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Abstract

Clickbait has become a nuisance on social media. To address the urging task of clickbait de-
tection, we constructed a new corpus of 38,517 annotated Twitter tweets, the Webis Clickbait
Corpus 2017. To avoid biases in terms of publisher and topic, tweets were sampled from the
top 27 most retweeted news publishers, covering a period of 150 days. Each tweet has been an-
notated on 4-point scale by five annotators recruited at Amazon’s Mechanical Turk. The corpus
has been employed to evaluate 12 clickbait detectors submitted to the Clickbait Challenge 2017.

Download: https://webis.de/data/webis-clickbait-17.html Challenge: https://clickbait-challenge.org

1 Introduction

For publishers of online content, the most popular revenue model is advertising. On freely accessible
web pages ads are displayed along the content, and publishers earn fees for each ad seen by the visitors
of these pages. Online content is often expected “to pay for itself:” it has to attract enough visitors such
that the earned fees exceed the investment made in creating it. Assuming that each piece of content has
its target audience, generating profit boils down to letting the respective target audience know where to
find it. Ironically, this requires the content itself to be advertised.

Notwithstanding other means of advertisement, today, most publishers advertise their content on social
media. By spreading “teaser messages” (be it with or without paying promotion fees), publishers engage
in viral marketing. Teaser messages consist of two or three parts: (1) a short text, (2) an optional media
attachment such as an image or a video, and (3) a link to the publisher’s page where the advertised content
is found. From a publisher’s perspective, the ideal teaser message discloses its advertised content to the
least possible extent, so that its target audience (better: everyone) is tempted to visit the publisher’s
pages. Conversely, from a reader’s perspective, the ideal teaser message is a self-contained summary, so
that visiting the publisher’s page is subject only to cases where not everything important could be fitted
into the summary, or where the reader wants to learn more about the backgrounds. The two ideals are
naturally at odds, and the social network operators may need to reconcile between them.

Figure 1 shows examples of teaser messages in the above sense, advertising news content on Twitter.
The left-to-right ordering of the messages in the figure is indicative of the degree to which an average
reader might feel sufficiently informed without clicking the link (left), less informed but rather curious
and urged to click (right), or something in-between (middle). The messages more to the right side of the
figure are examples of what is called “clickbait” today. Clickbait is an umbrella term that encompasses all
kinds of teaser messages in social media capable of instigating an (on average) increased click-through.

This paper introduces the Webis Clickbait Corpus 2017, a large-scale corpus of teaser messages, which
has been built to address automatic clickbait detection. All messages in the corpus have been carefully
sampled and annotated via crowdsourcing regarding their degree of clickbaitiness. After reviewing re-
lated work in Section 2, Section 3 defines clickbait and its operationalization, and Sections 4 and 5 detail
the corpus construction process, including a first corpus analysis.

This work is licensed under the Creative Commons Attribution 4.0 International License.
License details: http://creativecommons.org/licenses/by/4.0/
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Figure 1: Examples of teaser messages from news publishers on Twitter. The tweets have been redacted,
removing information identifying the publishers in order not to pillory them.

2 Related Work

To the best of our knowledge, Table 1 lists all clickbait-related resources available to date. The Webis
Clickbait Corpus 2017 (Webis-Clickbait-17, for short) was preceded by the Webis Clickbait Corpus 2016
built by Potthast et al. (2016) to study clickbait detection for the first time. Given that clickbait itself is a
fairly recent subject of inquiry, all of these resources have been published within the past two years. The
resources can be distinguished in terms of genre, teaser type, approaches to acquisition and annotation,
whether the linked articles are archived, and their size. A discussion of each aspect follows.

Genre. All resources to date, including ours, cover news. News are of particular importance, since the
use of clickbait in this domain raises concerns: rather than maximizing the informative value of the teaser
messages employed for news dissemination, news publishers also misuse them to maximize their ad
revenue. Because of their important societal role, though, news publishers must be held to high standards,
and the self-imposed codes of conduct of major news publishers clearly reject manipulative means to
increase readership. Clickbait has been dismissed as “digital yellow journalism,” i.e., as nothing new
or noteworthy,1 but this view is short-sighted: our previous work shows that nearly 25% of a sample of
2,992 tweets shared by the top-20 most retweeted news publishers are clickbait (Potthast et al., 2016)—a
finding which is now confirmed by our 10 times larger corpus. Besides news, clickbait does occur in
other genres, too. For example, on entertainment platforms such as YouTube (Qu et al., 2018). In fact,
all kinds of social media where users are referred to another web page are susceptible to clickbait.

