Killing Four Birds with Two Stones:
Multi-Task Learning for Non-Literal Language Detection

Erik-Lan Do Dinh, Steffen Eger, and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universitdt Darmstadt
http://www.ukp.tu-darmstadt.de

Abstract

Non-literal language phenomena such as idioms or metaphors are commonly studied in isolation
from each other in NLP. However, often similar definitions and features are being used for differ-
ent phenomena, challenging the distinction. Instead, we propose to view the detection problem
as a generalized non-literal language classification problem. In this paper, we investigate multi-
task learning for related non-literal language phenomena. We show that in contrast to simply
joining the data of multiple tasks, multi-task learning consistently improves upon four metaphor
and idiom detection tasks in two languages, English and German. Comparing two state-of-the-
art multi-task learning architectures, we also investigate when soft parameter sharing and learned
information flow can be beneficial for our related tasks. We make our adapted code publicly
available'.

1 Introduction

As Lakoff and Johnson (1980) argued, metaphorical concept mappings, often from concrete to more
abstract concepts, are ubiquitous in everyday life, thus they are ubiquitous in written texts. But the same
is true for other kinds of so-called non-literal language, e.g., for idioms. Boundaries between these
instances of non-literality are not always clear: for instance, “[...] a swathe of sunlight lay across the
red-tiled floor.”? can be classified as a metaphor because of its non-lexicalized figurative meaning. Few
would dispute the idiomaticity of “kicking the bucket”, as the non-literal meaning in this multi-word
expression is largely conventionalized. However, in the sentence “One approach would be to draw the
line by reference [...]” the expression “draw the line” could be classified as either metaphorical (because
it still evokes the literal senses of its constituents) or idiomatic (as it is a fixed expression with lexicalized
figurative sense).

Much effort has been spent on the detection of metaphors, idioms, and general non-literal language
use (Shutova, 2015). However, because of the named vague and subjective nature of these phenomena, a
multitude of datasets using differing definitions has emerged in the process. Even when datasets address
the same aspect of non-literality, they may use diverging or underspecified definitions; compare, e.g., the
guidelines for annotating metaphors of Tsvetkov et al. (2014) (“[...] all words that, in your opinion, are
used non-literally [...]”) and Mohammad et al. (2016) (“more complex; more distant from our senses;
more abstract; more vague; ...”).

The fuzziness of non-literality has two natural consequences: (1) training data is sparse, because dif-
ferent researchers may use diverging definitions, and hence may annotate different things rather than
extend “the same story”’; (2) high-quality training data is costly to obtain because there may be consid-
erable disagreement among crowd-workers and even trained experts regarding the labels for different
instances of (non-)literality.

In this work, we address two research questions:
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e (how) can we leverage existing datasets for non-literality, possibly using diverging definitions and
addressing different aspects of non-literality, to bootstrap classifiers on new sparse data? This ques-
tion is particularly relevant for non-literal language detection due to problem (2) above;

e do existing datasets for non-literality share common ground in the first place or are many of them
using arbitrary and mutually exclusive definitions? If the answer to this question is “yes”, then this
would call for a re-thinking of a whole computational research area, and a return to safe grounds.

To address our research questions, we apply multi-task learning (MTL) to four non-literal language
datasets. Introduced by Caruana (1993), MTL has recently been used to improve a variety of NLP tasks
with the help of other, auxiliary tasks. This includes chunking (S¢gaard and Goldberg, 2016), using POS
tagging, and spelling normalization (Bollmann and Sggaard, 2016), using orthographic data from other
domains, but also semantic tasks like entailment (Hashimoto et al., 2017) or argument mining (Schulz
et al., 2018). The underlying idea of MTL is that it is beneficial to learn several tasks jointly because
of “spill-over” effects. Some researchers have claimed that a requirement for success in MTL is task
relatedness. If this is true, then MTL is a formidable testbed for both of our research questions.

We aim at four birds, namely: We consider detection of non-literal phenomena in four different
datasets, regarding each as a separate task. These are (A) metaphor detection in content tokens, (B)
classification of metaphorical adjective-noun constructions, (C) detection of idiomatic use of infinitive-
verb compounds, and (D) non-literal usage of particle verbs. Two of the datasets comprise English data,
the other two consist of German data.

