
Proceedings of the 27th International Conference on Computational Linguistics, pages 1521–1533
Santa Fe, New Mexico, USA, August 20-26, 2018.

1521

Assessing Quality Estimation Models for Sentence-Level Prediction

Hoang Cuong and Jia Xu
Cuny University of New York

Abstract

This paper provides an evaluation of a wide range of advanced sentence-level Quality Estimation
models, including Support Vector Regression, Ride Regression, Neural Networks, Gaussian Pro-
cesses, Bayesian Neural Networks, Deep Kernel Learning and Deep Gaussian Processes. Beside
the accurateness, our main concerns are also the robustness of Quality Estimation models. Our
work raises the difficulty in building strong models. Specifically, we show that Quality Estima-
tion models often behave differently in Quality Estimation feature space, depending on whether
the scale of feature space is small, medium or large. We also show that Quality Estimation mod-
els often behave differently in evaluation settings, depending on whether test data come from the
same domain as the training data or not. Our work suggests several strong candidates to use in
different circumstances.

1 Introduction

Quality Estimation (QE) (Blatz et al., 2004; Specia et al., 2009) is an important topic in Natural Language
Processing (NLP). QE aims to predict the quality of Machine Translation (MT) outputs without human
references. QE has a lot of potential. Such a case is automatically optimizing MT systems without
having reference of translation outputs. Another example is MT for gisting by users of online translation
systems. QE can also reduce post-editing human effort in disruptive ways. As most QE research has
conducted at sentence level, we focus on the sentence level in this study.

Prior work developed strong QE predictors by creating powerful QE features. Hand-craft and syn-
tactic feature templates have been proposed for a while (e.g. see Specia et al. (2009) and Martins et al.
(2017)). The representation of words, phrases and sentences can also be learned automatically using
Neural Networks, serving as powerful QE features (Kreutzer et al., 2015; Shah et al., 2015b; Kim and
Lee, 2016; Kim et al., 2017; Chen et al., 2017; Biçici, 2017; Martins et al., 2017).

Meanwhile, using a relevant QE model is also very important in QE. Various QE models have been
applied in different QE settings, such as Support Vector Regression (Cortes and Vapnik, 1995; Specia et
al., 2009), Ride Regression (Hoerl and Kennard, 2000; Wisniewski et al., 2013), Neural Networks (NNs)
(Avramidis, 2017; Paetzold and Specia, 2016; Paetzold and Specia, 2017) and Gaussian Processes (GPs)
(Rasmussen and Williams, 2005; Cohn and Specia, 2013).

Given that there are many powerful regression models, it is tempting to have an understanding of
which sentence-level QE models we should use. Prior work has been attempted to provide an answer
(e.g. see Cohn and Specia (2013), Soricut et al. (2012), Wisniewski et al. (2013), and Beck et al. (2016)).
However, the assessment of QE models is often limited in the number of QE features. For instance, Cohn
and Specia (2013) conduct experiments with only 17 QE features. Also, the assessment is in only the
Standard setting (i.e. test data come from the same domain as training data), which is often violated in
practice.

Interesting and important questions are still open to date. For instance, given different scale of feature
space, it is not clear which QE models we should use and how to build them properly (e.g. how deep
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a NN we should use). Given different training/test settings, it is also not clear which models produce
more robust QE performance than others.1 Specifically, we are interested in both Standard and Domain
Adaptation (DA) settings (i.e. test data come from a different domain to the training data). We also focus
on Knowledge Transfer (KT) setting (i.e. QE model is trained on a dataset from a specific language pair
but the model is tested on a test set with a different language pair).

This work provides an evaluation of a wide range of QE models and settings as the main contribution.
Not only assessing popular QE models, we also propose to use several novel models for QE including
Bayesian Neural Networks (Neal, 1996), Deep Kernel Learning (Wilson et al., 2016b), Deep Gaussian
Processes (Damianou and Lawrence, 2013). Our results also raise concern about overfitting in applying
QE models in different settings. We also show how complex the interactions are between QE features.
Meanwhile, we also show that our proposed models work very well in certain circumstances.

In detail, we summarize the most interesting findings as follows. First, Support Vector Regression,
despite being considered a strong QE model, is far from achieving top performance. It also provides a
rather weak performance in DA and KT setting. Meanwhile, our experiments show that the QE feature
space is highly complex. Specifically, we show that while the feature space could be large, most of the
features in the space are usually useful so that applying sparse QE models is often less effective than
non-sparse QE models.