Teaser type. Two teaser types have been covered for corpus construction so far, namely the headline
of a news article, and tweets about news articles. Headlines must be considered an approximation of
an actual teaser message on social media; they are often used as textual component of a teaser, but not
necessarily verbatim, and typically in combination with media attachments. The corpora using head-
lines lack associated media attachments, however. Only our previous corpus (Potthast et al., 2016) and
the one presented in this paper incorporate realistic teaser messages. The teasers found on platforms
like Facebook, LinkedIn, YouTube, and the like, are all similar to tweets, but differ in terms of allowed
text length, media arrangement, and available meta data. Other teaser types are found on portal pages
of websites where users are referred to more specific content found elsewhere (e.g., consider the teaser
messages found on a news publisher’s front page). Yet others may be found in discussion forums, com-
ment boards, and emails, where more free-form text is allowed. However, when used as clickbait, these
kinds of messages more often resemble spam, which is distinctly different from clickbait, but shares the
goal of luring readers to their sender’s web pages. One may expect that the clickbait message style will
eventually become part of the repertoire of spammers.

Acquisition approach. Key to the representativeness of a language resource is the corpus acquisition
strategy applied. Here, the news domain presents difficulties for sampling, since an average researcher
hardly has access to all news published in a given period of time, so that directly sampling from the
population of news is infeasible. To circumvent this issue, three strategies have been devised for clickbait
corpus acquisition, namely reputation-based, gatekeeper-based, and importance-based acquisition.

With reputation-based acquisition, teaser messages (or news articles) are selected from publishers
with a good reputation to obtain a relatively clean sample of non-clickbait, and from publishers with
correspondingly bad reputation to obtain as much clickbait as possible. For instance, according to the

1http://theconcourse.deadspin.com/shut-up-about-clickbait-1551902024
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Publication Genre Teaser Acquisition Annotation (Scale, People, κ) Articles Size

Agrawal (2016) News Headline Gatekeeper-based Binary 3 0.84 No 2,388

Potthast et al. (2016) News Tweet Importance-based Binary 3 0.35 Yes 2,992

Biyani et al. (2016) News Headline Reputation-based? Binary ? ? ? 4,073

Chakraborty et al. (2016) News Headline Reputation-based Binary 3 0.79 No 15,000

Rony et al. (2017) News Headline Reputation-based Binary 3 0.79? No 32,000

Webis-Clickbait-17 News Tweet Importance-based Graded 5 0.36 Yes 38,517

Table 1: Overview of clickbait corpora. All are in English; question marks (?) indicate lack of clarity.

literature, the latter publishers include BuzzFeed, Huffington Post, Upworthy, ViralNova, Scoopwhoop,
and ViralStories. This approach has been applied by Chakraborty et al. (2016) whose corpus formed the
basis for the one of Rony et al. (2017). The description of Biyani et al. (2016) is very superficial, but
they do mention certain publishers, and the fact that almost half of their teasers are clickbait suggests
that they have actively searched for such messages. Gatekeeper-based acquisition makes use of, e.g.,
web forums where news are curated. Agrawal (2016) obtain their selection of news from Reddit forums,
where one forum pre-selects news of interest for the benefit of users, and where another collects clickbait
to “spoil” it, e.g., by giving away the information withheld from a teaser. Both, reputation-based and
gatekeeper-based acquisition, directly induce a ground truth. However, especially the reputation-based
approach must be taken with a grain of salt, since many publishers with a comparably low reputation,
such as BuzzFeed and Huffington Post, still publish a significant amount of news without resorting to
clickbait teaser messages. Rony et al. (2017), Chakraborty et al. (2016), and Agrawal (2016) report
to have double-checked the induced labels; each instance has been reviewed by at least three student
volunteers. But the substantial inter-annotator agreements must be taken with a grain of salt, too, since
as Agrawal (2016) reports, “the reason for such a high value of inter-assessor agreement is due to the fact
that these headlines are already in their well defined categories owing to the nature of data collection.”
This conscientious observation hints at a bias that has been introduced by reputation-based acquisition
and not disguising the sources or at least randomizing the messages before review.