We throw two stones at them, namely: (i) an MTL sequence tagging framework using hard-parameter
sharing (Kahse, 2017) and (ii) Sluice Networks (Ruder et al., 2017), for which sharing of information
is not hard-wired, but can adjust softly. Both frameworks yield different insights because the first has
to make use of all available data, while the second can freely decide if other tasks contain relevant
information and if so, how much sharing to enable.

This work is structured as follows. We first ground our motivation to tackle four non-literal language
tasks in Section 2. There, we also discuss applications of MTL, from pure syntactic to higher-level, se-
mantic tasks. In Section 3, we describe the two systems that we compare in our experiments. We specify
the used datasets and describe their differences in Section 4. In Section 5, we discuss our experiments
and results. Finally, we conclude with an outlook on possible future work in Section 6.

2 Related Work

Work in non-literal or figurative language classification usually revolves around one specific phe-
nomenon, be it metaphor, idiom or also metonymy detection. While many approaches are monolingual,
some explore cross-lingual non-literal language classification. Tsvetkov et al. (2014) train models sepa-
rately on English adjective-noun and subject-verb-object metaphors using random forests and a variety of
semantic features, including supersenses and concreteness values. The models are then used to classify
metaphors in similarly annotated Spanish, Russian, and Farsi test sets.

To the best of our knowledge, a combined detection of multiple non-literal phenomena has not been
conducted before. This is surprising because common semantic features have already been used to
classify different kinds of non-literal language.

One such typical feature in non-literal language classification is the violation of selectional prefer-
ences (Wilks, 1978). It is used, e.g., in mer* (Fass, 1991) to classify metaphors and metonyms. While
the system distinguishes between both phenomena, it does so only after using the selectional preference
information. In a related task, Horbach et al. (2016) employ this information for classifying idiomatic
uses of infinitive verb compounds. Another feature used across different non-literal language detection
tasks is topic information. While the work by Horbach et al. (2016) includes this feature for idiom detec-
tion, Beigman Klebanov et al. (2014) utilize it to classify metaphorically used tokens. Additionally, they
make use of concreteness ratings, grounded in the Conceptual Metaphor Theory (Lakoff and Johnson,
1980). However, as argued in our introduction, concreteness is also useful for the detection of other
kinds of non-literal language. For example, Zhang and Gelernter (2015) utilize such ratings to detect
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metonymy. Further, supersenses are employed to detect metaphors (Tsvetkov et al., 2014) or non-literal
language in general (Koper and Schulte im Walde, 2017). One more feature that is often integrated is
textual cohesion, e.g., in metaphor (Schulder and Hovy, 2014) and idiom detection (Sporleder and Li,
2009). The use of such common features suggests that different aspects of non-literality require similar
information and that representation sharing may thus turn out beneficial.

Introduced in the early nineties (Caruana, 1993), multi-task learning (MTL) has been more widely
and successfully used in NLP recently (Ruder, 2017). MTL denotes a machine learning technique in
which multiple tasks are trained in parallel in the same system, using a shared representation. The
goal is to take advantage of commonalities between the different tasks. Bollmann and Sggaard (2016)
use multi-task learning for historical spelling normalization. They employ texts from different domains
as main respectively auxiliary tasks and improve upon a CRF baseline. Sggaard and Goldberg (2016)
show that task supervision at lower layers for lower-level syntactic tasks like POS-tagging is beneficial
to higher-level syntactic tasks such as chunking and CCG supertagging. Since their experiments with
semantic tasks (NER, supersense tagging) on the higher levels show no improvement, they conclude that
tasks need to be “sufficiently similar, e.g., all of syntactic nature” for multi-task learning to increase
performance. Their conclusion is challenged by Hashimoto et al. (2017), who create a similar multi-task
learning network in which lower layers predict syntactic tasks, while higher layers predict sentential
relatedness and entailment. Their semantic tasks also improve when introducing shortcut connections,
i.e., feeding the word representations into all layers of their network. In contrast, Alonso and Plank
(2017) find generally mixed performance of MTL for semantic tasks. They also use syntactic tasks as
low-level auxiliary tasks, but cannot improve performance over a single-task learning baseline for three
out of five investigated semantic tasks (NER, supersense classification, frame identification). Schulz
et al. (2018) apply MTL to another semantic task, argumentation mining. Instead of syntactic tasks
as auxiliaries, they use diverse argumentation mining datasets from different domains. Similar to our
tasks, annotation and labels vary across their different tasks due to inherent subjectivity and vagueness of
argumentation mining (as for non-literal language detection). Experimenting with artificially downsized
datasets, they show that—especially when data for the main task is sparse—MTL improves sequence
tagging results for argumentation mining, even when the tasks cover different domains. In contrast, we
also investigate the effect of auxiliary tasks with small datasets on a large-data main task.