Second, a shallow NN seems to gain a strong performance in the Standard setting. This is interesting,
as previous attempt to use shallow NNs for QE (e.g. see Avramidis (2017)) failed to deliver a competitive
result in the standard WMT setting (see Bojar et al. (2017) for a reference). Perhaps, their network
parameter settings are not good enough to make the model work. We also attempt to use deep NNs for
QE, and show that they do not contribute a better performance in the Standard setting. This is because
training deep NNs for QE requires lots of labeled data to control the risk of overfitting.

Increasing the number of units in the hidden layer larger could degrade the performance. Specifically,
we show that training a large NN could be overfitting, and available QE datasets are not large enough to
reduce the risk. But can we still make a very large NN work for QE? This paper shows that we can do so
by using Gaussian Processes (GPs).

We investigate GPs from the viewpoint of a non-parametric version of shallow NNs, and analyze
their advantages over NNs: GP has an infinite number of hidden units in the hidden layer, GP has a
built-in feature weighting mechanism and model is more robust to over-fitting. We also analyze their
disadvantages, showing the cases where GPs completely fail to deliver good results. Finally, we also
propose a solution to address their drawbacks.

Third, we observe a very weak performance of NNs in the DA and KT setting. While we are aware
of concerns of applying NNs to different domains in other NLP tasks (e.g. Machine Translation (Koehn
and Knowles, 2017) and Sentiment Analysis (Radford et al., 2017)), this is the first study to raise this
issue in QE. We propose three methods that make NNs work well with the challenging setting.

First, we propose to use deep NNs for QE to DA and KT settings. We attribute this observation to
the fact that deep NNs learn high-level (instead of low-level) features, which may work well across
domains/datasets. Second, we propose to use GPs under these conditions because of their robustness.

These models, however, work well only when we train them with a small set of features. We then
propose to use a combination of the two, a.k.a Deep Kernel Learning, to address the problem. For this
deep model, the GP is put on top of a NN, aiming to combine the best of both worlds. We show that it
provides an even stronger performance.

Third, we propose to use Bayesian NNs to the DA and KT setting. It is a type of neural networks with
a prior distribution on its weights. The common perception is that it is hard to apply the model to NLP
because of its difficulty in training. This paper shows that it is not the case, thanks to recent advances in
Variation Inference (with stochastic variational inference (Hoffman et al., 2013), black-box variational
inference (Ranganath et al., 2014) and the reparameterization trick (Kingma and Welling, 2014; Rezende
et al., 2014)). We show that Bayesian NNs provide another powerful solution to the problem.

1We should note that we focus on the accurateness and robustness of QE models. However, calculation cost is not considered
in comparing QE methods.
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2 Related Work

Developing different regression QE model at sentence-level has been one of the main focuses in QE.
Support Vector Regression is perhaps the most popular QE sentence-level model (Specia et al., 2009;
Soricut et al., 2012; Kozlova et al., 2016). Gaussian Processes (GPs) (Cohn and Specia, 2013; Shah et
al., 2013; Beck et al., 2015; Beck et al., 2016) and Ride Regression (Wisniewski et al., 2013) are also
popular models in QE. NNs have been widely deployed as a non-linear classification model in QE (e.g.
see Blatz et al. (2004), Esplà-Gomis et al. (2015) and Esplà-Gomis et al. (2016)). Recently, NNs have
also been attempted to use as a regression QE model at sentence-level (Avramidis, 2017; Paetzold and
Specia, 2016; Paetzold and Specia, 2017). Other less popular models are proposed, e.g. Regression
Trees (Soricut et al., 2012; Wisniewski et al., 2013), Extremely Randomized Trees (Negri et al., 2014).

Given different QE models, it is tempting to have an understanding of which QE models we should
use. There have been several attempts to answer this important question (e.g. (Cohn and Specia, 2013;
Soricut et al., 2012; Wisniewski et al., 2013; Beck et al., 2016)). For instance, Cohn and Specia (2013)
and Beck et al. (2015) show that choosing a model between GPs and SVR could make a difference.
Meanwhile, Avramidis (2017) compares NNs with SVM. The comparison, however, limits in only a
specific pair of models (e.g. GPs-SVR and SVR-NNs). Experiments are also with only medium-size
feature space (17 features) and in the Standard setting. We extend the work extensively in regards to
having a larger number of QE models, and having a systematic manner with different settings (testing
with different feature space, different training/test settings). Moreover, our results not only provide a
better understanding in regards to QE Models for sentence-level prediction, but also raise concern about
overfitting in applying QE models in different settings.