By comparison, under importance-based acquisition as applied in (Potthast et al., 2016) as well as for
our new corpus, publishers are ranked with respect to a specific criterion, such as sales or shares, and
teasers are sampled from the top-ranked publishers. This way, it is ensured that a corpus covers the news
seen by the largest portion of the target audience. Moreover, no assumptions are made about the nature of
a publisher, so that the proportion of clickbait observed is not artificially amplified as is the case with the
aforementioned acquisition approaches. Importance-based acquisition does not induce a ground truth, so
that all teasers collected must be reviewed and annotated.

Annotation approach. Previous clickbait corpora consider only a binary scale for annotation, where
a teaser is either clickbait or not. In our own annotation experiments, we found the binary scale to be
lacking, since, as illustrated by the examples depicted in Figure 1, the degree to which a certain teaser
message tries to manipulate its reader varies depending on the person reading it. For example, it may be
that one person is hardly affected by any of these examples, whereas another more strongly experiences
an urge to click. This is also why a single opinion does not suffice to arrive at an objective judgment
about a teaser message, but a number of opinions should be collected and averaged.

Article archival. Teaser messages do not occur in isolation but link to some content on another web
page. While the task of clickbait detection has typically been cast as an assessment of teaser messages
in isolation, the linked content may still play an important role for subsequent analyses. Only our two
corpora Webis-Clickbait-16 and 17 incorporate the linked web pages.

Size. Finally, in terms of size, our corpus is on par with that of Rony et al. (2017), albeit, as discussed
above, our sampling and annotation approaches are significantly more sophisticated.
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3 Defining, Understanding, and Operationalizing Clickbait

Clickbait turns out to be an elusive concept. Characterizing clickbait as an enumeration of properties
exhibited by a teaser message proves difficult. Having reviewed thousands of examples, we would say
that clickbait withholds crucial information, and that it is emotional, sensational, condescending, inflam-
matory, know-it-all, or any combination thereof. However, this list of properties is likely not exhaustive,
leaves lots of room for interpretation, and none appear to be a strict necessity. Furthermore, these prop-
erties are difficult to be operationalized. But despite the apparent difficulty of capturing in a clear-cut
definition the essence of what makes clickbait clickbait, the term has been in use since 1999, according to
Merriam Webster’s. Apparently, the underlying phenomenon, namely that messages are spread designed
to entice readers into clicking a link, has been around ever since the ad revenue business model took off
on the web. And the phenomenon has been nagging enough so that web users took note of it and coined
the term. This is evidence that people are able to tell apart clickbait from other forms of messages found
online and gives us hope that machine learning technology, too, can be taught to detect clickbait.

A better way of understanding and explaining clickbait is by describing it in terms of what happens at
publisher site and at reader site. The following four definitions contrast the emergence of clickbait and
publisher intentions with the effects of clickbait and reader perception:

• Emergence. Clickbait is the result of optimizing teaser messages to maximize click-through.

• Intention. Clickbait are teaser messages whose authors intend to lure as many people as possible to
a web page, disregarding the content’s target audience.

• Effects. Clickbait are teaser messages that manipulate its readers into clicking a link.

• Perception. Clickbait are teaser messages perceived by (some) readers as bait to click a link.

These definitions capture important aspects of clickbait that a mere listing of properties cannot convey,
and they reflect how clickbait is described, e.g., at Merriam Webster and on Wikipedia. The question
remains, though, which of these definitions is best suited to operationalize clickbait.