3 System Descriptions

We conduct our multi-task learning experiments using two different architectures: a sequence tagging
framework (MTL-SEQ) (Kahse, 2017), and Sluice Networks (SLUICE) (Ruder et al., 2017).

We adapt both systems to our datasets, which only have labels for few tokens in a sentence. Thus,
overfitting on the missing/“empty” labels seems probable, and is confirmed by preliminary experiments.
To alleviate this issue, we exclude the loss on the tokens with empty labels from the total loss calculation,
so that they do not influence weight updates.

Multi-Task Learning Sequence Tagging Framework (MTL-SEQ) We employ the system by Kahse
(2017), a framework for multi-task learning sequence tagging generalizing the model of Sggaard and
Goldberg (2016). An example of a two-task setup is shown in Figure 1. It uses English metaphor classi-
fication on a token level as the main task, and English metaphor detection in adjective-noun constructions
as an auxiliary task (both described in Section 4).

After an input layer that reads in word embeddings, there are multiple shared, bi-directional LSTM
layers, thus implementing hard parameter sharing. The shared layers are followed by a number of fully
connected task-specific layers (Peng et al., 2017), storing private information for each task. At their end,
a softmax classifier predicts labels for each input token.

In addition to using pre-trained word embeddings, the architecture incorporates character-level infor-
mation to improve handling of out-of-vocabulary words. The framework can further be configured to
terminate different tasks at different layers. We set this option to randomly use one of two scenarios:
either all tasks use all BILSTM layers, or all auxiliary tasks terminate one layer before the main task.
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Figure 1: Example setup for the sequence tagging MTL framework (Kahse, 2017). It shows auxiliary
task adj-noun-met and main task tok-met. Gray blocks represent shared BiLSTM units. In this
example, both tasks are terminated after one shared BiLSTM and multiple private fully connected layers
(white H blocks). The input is task-specific and only evaluated for the respective task; pictured is input
for tok-met. “Earnings” is labeled as literal, “crashed” is labeled as a metaphor; the remaining tokens
have no label and their loss is excluded from the total loss calculation.

We optimize over several hyper-parameters, which include the number of task-specific fully connected
layers, the layer at which tasks should terminate, and word dropout rate. An overview of the hyper-
parameters and the range from which we randomly sample their values is shown in Table 1.

Sluice Networks (SLUICE) Ruder et al. (2017) introduced sluice networks as a generalization and
combination of various MTL architectures that use different information transfer techniques. Thus, it
can emulate, e.g., hard parameter sharing (Caruana, 1993), where the same layer weights (i.e., the same
layers) are used for different tasks, and cross-stitch networks (Alonso and Plank, 2017), in which train-
able parameters decide the amount of shared information between layers of separate networks. A generic
example is given in Figure 2.

The system first reads input in an embedding layer, and combines the word embeddings with character-
level embeddings (produced by a BiILSTM). This representation is passed to task-specific BILSTM net-
works, which learn to share parts of their layer outputs, i.e., activations, in the following way. Each
layer contains two different subspaces, to store both task-specific, and shared representations. Trainable
parameters « determine the amount of sharing between the subspaces of the task BiLSTMs. Parameters
B decide to which degree the output of the BILSTM layers should be used for the task-specific classifier
(a multilayer perceptron). This way, they allow for hierarchical relations.

Most hyper-parameters regarding information and weight sharing are encoded into trainable parame-
ters for sluice networks. Thus, the most important hyper-parameters are the number of BiLSTM layers
in the network, the way layer output is combined, and constraints on the subspaces (see Table 2).

Hyper-parameter value range
number of of shared BiLSTM layers {1,2,3}
number of task specific fully connected layers {0, 2}
Word dropout [0.0, 0.5]
Dropout [0.0, 0.5]
Activation function for fully connected layers  {tanh, relu}
Output layer {0, 1,2}

Table 1: Hyper-parameters for the multi-task learning sequence tagging framework (Kahse, 2017).
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Figure 2: Example for sluice networks (Ruder et al., 2017). A single input representation is passed into
task networks A and B. Both of the two networks 7 have three RNN layers j, consisting of two subspaces
G j each. For each layer output, o determines the amount of sharing between the layers of different
tasks while 3 controls the layer at which a task network terminates.