Our work also puts attention to the setting where test data comes from different distributions or do-
mains to the training/dev data (i.e. DA and KT). We share the same views with the work of Rı́os and
Sharoff (2016), Shah and Specia (2016), de Souza et al. (2014a), de Souza et al. (2014b) and de Souza
et al. (2015) in regards to this setting. Specifically, we believe utilizing a dataset from one specific dis-
tribution/domain to use for other distribution/domain is very useful. The related studies focus on using
multiple task learning (Shah and Specia, 2016; de Souza et al., 2014a), or utilizing unlabeled data (Rı́os
and Sharoff, 2016) to address the problem. Meanwhile, our work focuses on assessing the robustness of
QE models to improve model performance in this setting.

Prior work revealed that the interactions between QE features are non-linear (e.g. see Shah et al.
(2015a)). We extend the result in the sense that we show the interactions are not only non-linear but
also highly complex. However, we show that we do not need a non-stationary function to model the
relationship (i.e. whether there is a jump discontinuity or an isolated tall peak).

A distant research line is feature selection. Specifically, Soricut et al. (2012) use a computationally
intensive method to find all 224 possible combinations, from an initial set of 24 features to find the
best combinations. Another distantly related work focuses on developing non-linear methods for feature
selection in QE (Shah et al., 2015a). While the research line is distant to our study, we share the same
views with the studies in that a complex combination of features, rather than a simple linear combination,
may bring significant benefits to QE.

Our work also introduces Deep Kernel Learning, a hybrid NN with GPs, as a regression model to
not only QE but also NLP for the first time. This combination model has been attempted recently in
the Machine Learning community, pioneered by the work of Wilson et al. (2016a) and Al-Shedivat et
al. (2017). Specifically, Wilson et al. (2016a) apply the framework to airline and image classification.
Al-Shedivat et al. (2017) apply the framework to different regression problems in Machine Learning.
Recently, Bradshaw et al. (2017) also apply the framework to image classification and transfer learning.

3 Models

This section contributes a survey of different models we used in the study.
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3.1 Support Vector Regression
Support Vector Regression (SVR) is a standard model in QE. Our experiments are with a non-linear
Radial Basis Function (RBF) kernel. Model parameters are optimised via grid search with 5-fold cross
validation on the training set. SVR is a standard QE model. It is widely considered a very strong and
robust model. However, this paper shows that some models can do far better.

3.2 Kernel Ridge Regression
The form of the model learned by Kernel Ridge Regression (KRR) is identical to SVR. However, KRR
uses squared error loss while SVR uses epsilon-insensitive loss. The learned SVR is thus sparse while
KRR is non-sparse. We are interested in KRR because a comparison between the model and SVR gives
some hints about the feature space. If a sparse model (SVR) produces a better performance, the feature
space may contain lots of irrelevant features. If this is not the case, then the feature space is highly
complex as most of the features in the space are useful.

3.3 Neural Networks
Assessing the fitness of NNs to QE is the core of our study. We first study shallow NNs with three layers:
1 input layer, 1 hidden layer and 1 output layer. Prior work (e.g. see Avramidis (2017)) has tried shallow
NNs, but failed to deliver a competitive result in the standard WMT setting (see Bojar et al. (2017) for a
reference). This work, however, shows that shallow NNs bring competitive performance in the Standard
setting. Extensive experiments are also conducted with deeper NNs with more hidden layers (e.g. 2, 3,
4, 5). Our goal is to investigate, for the first time, how deep models can help QE.

3.3.1 Gaussian Processes
Giving an infinite number of units plus a prior over weights and a Bayesian interpretation altogether
turns Neural Networks to Gaussian Processes (GPs). Specifically, HTER scores Y are represented as a
sample from a multivariate Gaussian distribution from input X as Y ∼ N (0,K(X,X). Here, its mean
is a zero-vector with length N as the number of data points, and K is an N × N matrix that we get by
applying the kernel function to our data points.