For publishers, the availability of facilities to analyze user interactions with postings in real time on
social networks naturally has given rise to their optimization to maximize click-through. Today’s shape
and form of clickbait can be attributed to Upworthy (Koechley, 2012), who “pioneered” and popularized
clickbait by flooding Facebook at a scale that prompted Facebook to change its algorithms to reduce it
(El-Arini and Tang, 2014). Other publishers quickly learned from Upworthy’s example. To learn more,
we asked professional journalists who use social network analytics on a daily basis: On the upside, seeing
a recently finished article spread is gratifying, and they are thankful for the opportunity to adjust teasers,
e.g., to fix mistakes or misconceptions. On the downside, this feedback about personal success or failure
is also available to their department heads. When encountering clickbait, some form of malicious intent,
be it voluntary or forced, can hence be presumed. From a reader’s perspective, clickbait is mainly a form
of manipulation. The manipulative power of clickbait has been attributed to the curiosity gap (Loewen-
stein, 1994), a gap of knowledge created in a reader’s mind by withholding crucial information from a
teaser message. Once experienced, the gap causes an urge to be filled, which may be explained as a
kind of curiosity. This is at least what is proclaimed by Koechley (2012) as to why clickbait worked
for Upworthy, and what has henceforth been cited. The connection between Loewenstein’s theory and
clickbait has not been shown scientifically, though, so that it remains an open question how the relatively
short teaser messages can have such a strong effect. More generally, we say that clickbait appeals to
human urges and exploits cognitive dissonances to fulfill its goal.

Our best bet at operationalizing clickbait is the fact that clickbait is perceptible to (some) readers,
whereas proving malicious intent of individual journalists or publishers as a whole (i.e., reputation-based
annotation) is virtually impossible. An obvious limitation of the former operationalization is that we
cannot capture clickbait that eludes conscious reflection while still successfully manipulating (some)
readers. This is why each teaser is judged by more than one annotator, and why our assessors have the
freedom to judge the baitiness of a teaser message on a Likert scale rather enforcing a binary decision.
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4 Corpus Acquisition

In order to make a valuable contribution to the research community, we set out to render the Webis Click-
bait Corpus 2017 authentic, representative, rich in terms of potential features, unbiased, and large-scale.
An overview of the main characteristics of our acquisition approach is provided in Table 2. We follow
and extend the approach taken to construct our previous, small Webis-Clickbait-16 corpus (Potthast et
al., 2016), rendering both corpora comparable. In what follows, we outline the design choices we were
required to make regarding the selection of publishers, the crawling of their news, and the sampling of
news items for annotation.

4.1 Platform and Publisher Selection
As teaser type for our corpus, we chose Twitter tweets. Twitter was chosen because (1) the platform has a
large user base, and (2) virtually all major US news publishers disseminate their articles through Twitter.
Facebook would have been equally suited, but we opted for Twitter for its more rigorous limitations
of shape and form of teaser messages. This way, we hoped to ensure less variability in terms of how
clickbait can be constructed, lest the more free-form teaser messages on Facebook may have caused
more ambiguity. At any rate, all publishers under consideration disseminate their news on both platforms
simultaneously. A cursory comparison of teasers shared on both platforms for the same news item shows
that their contents are typically roughly equivalent, so that our platform choice may not significantly
limit the generalizability of results obtained based on our corpus.

Our sample of news publishers is governed by publisher importance in terms of retweets. Restricting
ourselves to English-language publishers, we obtain a ranking of the top-most retweeted news publishers
from the NewsWhip social media analytics service.2 Taking the top 27 publishers,3 we ensured that the
news covered reflect what a large population of English-speaking internet users is confronted with on a
daily basis. Although many of the top-most publishers (say, the top 10) remain the same over long time
spans, others make an appearance on lower ranks and are displaced again as time goes by and publishers
compete for user attention. Our sample of publishers reflects the ranking of October 2016.