Conceptually, the largest difference between both systems is the following: MTL-SEQ implements hard
parameter sharing, i.e., the layer weights are the same for all tasks, and the structure of the network is
predefined; in particular, at which layer a task should terminate. Essentially, this amounts to using one
network for multiple tasks, trained jointly. In contrast, SLUICE has separate layers for each task, and
learns parameters which control the information flow between those task-specific layers. Further, the
level at which task predictions take place is also learned for each task. This means that two networks are
trained in parallel, that share a learnable amount of information. Comparing both approaches, we can
analyze which tasks profit from which degree of information sharing.

Hyper-parameter value range  notes
number of BiLSTM layers {2, 3}
layer connections {stitch, skip}  stitch denotes learnable 3 parameters, while skip only

uses the last BILSTM layer as classification input
subspace constraint weights  {0.1, 0.2}

Table 2: Hyper-parameters for the sluice networks.

4 Datasets and Tasks

In our experiments, we consider four different non-literal language tasks (Table 3). Specifically, we
include two metaphor detection tasks, with data being annotated on a token and on a construction level
(i.e., grammatical constructions that share one label). We further include data from two tasks classifying
idiomatic language use. The latter two tasks use German data, while the metaphor task datasets are
in English. While those tasks all cover distinct, or at least distinctly annotated, non-literal language
phenomena, on a textual level they all are examples of irregular polysemy. Thus, in many feature-based
detection systems similar or even the same features and resources are used to classify these phenomena.

Token-level Metaphor Classification We consider metaphor detection on a token level, i.e., each
(content) token should be classified as belonging to a metaphor or not. We employ the VU Amsterdam
Metaphor Corpus (Steen et al., 2010), short VUAMC, for our experiments. It is the largest available
resource in which each token is specifically annotated as being used metaphorically or literally, and
comprises four genres: academic, conversation, fiction, and news texts.

The VUAMC is annotated using very rigid annotation guidelines, MIPVU (Steen et al., 2010). In short,
each token that is not used in its most basic (i.e., most concrete, body-related, historically oldest) sense is
labeled as metaphoric. Unclear cases are resolved using specified online dictionaries. These guidelines
lead to a high inter-annotator agreement of 0.84 Fleiss’ x. At the same time, they introduce the problem
of very commonly used word senses being annotated as metaphoric. For example, prepositions such
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Task dataset size M lang example

Token-level metaphor VUAMC 103,865 15% en “Along with Sir James he found the
detection US much more attractive, [...]”
Construction level Tsvetkov et 1,738 47% en Wind and wave power providing the
metaphor detection al., (2014) green energy of the future.
Classification of Horbach et 5,249 64% de “Auch eine Uhr, die stehen geblieben
idiomatically used al., (2016) ist, geht zweimal am Tag richtig”,
verb compounds sagt er.

(“A clock that has stopped running,
is correct two times a day, too,” he

says.)
Classification of non-  Kdoper and 6,436 35% de Auf Decken sitzt man ums Feuer und
literally used particle ~ Schulte im lasst den ereignisreichen Tag
verbs Walde (2016) nachklingen.

(You sit around the fire on blankets
and let the day linger on [lit.: ring
on].)

Table 3: Investigated tasks and datasets. Size describes labeled tokens in case of token-level metaphor de-
tection (content tokens), and labeled constructions for the other tasks respectively, M denotes percentage
of non-literal labels. Non-literal use of tokens/constructions in the examples is marked bold.

as on are labeled as metaphoric when not being used in their positional sense. We partially avoid this
problem by filtering out non-content words and auxiliary verbs. Dataset statistics are given in Table 3.

Construction-level Metaphor Classification Many datasets in metaphor detection tasks label gram-
matical constructions instead of tokens, prominently, e.g., adjective-noun compounds or subject-
verb/verb-object compounds. We use the adjective-noun dataset by Tsvetkov et al. (2014). Their training
set was created by two annotators and later curated, while the test set—comprised of sentences from the
TenTen web corpus (Jakubicek et al., 2013)—was annotated by five annotators. Fleiss’ « for the latter is
reported as 0.74.