The kernel function estimates the similarity of observed inputs. The intuition here is that the closer
data points are, the closer their prediction is to the others. We use the standard Squared Exponential (SE)
kernel function in our work:

k(xi, xi′)=δ2 exp
[
− 1

2

∑D

d=1

(xi,d − xi′,d
λd

)2]
. (1)

Here, xi,d denotes the dth feature value of data point xi, and D denotes the total number of features. The
output variance δ and lengthscale λd are hyperparameters.

We now discuss how to do regression with GPs. First, note that for each new input x∗, its correspond-
ing output y∗ forms a distribution:[

Y
y∗

]
∼ N

(
0,

[
K(X,X) K(X,x∗)
K(x∗, X) K(x∗, x∗)

])
. (2)

We then can derive the conditional distribution P (y∗|Y ) as P (y∗|Y ) = N (ȳ∗, σ∗), where: ȳ∗ =
K(x∗, X)K(X,X)−1Y and σ∗ = K(x∗, x∗) −K(x∗, X)K(X,X)−1K(X,x∗). The model is robust
because they marginalise over an infinitely large class of models.

For learning and prediction with GPs the inverse of the covariance matrix needs to be computed. This
inversion of a matrix scales with the number of training data points, N , as O(N3). Inference with a GP
model is thus expensive, but this can be addressed by learning a small number M of pseudo data points
and using them to train the model instead (Snelson and Ghahramani, 2006).2 In other words, we can

2We can also use a very large but placed in a computationally efficient structure instead of a small number of pseudo data
points (Wilson et al., 2015; Wilson and Nickisch, 2015).
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approximate the inverse of the covariance matrix with the inverse of theM×M “pseudo matrix” instead.
For this reason, we do not observe any problem with scaling GPs to QE datasets in our experiments. For
our implementation, GPs are implemented in the standard GPflow, a Gaussian process library using
TensorFlow (de G. Matthews et al., 2016).

3.3.2 Deep Gaussian Processes

This work will show that the relationship between the space of input features and corresponding output
is non-linear and highly complex. A further question we asked is whether we need a non-stationary
function to model the relationship (i.e. whether there is a jump discontinuity or an isolated tall peak).
One additional contribution of this work is to provide an understanding of this issue.

Specifically, we introduce another kind of deeper NNs for QE, namely Deep Gaussian Processes
(Damianou and Lawrence, 2013). Deep GPs combine GPs with deep architectures. Let us denote a GP
model for Y as Y ∼ GP (0,K(X,X)). Instead of having only a simple layer of GP, we can stack many
more. This is mathematically equivalent to having the form:

Y ∼ fL(fL−1(. . . f1(X, X) . . . )), (3)

where f l(·) ∼ GP (0,K l(·, ·)). Stacking many more layers helps the model able to learn to approximate
non-stationary functions (e.g. see Damianou and Lawrence (2013) and Vafa (2016)).

Training the model is more complicate, but doable with recent advanced approximate methods (e.g.
Approximate Expectation Propagation (Bui et al., 2016), Doubly Stochastic Variational Inference (Sal-
imbeni and Deisenroth, 2017)). In this work we choose the work of Salimbeni and Deisenroth (2017) to
train the model because of its simplicity and efficiency.

3.3.3 Deep Kernel Learning

In theory, GP with the SE kernel function is an universal approximator (Micchelli et al., 2006). Unfor-
tunately, the representational power offered by the kernel can be very limited as the kernel is perhaps
too simple. This may make it less effective when applying the model to a high dimensional QE feature
space. It is not easy to address the problem.

In this work, we propose to use Deep Kernel Learning (DKL) to address the challenge. This type of
network is a deep network: it has input layer, hidden layers, and a GP model on the top. The formulation
for the model is thus Y ∼ GP (0, NN(X)) instead of Y ∼ GP (0,K(X,X)), whereNN(X) represents
a NN instead of a simple kernel function K(·, ·). In our experiments, DKL is a shallow NN plus a GP
model stacked on the top.

Technically, all GPs parts are differentiable (Rasmussen and Williams, 2005), including the Cholesky
decomposition that computes the inverse of the M ×M “pseudo matrix”. For this reason, the model
can be trained in an end-to-end fashion with back-propagation. Specifically, the model can be trained
end-to-end using stochastic variational approach (Wilson et al., 2016a) or semi-stochastic block-gradient
approach (Al-Shedivat et al., 2017). We choose the work of Al-Shedivat et al. (2017) to train the model
because of its efficiency.