4.2 Crawling, Archiving, and Preprocessing News Teasers and Articles
Given the Twitter handles of the 27 news publishers selected, we used Twitter’s API to record every
tweet they published in the period from December 1, 2016, through April 30, 2017. To enable the re-
search community to develop and experiment with a rich set of features, we included the tweet text,
media attachements, and the meta data provided by Twitter. Due to technical limitations we had to omit
tweets that contained video content. Further discarding tweets that did not contain exactly one hyperlink,
we crawled the news article advertised. Besides technical difficulties arising from the HTTP forwarding
associated with links on Twitter as well as publisher-specific forwarding, we found it insufficient to only
download the HTML content of the linked news articles: many news publishers paginate articles, and
some are at the forefront of dynamic web page design, so that we found cases where the article content
was not part of the initial download, but resulted from JavaScript-based content loading. That, and the
fact that the articles of some publishers tend to disappear or be reorganized rather quickly after publica-
tion, led us to adopt a more reproducible archiving approach. Using the tools underlying the Wayback
Machine of the Internet Archive, we recorded the whole communication that takes place between a client
(browser) requesting the web page of a news article and the publisher’s web server hosting it, storing it
within web archive (WARC) files (including, e.g., HTML, CSS, Javascript, and images). This way, every
article page that forms part of our corpus can be reviewed as it was on the day we crawled it, allowing
for corpus reviews even after years, hence maximizing its reproducibility.

Nevertheless, users of our corpus will not have to handle the raw WARC files. For convenience,
we applied publisher-specific wrappers extracting a set of content-related fields (cf. fields prefixed with
“target” in Table 2). In this regard, we discarded Boilerpipe and other generic content extraction tools,
since their performance was surprisingly poor.

2https://www.newswhip.com
3We aimed for the top 30, but accidentally used the wrong Twitter handles of three, so that we excluded them altogether.
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Corpus Acquisition

Platform: Twitter
Crawling period: Dec 1 2016 – Apr 30 2017
Crawled tweets: 459,541

Publishers: 27. Names: abc, bbcworld, billboard,
bleacherreport, breitbartnews, business,
businessinsider, buzzfeed, cbsnews, cnn,
complex, espn, forbes, foxnews, guardian,
huffpost, independent, indiatimes,
mailonline, mashable, nbcnews, nytimes,
telegraph, usatoday, washingtonpost, wsj,
yahoo

Filters: - No videos in tweets.
- Exactly one hyperlink in tweet.
- Article archiving succeeded.
- Main content extraction succeeded.

Recorded fields: 12. Names: postId, postTimestamp,
postText, postMedia, postPublisher,
targetUrl, targetTitle, targetDescription,
targetKeywords, targetParagraphs,
targetCaptions, targetWarcArchive

Sampling strategy: Maximally 10 tweets per day and publisher
Sampled tweets: 38,517

independent
guardian
businessinsider
business
foxnews
cnn
washingtonpost
mashable
wsj
nytimes
telegraph
abc
usatoday
billboard
cbsnews
nbcnews
forbes
mailonline
nytimesworld
indiatimes
bleacherreport
huffpost
buzzfeed
bbcworld
breitbartnews
complex
yahoo
abcnews
espn

0 20000 40000 60000 80000

Table 2: Corpus acquisition overview (left), and number of tweets crawled from every publisher (right).

4.3 Sampling News
When sampling from a stream of news, special attention must be paid to avoid topic bias. This pertains
particularly to the task of constructing a clickbait corpus, since clickbait is more a matter of teaser style
rather than teaser topic. A clickbait detection model trained on too narrow a range of topics may not
generalize well since it will likely pick up stylistic differences that result from differences between topics
rather than differences between the style of clickbait and that of non-clickbait. Our previously published
corpus Webis-Clickbait-16 suffers from this shortcoming, since it covers only one week worth of tweets.
Although news coverage switches topics rather quickly, this is hardly enough to ensure topic diversity.
To obtain a sample of tweets that has a high topic diversity, we crawled news as described above for
five months in a row, yielding almost half a million tweets that fit our criteria and that were successfully
archived.

From this population, we drew a random sample for annotation where, for budgetary reasons, the goal
was to draw at least 30,000 tweets and at most 40,000. Since the distribution of tweets per publisher
is highly skewed, we apply stratified sampling to avoid a corresponding publisher bias. Similarly, we
ensure that tweets are sampled from each day of the five months worth of tweets to ensure coverage of
the whole time period. Selecting a maximum of ten tweets per day and publisher yielded a set of 38,517
tweets and archived articles, which were then subjected to manual annotation.

5 Corpus Annotation

The annotation of the acquired tweets regarding their clickbaitiness was implemented with the crowd-
sourcing platform Amazon Mechanical Turk (AMT). To obtain high-quality annotations we invested sub-
stantial effort into preliminary evaluations of different task designs, alternative annotation scales, and, in
particular, into the review of the annotations made. The following subsections detail our considerations,
experiences, and insights.
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Figure 2: Screenshot of the final AMT task design.