Compared to the VUAMC, the guidelines for this dataset are substantially less specific, appealing to
the intuition of the annotators (in fact, annotators were asked to mark all non-literally used words). Due
to this difference in guidelines and the focus on adjective-noun metaphors, the resulting annotations also
differ from the VUAMC, which is why we consider this a different task.

For the test set, the original 200 sentences containing the construction are available. We automatically
crawl large corpora® to obtain sentences for the constructions in the training set. Note that both training
and test sets are substantially smaller than those of the VUAMC (Table 3), by a factor of 50.

Classification of idiomatically used infinitive-verb compounds In contrast to the metaphor datasets
which can also include more novel meanings of the annotated words, e.g., “spot of information”, Horbach
et al. (2016) focus on idiomatic usage of verb compounds. This means they consider only convention-
alized figurative meanings, i.e., compounds whose figurative sense is already lexicalized. They create
a corpus of literal and idiomatic uses of six German infinitive-verb compounds (e.g., sitzen lassen—to
leave sitting/abandon). Thus, this dataset contains considerably more samples for a specific compound
(up to 1,000 for each) compared to the previous two datasets. Genres covered are newspaper and maga-
zine articles published from 1993-2013.

Two lexicographers were tasked to annotate occurrences of the compounds within a three-sentence

SukWac (Baroni et al., 2009), British National Corpus (BNC Consortium, 2007)
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context as literal or idiomatic, but were given no further guidelines. Still, they achieve an inter-annotator
agreement of 0.72 Cohen’s . The dataset contains the unanimously labeled instances and a portion of
adjudicated ambiguous cases.

Classification of non-literally used particle verbs Similar to the infinitive-verb compound dataset,
Koper and Schulte im Walde (2016) investigate pre-set constructions, specifically 165 different German
particle verbs. For each particle verb, they selected up to 50 sentences containing literal and non-literal
uses from a German web corpus, DECOWI4AX (Schifer and Bildhauer, 2012; Schifer, 2015); however,
they do not discuss the types of non-literality covered. Annotation was conducted by three German
speakers with “linguistic background” on a 6-point scale; guidelines are not disclosed. Koper and Schulte
im Walde (2016) report an inter-annotator agreement of 0.70 Fleiss’  after mapping the 6-point scale to
a binary annotation.

S Experiments

We conduct three types of experiments for MTL-SEQ and SLUICE:
e aregular single-task learning baseline (STL)

e a combined-data single-task learning baseline (MERGED), where we merge the training data of the
different tasks

e a multi-task learning setup (MTL-all), where one main task is supported by three auxiliary tasks

The MERGED baseline allows us to differentiate between causes for possible improvements, since we
want to investigate in which way additional tasks and data can influence performance. We further par-
tition our MTL experiments along languages, i.e., we carry out additional experiments separately for
German (MTL-de) and English (MTL-en) tasks. Those mono-lingual setups thus only include one auxil-
iary task.

Setup We use the same train and test split as in Tsvetkov et al. (2014) for ad j—noun-met. Thus, we
use 11% of the data as test data and the remainder as training data. We use 20% of the training data as
development data. For t ok—-met, we use a split of 70%/20%/10%. For the two German idiom datasets,
we use a training/development/test set split of roughly 80%/10%/10%.

As input to both neural networks we use 100-dimensional, bilingual word embeddings trained using
bivec (Luong et al., 2015) on a parallel (en-de) version of the Europarl corpus (Koehn, 2005).

Results We report test set results for the best performing system configurations on the development sets
and use macro F;-score to compare our results. We first analyze the results of the different architectures
separately, before comparing both approaches.

Task type tok-met adj—noun-met inf-verb part-verb
STL 0.4399 0.5172 0.8507 0.7037
MERGED 0.4600 0.5976 0.8405 0.6875
MTL-all 0.4897 0.6705 0.8602 0.7083
MTL-en 0.4277 0.5357 - -
MTL-de - - 0.8519 0.7065

Table 4: MTL-SEQ F;-scores on the test sets for the different tasks and experiment types. MTL-all
specifies that the respectively remaining three tasks are used as auxiliary tasks. MTL-en and MTL-de
stand for mono-lingual experiments, i.e., containing only one auxiliary task.
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Task type ‘ tok-met adj-noun-met inf-verb part-verb

STL 0.4833 0.5487 0.8609 0.7894
MERGED 0.4570 0.5143 0.8401 0.7965
MTL (all) 0.5604 0.6333 0.8763 0.8007
MTL (en) 0.5467 0.6207 - _

MTL (de) - - 0.8833 0.8146

Table 5: SLUICE F;-scores on the test sets for all four tasks and experiment types.