We propose to use DKL for QE because of two potential benefits. First, such a combination may work
well with high dimensional input space since the flow goes from a NN to the GP layer. Second, it may
be more robust because the model enjoys the robustness of GPs in general. Indeed, while deep NNs are
found to be overfitting, DKLs are found to be very robust in our experiments.

3.3.4 Bayesian Neural Networks

Bayesian NNs are a type of NNs with a prior distribution on the weights. We introduce the model to QE
because of their robustness.

Specifically, we put network weights w with normal priors p(w) = N (0, I) in our experiments. Pre-
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dictive distribution of output y∗ given a new input x∗ can be computed as follows:

p(y∗| x∗, X, Y ) =

∫
p(y∗| x∗,w)p(w|X,Y )dw.

p(w|X,Y ) =
p(w)

∏N
i=1 p(yi|xi,w)

p(Y | X)
.

Given a new input x∗, Monte Carlo estimation can be used to get an unbiased estimate of it by sampling
from the variational posterior

p(y∗|x∗, X, Y ) ' 1

M

M∑
i=1

p(y∗| x∗,wi). (4)

where each wi is sampled from p(w|X, Y ). We use Bayesian NNs with 50 hidden units in our experi-
ments. We found that using a larger number of units hurts the performance.

The model comes with a cost: it is non-trivial to compute the posterior distribution of network param-
eters p(w|X,Y ) because of the intractable marginal distribution p(Y | X). Variational Inference can be
used to address the problem. It uses a variational distribution qθ(w) =

∏L
i=1 qθi(wi) to directly approx-

imate p(w|X,Y ). Each qθi(wi) is basically a normal distribution paramaterized by mean and standard
deviation:

qθi(wi) = N (wi|µi, δ2i ) (5)

Training the model is efficient, thanks to stochastic variational inference (Hoffman et al., 2013) and the
reparameterization trick (Kingma and Welling, 2014; Rezende et al., 2014)).

As a side note, our Bayesian NNs implementation is based on ZhuSuan, a well-developed framework
for Bayesian Deep Learning (Shi et al., 2017).

4 Experiments Settings

Our training data is a collection of a pair of source/target sentences together with a HTER score (Snover
et al., 2006) - the minimum edit distance between the machine translation and its manually post-edited
version. All the datasets we conducted experiments in our study are standard WMT shared task datasets.
The datasets are all publicly available. We also release our implementation for the code,3 making it
available for reproducing results.

This work studies three different QE scenarios:

• Standard Setting: The test data comes from the same distribution as the training/validating data.

• Domain Adaptation Setting: The test data comes from a different distribution as the train-
ing/validating data.

• Knowledge Transfer Setting: The test data comes from a different language pair as the train-
ing/validating data.

Previous QE studies mainly focus on Standard setting. Our focus is also on DA setting, because we
inevitably will come across data that is sampled from a different distribution to our training data when
using QE models in the wild. Closely related to this is fine-tuning models on a new domain. However,
we are interested in the aspect of NOT fine-tuning our models. This is because information of test data
is not provided in advance when applying a QE model in the wild.

We are also interested in KT setting. Utilizing a dataset from one language pair to use for other
language pairs is very useful, given that QE datasets are limited and language-specific.

Our experiments are with different feature sets. For medium-scale QE feature space, we use the
standard 17 QE features (see Bojar et al. (2017)). For large-scale QE feature space, we enrich the feature

3The code is available at: https://github.com/hoangcuong2011/QESentlevel.



1527

Model

Standard Setting Domain Adaptation Knowledge Transfer
Train/Valid: Train/Valid: Train/Valid:

WMT EN-DE 2016 WMT DE-EN 2017 WMT DE-ES 2015
EN-DE DE-EN Test: Test: Test:

WMT EN-DE 2017 WMT EN-DE 2017 WMT EN-DE 2017
Linear Model 23.48 29.47 − − −
Support Vector Regression 17.47 17.79 20.28 20.69 22.68
Kernel Ridge Regression 17.41 17.47 20.55 28.67 21.19
Shallow Neural Networks 17.46 17.15 20.81 24.96 23.46
Deep Neural Networks 17.51 17.32 19.45 22.85 20.51
Gaussian Processes 17.39 17.05 20.23 21.03 21.12
Deep Gaussian Processes 17.70 17.36 20.20 22.46 21.15
Deep Kernel Learning 17.35 17.28 19.68 21.93 19.93
Bayesian Neural Networks 17.57 17.76 20.65 21.64 23.77
Deep Bayesian Neural Networks 18.44 18.34 18.83 21.19 20.23