5.1 Task Design
Designing a successful crowdsourcing task entails a number of design decisions, which can hardly be
made without pilot studies. We conducted a series of AMT pilot studies to optimize the task design. In
this regard, we employed the 2992 tweets of our previous clickbait corpus Webis-Clickbait-16. Figure 2
shows the final task design we used.

Clickbait is a concept with which crowd workers may not be familiar. To develop their “mental click-
bait model,” we quoted colloquial clickbait definitions from Facebook, HuffPoSpoilers, and Wikipedia
as part of the task instructions (i.e., the aforementioned definitions are not suited for laymen). In addi-
tion, two typical clickbait and two non-clickbait examples were shown, drawn from our previous corpus.
Since the annotations of the first pilot studies’ tweets still showed an overly high variance, we extended
the instructions again: first, since gossip was often misclassified as clickbait, we added a note that work-
ers should not mix up irrelevance with clickbait. Second, since information in images attached to tweets
was often overlooked, we added a note that special attention has to be paid to images. To avoid that
workers get a high number of rejections because of misunderstanding the task, we suggested to complete
at most two task instances and to await their approval before continuing.

The task instructions were followed by a list of tweets, each of which to be annotated regarding its
clickbaitiness. We compared different annotation scales, the lengths of the tweet lists (five versus ten),
and the number of check instances (one or two). As check instances we employed those tweets where all
workers agreed; in order to bootstrap a pool of check instances, we started with tweets from our previous
corpus. Check instances are of great value for the assessment of crowd workers. In our case it turned out
that having two check instances per task instance—one that is clickbait and one that is not—allowed us
to pinpoint underperforming workers of two kinds: (1) those with a tendency towards one of the extreme
values, and (2) those who do not use the entire grading scale. Because of the (high) number of required
check instances, we decided to have ten instead of five tweets per task in the final task design.

Within all studies, we payed one cent per tweet, an amount commensurate with the average time it
took workers to complete a task so that a reasonable, albeit not generous, hourly wage would result. An
exception was a particular pilot study where, in addition to the assessment of clickbait, workers had to
mark words in the tweets which they considered indicative for their judgments. Having such a subtask
was recently recommended for a search result relevance annotation task (McDonnell et al., 2016). In our
case, this additional task increased the overall task completion time considerably while not improving
worker agreement. We hence omitted this additional step in the final task design.
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Figure 3: Screenshot of the system used for reviewing the crowdsourced clickbait assessments. Each
row in the table refers to a HIT that has been worked on by a specific crowd worker.

5.2 Annotation Scale
Existing clickbait corpora use a binary scale for assessing clickbait. Although there are teaser messages
that are obviously clickbait (“You won’t believe what happened next!”), we noticed that making a bi-
nary decision about a teaser message is often not useful: even a teaser that can be rephrased in a more
informative way may not be considered as clickbait if it conveys the idea of what the linked article is
about. Hence, to account for different degrees of clickbait, we compared the use of a graded scale to
the use of a binary scale. The graded scale has four values (Likert scale with forced choice) and ranges
from “not” over “slightly” and “considerably” to “heavily” clickbaiting. For the ten annotations that we
collected for each of the 2992 tweets in our previous corpus, the binary scale achieved an agreement
of 85% (on average 8.5 annotators voted for the majority class). For the four point graded scale, the
agreement dropped to 63%. However, when binarizing these annotations by combining the first two
and the second two classes, an agreement of 84% is obtained. This shows that the graded scale is the
more flexible choice: it can be abstracted into a binary scale without loss of agreement, and it allows for
casting clickbait detection as a regression problem.