MTL-SEQ Our results for MTL-SEQ are given in Table 4.

For tok-met, MERGED already improves over the STL baseline. MTL-all further improves upon
the two. In contrast, including only adj—-noun-met as auxiliary task (MTL-en) performs even worse
than STL.

For adj—noun-met, the pattern is identical except that MTL-en slightly outperforms STL. Compar-
ing MERGED with MTL-all we see that the performance difference is mainly due to MTL-all introducing
fewer new classification errors over the STL baseline.

In other words: both metaphor tasks, where training (and evaluation) data for a particular token or
construction is sparse, profit heavily from inclusion of the idiom datasets. In contrast, using only the
respective other English metaphor dataset does not help. Here, the difference between STL and MTL-en
is not statistically significant (McNemar’s Test, p = 0.22). It is notable that the German idiom datasets
improve the English metaphor tasks by jointly fitting the same network.

The results for inf-verb and part-verb display a different pattern. MERGED performs worse
than STL and even though MTL-all improves over both baselines, the difference is not significant. Unlike
for the English datasets, MTL-de performs better than STL. The network can better fit to the datasets
which are designed to contain many instances of a particular token or construction (inf-verb and
part-verb). This is evidenced by the large differences in Fi-scores between the tasks. But these idiom
datasets also substantially improve classification for the English metaphors, regardless of differences in
language and annotated phenomenon.

SLUICE Results for SLUICE are found in Table 5.

For t ok-met, the MERGED baseline performs weaker than STL. In contrast, both MTL approaches
improve substantially over the baselines, by more than 6 percentage points over STL. Further, MTL-all
outperforms MTL-en, although not significantly so.

Similar to tok—met, for adj-noun-met MTL-all improves significantly over STL. The perfor-
mance drop from STL to MERGED is similarly large. Also, MTL-all outperforms MTL-en here, even
though not significantly. Even though the difference in F;-score between MTL-all and MTL-en is small,
they make considerably different predictions. 16 instances were labeled correctly using MTL-all, but
misclassified by MTL-en; and the same number vice versa. Thus, 16% of all 200 test instances were
classified differently by the MTL setups. This means that adding the additional idiom tasks does indeed
add further information that is helpful for some instances, but detrimental to others—more so than for
tok-met.

For inf-verb, STL again outperforms MERGED. MTL-all and MTL-de marginally improve upon
the baselines, with the latter performing best, though slightly. Again, both MTL setups show differences
in the correctly labeled instances, albeit less than it was the case for adj—noun-met (12%). These
differences are distributed similarly over the six compounds. An exception is sitzen bleiben (to stay
seated/to be stuck with something), which is considerably better classified using MTL-de than MTL-all.

Results for part-verb differ from the previous tasks, as the MERGED baseline actually perform
better than STL. Still, MTL-all and MTL-de improve upon both baselines, with the mono-lingual ap-
proach again performing slightly better.
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STL actual MTL-all actual

M L M L
redicted M 1,396 975 redicted M 1,622 1,027
P L 2580 20,660 p L 2354 20,608
Table 6: t ok—met: Confusion matrices for MTL-SEQ.
STL actual MTL-all actual
M L M L
predicted M 1,567 942 predicted M 2119 1,467

L 24409 20,745 L 1,857 20,220

Table 7: tok—met: Confusion matrices for SLUICE.

Analysis For both MTL-SEQ and SLUICE, the MTL-all approach outperforms both STL and MERGED
baselines. Contrary to MTL-SEQ, SLUICE performs worse on the MERGED baseline than STL for the
English tasks.

Consistent between both architectures is that they show significant—and indeed, very substantial—
performance gains using MTL for the metaphor datasets. For the idiom and non-literal language datasets,
while also improving using MTL, increases are smaller. We attribute this to the nature of the datasets
inf-verb and part-verb, as both comprise multiple annotated instances of few particular com-
pounds/verbs. Thus, the STL approach already yields good performance, and adding the more unstruc-
tured information of the metaphor datasets does not improve the MTL settings.