Table 1: Assessing QE Models for Sentence-Level Prediction (Medium-scale QE feature space).

set using unsupervised learning. Specifically, we trained a multiplicative LSTM (Krause et al., 2017)
with 4, 096 units on a very large public English corpus (see McAuley et al. (2015)) to predict the next
character for a string. These 4, 096 units are found to be meaningful in NLP tasks in general such as
Sentiment Analysis (Radford et al., 2017). This work shows that they are very useful to QE as well.
While we can add all units as extra features, this turns out to be expensive. We rather use only a random
subset of them (53 and 123 units). In the end, our large-scale QE feature space experiments are with two
feature sets with 70 and 140 features respectively.4

5 Standard Setting

We first present results with WMT QE 2017 shared task (EN-DE and DE-EN). There are various eval-
uation metrics that are often used in Quality Estimation, including Pearson’s correlation, Mean Average
Error and standard Root Mean Squared Error. Because of space constraints, we report only root-mean-
square error (RMSE):

RMSE =

√∑N
1 (HTERref −HTERpred)2

N
∗ 100, (6)

where N is the size of test data. Meanwhile, we emphasize that the important findings in our work are
consistent with the other metrics.

5.1 Medium-scale setting

Table 1 presents the result with medium-scale QE feature space. We detail most important findings.
First, in this setting, we do not observe important advantages of using different models. There is not a

clear winner, and the difference between the best model and other top models is quite marginal. As a site
note, SVR is far from achieving top performance (e.g. 17.79 vs 17.01 for WMT QE DE-EN 2017 task).

Meanwhile, Table 1 reveals that the relationship between the space of input features and corresponding
output is fully non-linear. Specifically, having a linear QE model provides a far suboptimal performance
(e.g. 23.48 with EN-DE), compared to other complex models (e.g. Deep Kernel Learning: 17.35.
We also do not observe any significant improvement by using SVR instead of KRR. The fact that a
sparse model (SVR) does not help over a non-sparse model (KRR) indicates most features are useful.
Combining with the fact that the feature space is non-linear, the QE feature space seems highly complex.

Shallow NNs with 512 units produce a competitive result. This is interesting, as previous attempt to
use shallow NNs for QE (e.g. see Avramidis (2017)) failed to deliver a competitive result in the standard
WMT setting (see Bojar et al. (2017) for a reference). Perhaps, their network parameter settings are not
good enough to make the model work. For the sake of completeness, our network parameter setting is

4Surprisingly, we found that training a good QE model only with the set of 53 or 123 extra features improves the performance
over the WMT 2017 shared task baseline (Bojar et al., 2017). These units are indeed very meaningful.
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as follows. The models were regularized with dropout (Srivastava et al., 2014) with rate 0.5 and were
trained with Adam (Kingma and Ba, 2014) with rate 0.0001.

Meanwhile, Bayesian NNs do not shine with this setting. Given that Bayesian NNs are suitable to
the scenario of having little training data, we conclude that the quantity of being “little” should be much
smaller than our QE training data. (Our training data are with around 10K-20K sentences.) Deep NNs
and deep Bayesian NNs do not help much with Standard setting. Table 2 presents results with other
settings of hidden layers for deep NNs.

DNNs EN-DE DE-EN NNs EN-DE DE-EN DGPs DE-EN GPs DE-EN EN-DE
1 Layer 17.46 17.15 512 17.46 17.15 1 Layer 17.01 w. FW 17.36 17.01
2 Layers 17.47 17.26 1024 17.44 17.14 2 Layers 17.28 w.o. FW 17.72 17.56
3 Layers 17.51 17.29 16384 17.51 17.34 3 Layers 17.36
4 Layers 17.48 17.37 32768 17.40 17.32 4 Layers 17.22
5 Layers 17.54 17.35 Infinite (GP) 17.36 17.05 5 Layers 17.34

Table 2: Detailed analyses with different models in the Medium-scale setting. Specifically, using deep
NNs (DNNs) does not help much. Using large NNs improves the performance, but only if the model is
robust in training (i.e. as in GPs). It is also unlikely to need a QE model that is capable of approximating
non-stationary functions, as we found deep GPs (DGPs) does not gain any significant improvements.
Finally, feature weighting (F.W.) mechanism in GPs is also important. Turning it off rather gives worse
results.