5.3 Reviewing Process
To guarantee a high quality dataset, all crowdsourced assessments were reviewed and, if necessary,
discarded, resubmitting the respective assignment to AMT. Figure 3 shows a screenshot of the system that
we have developed for efficient review of massive amounts of annotations: each row in the table shows
a set of annotations (a single assignment) that has been submitted by a crowd worker. The Annotations
column in turn shows a colored square for each tweet of the assignment. The upper half of a square color-
codes the annotations made by the specific crowd worker, the lower half color-codes how (and how many)
other workers annotated the tweet. By default, the color encodes the statistical mode of the annotations;
other statistical location parameters such as mean and median are available from a menu. As mentioned
above, each assignment included two check instances, which were displayed in the Checks column and
which serve as an effective heads-up indicator: only if a worker frequently misclassified check instances,
a more in-depth reviewing of the annotations was conducted. To this end, each of the rows in the table
is expandable to display the tweets underlying the squares. As a further indicator, task completion time
was measured and displayed as well (see the Total Time column). Obviously, a low agreement paired
with a short completion time gives a strong bias that a worker did not work conscientiously. Altogether,
more than 600 000 individual annotations were reviewed with the system for the clickbait corpus project;
our rejection rate was 35.9%.

5.4 Corpus Analysis
The histogram in Figure 4 (left) shows the distribution of tweets across the four classes of our graded
scale in the form of stacked bars. To classify a tweet into one of the four classes, the mode of its
annotations is used, where, in case of multiple modes, the fifth annotation is used to determine the class.
The different colors in the bars encode different levels of agreement. With a value of 0.21 in terms
of Fleiss’ κ, the annotator agreement is between slight and fair. However, when binarizing the classes
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Figure 4: Left: Distribution of tweets over the four clickbait classes; the level of agreement about the
class is color-coded. Right: Class distribution per publisher; no color coding is applied.

as described before, κ becomes 0.36, which corresponds to the respective value of 0.35 reported for
our previous clickbait corpus (Potthast et al., 2016). Also note that the distribution of tweets across
the binarized classes matches that of our previous corpus. Recalling that our previous corpus has been
assessed by few trained experts, we conclude that our crowdsourcing strategy lives up to the state of
the art and that it can be considered as successful: the two independently designed and operationalized
annotation studies still achieve the same result, and hence our annotation experiment can be understood
as a reproduction of our previous efforts, only at a larger scale. We summarize this results as follows: to
scale the annotation of clickbait corpora, resorting to trained experts is not a necessary requirement.

Figure 4 (right) shows the distribution of tweets across the classes per publisher. Two of the 27 publish-
ers, breitbartnews and buzzfeed, do obviously not follow the overall distribution; both send significantly
more clickbait than the others. However, their contribution to the total amount of clickbaiting tweets
(and hence to the corpus’ publisher bias) is moderate only. Interestingly, TV networks in particular are
among the publisher with least clickbait, avoiding even weakly clickbaiting messages.

6 Conclusion

Clickbait has quickly become one of the pests of social media, not unlike spam for email. While its
working mechanisms are still barely understood, nearly every major publisher on social media employs
it already to a greater or lesser extent to increase their readership. Although clickbait is apparently an
effective marketing instrument, the ends do not justify the means: clickbait is also an effective instrument
of manipulation. For example, the propagators of fake news make use of clickbait, too, to spread their
disinformation. For news dissemination in general, clickbait must be rejected as well, since readers
expect to be comprehensively informed, and journalistic codes of ethics typically prohibit unethical
means of marketing.

To lay the groundwork for the emerging and ongoing investigation of clickbait by computer linguists
and natural language processing alike, we have constructed the Webis Clickbait Corpus 2017, the first
large-scale corpus of clickbait which has been carefully designed to be as representative as possible of
teaser messages sent by the major publishers on Twitter. This way, our corpus will serve qualitative
as well as quantitative research alike, allowing for deeper insights into the nature of clickbait, and the
construction of technology to handle it, respectively. To foster the emerging research community on this
subject, we share the resource itself and all the technologies that helped to compile it free of charge under
permissible open source licenses.



1507

To kickstart the use of our corpus, and to foster the development of new detection technology for
clickbait messages, we have organized the Clickbait Challenge 2017, a shared task which used our corpus
for evaluation. The corpus was divided into a training and test set, each comprising roughly half of the
total number of tweets. Twelve teams of researchers participated in the challenge, submitting as many
approaches for evaluation. A detailed review of the submitted approaches is out of the scope of this
paper, however, it can be found in (Potthast et al., 2018).
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