An important difference can be observed in the specific MTL setups. While MTL-SEQ fails to profit
from just one (in-language) auxiliary task, SLUICE improves significantly over STL even in this lower-
resource setup. Adding more auxiliary tasks boosts MTL-SEQ, but does not change SLUICE performance
significantly. For MTL-SEQ, this indicates that including information from just one auxiliary task skews
the main task too much in one direction, due to hard parameter sharing, while including multiple auxiliary
tasks appears to better “balance” the architecture. In contrast, SLUICE can choose to only share the infor-
mation necessary to improve the tasks, and thus already profits heavily from one auxiliary task. While
we expected an increase in performance for the small-data task ad j—noun-met using more data-heavy
auxiliary tasks, it is interesting that t ok—met also yields better results when including ad j—-noun-met
as auxiliary. We attribute this to the network successfully learning a common representation.

We investigate the improvements of MTL-all over STL on the tok-met task, using the confusion
matrices of MTL-SEQ (Table 6) and SLUICE (Table 7). For both networks, the increase in F;-score
mainly arises due to an increase in recall. This advantage, especially the increase in correctly labeled
metaphoric instances, is comparable between SLUICE and MTL-SEQ. For example, “covering” in “So
who’s covering tomorrow?” is wrongly classified as literal by both STL approaches, but correctly labeled
as metaphoric by both MTL-all configurations, i.e., with the help of auxiliary tasks. However, most of
the newly identified metaphors (i.e., found by MTL-all but not by STL) differ between the approaches.
So, in contrast to the first example, “sweet” in “That’s a sweet little village” is misclassified by both
networks in STL configuration, but correctly labeled as metaphoric only using SLUICE in the MTL-all
setting.

Finally, we compare to the state-of-the-art (SOA) on our chosen tasks. We note that such a comparison
with SOA is difficult for most tasks due to non-described test splits or usage of cross validation. The
latter was too costly in terms of computation time for our tested architectures. Nonetheless, we include
reference numbers for an approximate comparison. adj-noun-met is the only dataset for which we
have the original test split. Here, the original feature based implementation of Tsvetkov et al. (2014)
(F1 = 0.85) outperforms our approach (MTL: 0.63) by a large margin. We attribute this to heavy feature-
engineering on their part, using supersenses and concreteness information. In contrast, we perform
on par with the state-of-the-art on tok-met (Do Dinh and Gurevych (2016): F; = 0.56, our system:
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F1 =0.56). They implement a simple MLP, incorporating also POS tags and concreteness features. Their
test set is similarly large as ours. Horbach et al. (2016) report only accuracy (A = 0.86) for their cross
validation experiments on inf-verb. Our system results are comparable to their approach, albeit in a
different setup using a dedicated test set (A = 0.85 for MTL-de). However, as described in Section 2,
Horbach et al. (2016) employ a multitude of semantic features, including selectional preferences and
topic information. For part-verb, we do not reach the results of Képer and Schulte im Walde (2017).
They attain F; = 0.88 using multi-sense embeddings with Multinomial Naive Bayes in a cross validation
setting (vs. our F; = 0.81 on a test set). Since the multi-sense embeddings vastly outperform their own
single-sense baseline, it would be interesting for future work to also include this approach into our model.

6 Conclusion

To the best of our knowledge, we are the first to abstract from related non-literal language detection
tasks metaphor and idiom classification to a more general model, using multi-task learning. To this
end, we presented an evaluation of two different multi-task learning models on four related seman-
tic, non-literal language tasks in English and German: detection of metaphoric tokens, classification of
metaphoric adjective-noun constructions, classification of idiomatic use of infinitive-verb compounds,
and non-literal particle verbs. We compared both performances to respective single-task learning base-
lines, and baselines which use merged training data. While results for the latter systems are mixed, the
multi-task learning setups improved performance over the baselines in all cases. Especially the metaphor
datasets profit substantially from the multi-task setups, and the inclusion of auxiliary tasks—in the case
of hard parameter sharing even for out-of-language idiom tasks.

For all but the smallest dataset, soft parameter sharing and learned architecture outperformed hard
parameter sharing. However, the latter approach could benefit from more information (using all related
tasks as auxiliary tasks), while the former performed best in a mono-lingual setting. In both cases, data
from related non-literal language tasks increase classifier performance, which means that a common
representation within the network could be established.

Future work could explore more specifically which non-literal language tasks benefit from the inclu-
sion of which auxiliary tasks. Further, it could be investigated how classic features such as the concrete-
ness or supersenses can increase performance when viewed as lower-level semantic auxiliary tasks.
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