GPs are competitive with Standard setting and medium-scale QE feature space. We recall that GP is a
non-parametric version of a shallow NN with an infinite number of units in the hidden layer (Neal, 1996).
Detail analyses confirm that it is a good fit to medium-scale QE feature space because of the following
reasons. First, having a substantially larger number of hidden units may help. However, we notice that
having a larger NN may not improve performance, as in Table 2. That is, it helps only the case when the
model is robust in training, as in GPs.

Second, most features in the feature space are useful. However, each of them should have a certain
degree of relevance to the task. GPs can capture this. As in Eq 1, if λd is larger, then the dth feature is less
important. Meanwhile, a small λd indicates that the feature is crucial to the task. To this end, we noticed
that their values are different in our experiments, and neither of them are too large or too small. We also
noticed that once we use only a single hyper-parameter λ for all the features, we observe a significant
drop in performance, as shown in Table 2. This confirms that the feature weighting mechanism is also
important in GPs.

Meanwhile, deep GPs do not provide any improvement over GPs. We provide detailed statistics with
other configurations of deep layers in Table 2. It is therefore unlikely to need a QE model that is capable
of approximating non-stationary functions. In other words, the relationship between the space of input
features and corresponding output is unlikely to have jump discontinuities or isolated tall peaks.

5.2 Large-scale setting

We now turn our attention to large-scale setting.5 Table 3 presents the result in detail. Here, we do not
report KRR and Deep GPs because they seem not to be a right model for QE. 6

The three most important observations are as follows. First, it is surprising to see that there is also not
a clear winner, and the difference between the best model and other top models is also quite marginal.
Second, GPs do not provide competitive results with this setting. This is because simple SE kernel
function is not representative enough to learn the similarity in high-dimensional QE feature space. We
also tried other advanced kernel functions, such as Matern kernel (Rasmussen and Williams, 2005),
Polynomial kernel (Rasmussen and Williams, 2005), mixture of SE kernels (Wilson and Adams, 2013)
and Additive Kernels (Duvenaud et al., 2011) without success.

5We report the Standard setting for large-scale experiments only for DE-EN. Specifically, the pretrained LSTM model is
made available at https://github.com/openai/generating-reviews-discovering-sentiment by Radford et al. (2017). Our large-scale
feature experiments are thus reproducible.

6Our result with these models in the setting is also not promising.
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Model

Standard Setting Knowledge Transfer Domain Adaptation
Train/Valid: Train/Valid:

Train/Valid/Test: WMT DE-EN 2017 WMT DE-EN 2017
WMT DE-EN 2017 Test: Test:

WMT EN-ES 2013 WMT DE-EN 2013
70 features

Support Vector Regression 16.71 38.84 43.68
Shallow Neural Networks 16.39 36.02 142.27
Deep Neural Networks 16.80 43.15 95.71
Gaussian Processes 24.37 62.05 60.14
Deep Kernel Learning 16.37 37.11 44.13
Bayesian Neural Networks 16.94 32.71 42.37
Deep Bayesian Neural Networks 16.99 33.51 46.46

140 features
Support Vector Regression 17.23 38.99 45.03
Shallow Neural Networks 16.52 36.22 257.30
Deep Neural Networks 16.82 42.44 131.81
Gaussian Processes 24.37 62.05 60.14
Deep Kernel Learning 16.82 35.44 40.99
Bayesian Neural Networks 17.22 36.39 45.48
Deep Bayesian Neural Networks 17.00 36.60 59.12

Table 3: Assessing QE Models for Sentence-Level Prediction (large-scale QE feature space)

Perhaps, making GPs work well with this setting needs a fully different type of kernel function. As
shown in Table 3, we found that DKL seems to be a right approach to address the difficulty. That
is, replacing the simple SE kernel function with a NN improves the performance of GPs significantly.
Overall DKL and shallow NNs provide the best result with large-scale QE feature space.

