

Figure 3: Lineplot of GQD between two successive meaning lists for the remaining language groups in
our sample. We show the LOESS fit for each family.

5.3 Analyzing the results
In order to replace eye-balling with a more consistent identification of the cut-off between the approxi-
mately monotonic regime of each curve and the regime (if any) where fluctuations set in, we tested two
different approaches. The first approach, inspired by Grieve et al. (2017), was as follows. We compute
the Spearman rank correlation between the mean GQDs in each segment of the left tail with the corre-
sponding numbers of meaning items, increasing the size of the segment in steps of one datapoint from
2 to the maximal number of meanings. For instance, for a segment of the curve corresponding to rank
1-10 we correlate the 10 GQD values with the series of numbers 1-10. As long as the result continues to
be a strong negative correlation one could consider the curve to be approximately monotonically falling.
Here we experimented with different cut-offs, including ρ = −0.96. If the increase of a segment of the
curve by one meaning results in a weaker correlation than the cut-off, this point could then be considered
to pertain to the fluctuating regime. As it turned out, there was no sensible way of defining a cut-off that
would work across all eleven cases. Moreover, this method was too sensible to local fluctuations. Instead
we applied a second and much simpler approach, which is to assume that the relevant point identifying
the point where the GQD ceases to drop as simply the minimum. Table 3 summarizes the results.
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Family Lgs. Meanings Min (gold) CC (gold) Min (consec.) CC (consec.)

Austronesian 96 210 203 3251 197 3091
Mayan 30 100 61 310 90 655
Mixe-Zoque 10 100 100+ 300+ 99 292
Indo-European 52 208 130 1078 181 1883
Uto-Aztecan 31 100 100+ 846+ 92 711
Afro-Asiatic 25 100 100+ 1273+
Bai 9 110 87 137
Chinese 18 180 174 1115
Mon-Khmer 16 100 90 606
Ob-Ugrian 21 110 96 172
Tujia 5 109 100 152

Table 3: The information on languages and total meanings from Table 1 is repeated, and in addition the
last four columns indicate the point where the curves reach their minimum (“Min”), and the correspond-
ing number of cognate classes (“CC”) for respectively the method using a gold standard (“gold”) and
the one using comparisons between consecutive size-increased meaning lists (“consec.”). A plus sign
following a number indicates that the minimum is reached when all items are used, such that we can
suspect, although we cannot know for certain, that adding some more items (also implying more cognate
classes) would continue to bring improvements.

The results in Table 3 suggest the existence of a linear correlation between the optimal number of
meanings and the number of languages to be classified for the gold standard method. The correlation is
strong (R2 = 0.786) but only barely below the 0.05 significance level (p = 0.0452). As just mentioned,
however, the real impact should come not from the mere number of items, but from the number of cognate
classes they produce. Thus, not unexpectedly, the correlation is stronger yet between the optimal number
of cognate classes and the number of languages (R2 = 0.923) and also significant (p = 0.0094). For the
method using consecutive datasets for eleven language families and groups the correlation between the
number of meanings and the number of languages is weak albeit significant (R2 = 0.537, p = 0.010);
but again the situation radically improves when the number of languages is correlated with the number
of cognate classes (R2 = 0.876, p < 0.0001).

The linear model for the optimal number of cognate classes as a function of the number of languages
intercepts at −11.24. Since to classify zero languages zero cognate classes are needed the intercept can
be set at zero, something which only requires a small adjustment, and the slope of the resulting function
will then be 32.397, indicating that ∼33 cognate classes per language classified is optimal. The gold
standard results from the smaller set of five families gives us a slope of 29.297 when the intercept is
at zero, indicating that ∼30 cognate classes is optimal. We choose to place more weight on the more
conservative of these estimates.

Our result should be highly useful in the design of future studies in Bayesian phylogenetics. The
initial decision on how many items to include in a lexical dataset can be difficult since the amount of
resulting cognate classes may be unknown, but across our case studies the number of items required was
always at least 87. Thus, for a small or medium-sized family (∼30 languages or less) the researcher
could initially aim at 100 items, but for larger families this will clearly not suffice. For around 31-100
languages 200 items may be needed, and for yet larger families more than that. Counting cognate classes
will yield a much more precise estimate of the adequacy of the sample. As an example, a recent study
of Dravidian languages (Kolipakam et al., 2018) reports that 778 cognate classes were used for inferring
a phylogeny for 20 languages. Since 20 × 33 = 660, we now have reasons to believe that this is an
adequate sample. The sample of 20 languages, however, only contains around one fourth of the total
set of Dravidian languages (Hammarström et al., 2017), so a future investigation may be directed at
extending the phylogeny. In that case it can be anticipated that it will not suffice to add data for the list
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of meanings used in Kolipakam et al. (2018)—rather, new items may have to be added.

6 Conclusion

This paper has, for the first time, addressed the question of the size of meaning lists required for the
optimal Bayesian-based inferencing of linguistic phylogenies. In our search for this optimum, that is, the
point where Bayesian inference stops improving, we find the following:

• Bayesian inference does not necessarily improve when given more cognate classes. In fact, more
data can reduce the fit with expert trees, as is seen in the case of the Mayan family. Such a situ-
ation can be explained by a high level of borrowing where less stable words are exchanged more
among lineages than more stable words, such that including these less stable words is not neces-
sarily advantageous. (Indeed, Mayan languages are known to borrow heavily from one another, cf.
Wichmann and Brown (2003)).

• The curves representing fits with gold standard trees and the ones representing fits between trees
produced by successively adding items in descending order of stability are highly similar, so the
latter can be used as a proxy for the former in order to increase the number of families sampled for
the purpose of determining the optimal list size.

• The optimal list size for Bayesian phylogenetic inference depends on the number of cognate classes
represented by the words corresponding to the items on the meaning list, and the number of cognate
classes, in turn, is strongly correlated with the number of languages under investigation. Our results
indicate that the optimal list size is one that produces around 33 cognate classes times the number
of languages to be classified.
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Sebastian Sauppe, Hagen Jung, Dik Bakker, Pamela Brown, et al. 2011. Automated dating of the world’s
language families based on lexical similarity. Current Anthropology, 52(6):841–875.
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