In summary, we recommend using shallow NNs and DKL for QE with Standard setting. We recom-
mend using GPs only with medium-scale QE feature space. We recommend NOT using a deep NN in
QE because of overfitting. Our results also show that using a suitable model is very important. For
instance, good models (shallow NN and DKL) with a set of 70 features produce competitive results
(16.39 and 16.37) to the best single model in WMT QE 2017 shared task (SHEF/QUEST-EMB-SCALE
- 16.1) (see Bojar et al. (2017) for a reference). Other models including SVR are far from achieving top
performance.7

6 Domain Adaptation and Knowledge Transfer

We study different DA and KT settings. Specifically, we use EN-DE training/validating data come from
WMT 2016, and evaluate on WMT 2017 EN-DE test data. We also use WMT 2017 DE-EN train-
ing/validating data to train the model, but we evaluate on WMT 2013 DE-EN test data. Note that with
the EN-DE training/validating data come from WMT 2016, the datasets contain HTER scores greater
than 100. We therefore scale the HTER score in [0, 1] by dividing the maximum HTER score.

In KT setting, we experiment with WMT 2015 EN-ES and WMT 2017 DE-EN training/validating
data sets, and evaluate on WMT 2017 EN-DE test data. We also train models using WMT 2017 DE-EN
training/validating data, but test on WMT 2013 ES-EN test data.

Tables 1 and 3 present results. There are several important findings as follows. First, there is a
substantial difference in model performance in these settings. Second, we raise our concern of applying
shallow NNs to these settings. Specifically, shallow NNs often predict an HTER score that is outside
the range of [0:1] given an input that is not close to the input space of training data. This explains a
substantially worse RMSE with 142.27 and 257.30 in Table 3.8 While analysis of these cases requires
future work, we should note that we did not observe similar problems for other models.

Using deep NNs for QE could reduce the effect of DA and KT setting. We attribute this observation

7We recall that we randomly selected 53 units from our 4, 096 units. We notice that by selecting top most relevant 53 units
(by feature selection), we improve the performance of shallow NN and DKL to 16.1. However, our main concerns are assessing
QE models rather than beating SOTA.

8Technically, we can “post-process” the output so that a prediction that is outside the range of [0:1] will be set to 0 or 1. We
do not apply such post-processing procedures here.
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to the fact that deep NNs learn high-level features, which may work well across domains/datasets. Un-
fortunately, this seems to be only the case with medium-scale QE feature space. With large-scale setting
deep NNs produce a suboptimal performance. It is indeed non-trivial to train deep NNs with the settings
given small training data we have. Deep NNs also often produce HTER scores that are outside the range
of [0:1] with these settings.

Third, using GPs for QE gains robust performance across various medium-scale QE feature space
adaptation/knowledge transfer tasks. Unfortunately, this is not the case with large-scale setting.

Using Bayesian NNs and DKL provides a powerful solution to the DA and KT setting. Robustness is
the key to their success under these settings. As a side note, deep Bayesian NNs provide good solution
to DA and KT setting only with medium-scale setting.

Finally, our work shows if we choose a right QE model to apply in the wild, the QE prediction is
robust. For instance, the performance of using deep NNs, DKL and deep Bayesian NNs is still very
promising (19.45, 19.68 and 18.83 respectively) when they are trained with WMT EN-DE 2016 dataset
but tested with WMT EN-DE 2017 test data.

Moreover, our results show that it is promising to utilize a QE dataset from one language pair to use
for other language pairs. Let us present our good results with the WMT QE 2017 EN-DE test set as an
example. Our result with DKL trained with WMT DE-ES 2015 is 19.93 while the best QE model trained
on the in-domain training/validating data is 17.35.

Our work also raises the challenge of building a better QE model with a large feature set. As in Table 3,
model performance is often far from being robust/accurate across different domains/datasets.

7 Conclusion

This paper contributes a significant amount of efforts of assessing advanced sentence-level QE models.
We show that having powerful features is not enough, as we also need a right model to use. We recom-
mend to use shallow NNs with Standard setting, but we do NOT recommend deep NNs with this setting.
When it comes to medium-scale QE feature space, we recommend using GPs.

Meanwhile, we observe a very weak performance of NNs when applying the model in the wild (i.e.
Adaptation and Knowledge Transfer setting). GPs model is a right option in these cases, but only with
medium-scale setting. Bayesian NNs work well for both DA and KT settings, but not Standard setting.

Each model works well in certain circumstances. There is an exception, though, with Deep Kernel
Learning. We found that the QE model is a strong candidate to use in real-world scenario.
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